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Abstract—The effectiveness of compression algorithms is which have a broad spectrum of applications in areas like
increasing as the data subjected to compression contains pjoinformatics, natural languages. and music.

repefitive patterns. This basic idea is used to detect the \y4 jjystrate the use of lossless compression in pre-mining
existence of regularities in various types of data rangingrbm

market basket data to undirected graphs. The results are que ~ data by focusing on several distinct data mining processes:
independent of the particular algorithms used for compresion  files with frequent patterns, frequent itemsets in market
and offer an indication of the potential of discovering paterns  basket data, and exploring similarity of graphs.

in data before the actual mining process takes place. The LZW (Lempel-Ziv-Welch) algorithm was introduced
Keywords-data mining; lossless compression; LZW; market  in 1984 by T. Welch in [9] and is among the most popular
basket data; patterns; Kronecker product. compression techniques. The algorithm does not need to

check all the data before starting the compression and the
performance is based on the number of the repetitions and
Our goal is to show that compression can be used athe lengths of the strings and the ratio of 0s/1s or trueffals
a tool to evaluate the potential of a data set of producingt the bit level. There are several versions of the LZW
interesting results in a data mining process. The basic idealgorithm. Popular programs (such as Winzip) use variation
that data that displays repetitive patterns or patterns thaofthe LZW compression. The Winzip/Zip type of algorithms
occur with a certain regularity will be compressed morealso work at the bit level and not at a charater/byte level.
efficiently compared to data that has no such characteyistic We explore three experimental settings that provide strong
Thus, a pre-processing phase of the mining process shoutmpirical evidence of the correlation between compression
allow to decide whether a data set is worth mining, orratio and the existence of hidden patterns in data. In Sec-
compare the interestingness of applying mining algorithmsion 1I, we compress binary strings that contain patterns;
to several data sets. in Section Ill, we study the compressibility of adjacency
Since compression is generally inexpensive and compresnatrix for graphs relative to the entropy of distribution of
sion methods are well-studied and understood, pre-miningubgraphs. Finally, in Section 1V, we examine the compress-
using compression will help data mining analysts to focusbility of files that contain market basket data sets.
their efforts on mining resources that can provide a highest
payout without an exorbitant cost. [l. PATTERNS IN STRINGS AND COMPRESSION
Compression has received lots of attention in the data min- )
ing literature. As observed by Mannila [7], data compressio L€t A* be the set of strings on the alphabktThe length
can be regarded as one of the fundamental approaches to d&fa2 Stringw is denoted byjw|. The null string onA is
mining [7], since the goal of the data mining is to “compressdenoted byA and we defined™ as A+ = A* — {\}.
data by finding some structure in it". If w e A* can be written asv = utv, whereu,v € A*
The role of compression developing parameter-free dat@ndt € AT, we say that the pait, m) is an occurrence of
mining algorithms in anomaly detection, classification andt in w, wherem is the length ofu.
clustering was examined in [4]. The siz&x) of a com- The occurrenceér, m) and(y, p) are overlapping i <
pressed filer is as an approximation of Kolmogorov com- m + |z|. If this is the case, there is a proper suffix of
plexity [2] and allows the definition of a pseudo-distancethat equals a proper prefix of If ¢ is a word such that the
between two files: andy as sets of its proper prefixes and its proper suffixes are disjoin
there are no overlapping occurrencescah any word. The
M. number of occurrences of a strimdgn a stringw is denoted
C(z) +Cly) by n(w). Clearly, we have{n,(w) | a € A} = |w|. The
Further advances in this direction were developedorevalenceof ¢ in w is the numberf;(w) = % which
in [8][5][6]. A Kolmogorov complexity-based dissimilayit — gives the ratio of the characters contained in the occuegnc
was successfully used to texture matching problems in [1pf ¢ relative to the total number of characters in the string.

|. INTRODUCTION

d(l‘,y) =
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The result of applying a compression algoritihto a
string w € A* is denoted byC'(w) and thecompression

0.6

Table |

PATTERN'001’ PREVALENCE VERSUS THEC R 71 p

minimum pattern prevalence of '001',

ratio is the number Prevalence off CR;z;p | Baseline
IC(w)| ‘001’ pattern
CRe(w) = =2 0% 0.93 0.93
[l 10% 0.97 0.93
In this section, we shall use the binary alphaBet {0, 1} §8Z‘j 8:83 8:82
and the LZW algorithm or the compression algorithm of the 40% 0.86 0.93
packagg ava. util . zi p. 50% 0.80 0.93
We generated random strings of bits (0s and 1s) and 60% 0.72 0.93
computed the compression ratio strings with a variety of ;85; 8:2; 8:32
symbol distributions. A stringw that contains only0s 90% 0.31 0.93
(or only 1s) achieves a very good compression ratio of 95% 0.19 0.93
CRjZ]p(w) = 0.012 for 100K bits andCRjZ]p = 0.003 100% 0.01 0.93
for 500K bits, wherejZI P denotes the compression algo-
rithm from the packaggava. uti | . zi p. Figure 1 shows, 1
as expected, that the worst compression ratio is achieved
when0s andls occur with equal frequencies. '
0.8
Compression Ratio on randomly generated strings of bits % 06 \ —'001'
_5 \\ pattern
b ﬁ 0.4 —haseline
-% 1 (’/ \\'u“- 5 0.2 \\
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Figure 1. BaselineCR;z;p Behavior

For strings of small length (less that0* bits) the
compression ratio may exceed 1 because of the overhead
introduced by the algorithm. However, when the size of the
random string exceeds$)® bits this phenomenon disappears
and the compression ratio depends only on the prevalence of
the bits and is relatively independent on the size of the file.
Thus, in Figure 1, the curves that correspond to files of size

6 6 H 7
10° and5 - 10° overlap. We refer to the compression ratio Figure 3. Dependency of Compression Ratio on Pattern Prevalence

of a random stringw with an (ng(w), n1(w)) distribution
as thebaseline compression ratio

We created a series of binary strings,, which have
a minimum guaranteed numbes of occurrences of pat-
ternst € {0,1}*, where0 < m < 100. Specifically,
we created 101 filesppo1,,, for the pattern001, each

compression ratio

baseline stays constant

Patterns and compression ratio
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containing 100K bits and we generated similar series foresylts.

t € {01,0010,00010}. The compression ratio is shown in
Figure 2. The compression ratio starts at a value of 0.94 and

——'01' pattern
cr

—"001'
pattern cr
'0010'
pattern cr

=—'00010"
pattern cr

|. RANDOM INSERTION AND COMPRESSION

Figure 2. Variation of compression rate depends on the prevalence
of the pattern '001’

We conclude that the presence of repeated patterns in
strings leads to a high degree of compression (that is, to low
compression ratios). Thus, a low compression ratio for a file
indicates that the mining process may produce interesting

after the prevalence of the pattern becomes more frequent For a matrix)A/ € {0, 1}**" denote byn; (M) the number
than 20% the compression ratio drops dramatically. Resultef entries of M that equali, wherei € {0,1}. Clearly, we
of the experiment are shown in Table | and in Figure 3.  haveny(B) + n1(B) = uv. For a random variabl& which
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ranges over the set of matric¢s, 1}**? let v;(V') be the In Table I, we had 39% 1s and the baseline compression
random variable whose values equal the number of entrieate for a binary file with this ratio ofls is 0.9775. We

of V that equali, wherei € {0,1}.
Let A € {0,1}P*? be a0/1 matrix and let

B (31 By Bk) ,
b1 Pk

P2
be a matrix-valued random variable whese € R"™**, p,; >
0forl1<j<k, andzlepj =1.
Definition 3.1: The random variablel < 5 obtained by
the insertionof 55 into A is given by

a1 B a1, B Probability distribution| CR;z;p | Shannon Entropy
X TS 0,1,0 0.33 0
A ® B — E RH’LT Xns 51707 0; 033 0
am1B Amn B (0,0,1) 0.33 0
) _ (0.2,0.2,0.6) 0.77 1.37
In other words, the entries of «— B are obtained by (0.6,0.2,0.2) 0.74 1.37
substituting the block:;; B, with the probabilityp, for a;; (0.33,0.33,0.34) 0.79 1.58
in A. 0 (0,0.3,0.7) 0.7 0.88
Note that this operation is a probabilistic generalization Eg'g’g'})’g; 8'2} g'ég
of Kronecker’s product for if (0.49, 6_2’570.26) 077 15
B, (0.15,0.35,0.5) 0.78 1.44
o (1)
1
then A — B has as its unique value the Kronecker product Table Il

A® B.
The expected number df in the insertiond — B is

Table Il

MATRIX INSERTIONS ENTROPY AND COMPRESSIONRATIOS

KRONECKER PRODUCT AND PROBABILITY DISTRIBUTION FOR}
MATRICES

b Probability distribution] CR; Shannon Entro
Eln(A — B)] = mi(4) Y mi(By)ps 0.1:0.0) 053 I
j=1 (0,1,0,0) 0.23 0
Whenni (B1) = - = mi(By) = n, we haveBli(4 — | (03520200 | o | %
B)] = ni(A)n. (0.4,0,0.2,0.4) 0.53 1.52
In the experiment that involves insertion, we used a (0.3,0.1,0.2,0.4) 0.65 1.84
matrix-valued random variable such that(B;) = = (0.45,0.12,0.22,0.21) 0.61 1.83
n1(Bg) = n. Thus, the variability of the values of — B
is caused by the variability of the contents of the matrices
By, ..., Bi which can be evaluated using the entropy of the i
distribution of 3,
& o 0.8 . f 3 -
H(B) == pjlogy p;. B .
j: 1 'E * B # 3 matrices
We expect to obtain a strong positive correlation betweenth 2" 4 i
entropy of 8 and the degree of compression achieved on the € oat
file that represents the matrit — B, and the experiments
support this expectation. 2 e i P -

In a first series of compressions, we worked with a matrix
A € {0,1}106x106 gand with a matrix-valued random variable

5. <131 B, 33)
“\p1 p2 p3)’
Wherij S {0, ].}SXB, andnl(Bl) = nl(Bg) = n1(33> =

Shannon Entropy of the probabilities

also computed the correlation between €R;z;p and the
Shannon entropy of the probability distribution and obedin
the value).9825 for 3 matrices. In Table Ill, we did the same
experiment but with 4 different matrices d¢fx 4. A strong
correlation (.992.) was observed betweddR;;p and the
Shannon entropy of the probability distribution.

Figure 4. EvolutionCR;z;p and Shannon Entropy of Probability
Distribution.

In Figure 4, we have the evolution &R;z;p on they

4. Several probability distributions were considered, asaxis and on the axis the Shannon Entropy of the probability

shown in Table Il. Values oft <+ B had106%%3% = 101124
entries.
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This experiment proves us again that in case of repef Hp(S,,k) is low, there are to be fewer and larger
titions/patterns theCR;z;p is better than in the case of sets of isomorphic subgraphs &f, of size k. In other
randomly generated files. words, small values ofHp(S,,, k) for various values of

Next, we examine the compressibility of binary squarek suggest that the grapl, contains repeated patterns
matrices and its relationship with the distribution of gijsal  and is susceptible to produce interesting results. Note tha
submatrices. A binary square matrix is compressed by firsalthough two isomorphic subgraphs do not necessarily have
vectorizing the matrix and then compressing the binanthe same adjacency matrix, the numti(S,, k) is a
sequence. The issue is relevant in graph theory, where thgonod indicator of the frequency of isomorphic subgraphs
principal submatrices of the adjacency matrix of a graphand hence subgraph patterns.
correspond to the adjacency matrices of the subgraphs of We evaluated the correlation betwe€R;z;p(Ag,, ) and
that graph. The patterns in a graph are captured in the for#(»(S,,, k) for different values off.
of frequent isomorphic subgraphs. As expected, the compression ratio of the adjacency

There is a strong correlation between the compressiomatrix and the distribution entropy of graphs are roughly
ratio of the adjacency matrix of a graph and the frequenciethe same for isomorphic graphs, so both numbers are char-
of the occurrences of isomorphic subgraphs of it. Specifiacteristic for an isomorphism type. 4f is a permutation of
cally, the lower the compression ratio is, the higher are théhe vertices ofS,,, the adjacency matrix of the graif
frequencies of isomorphic subgraphs and hence the worthi@btained by applying the permutation is definedAaé(g is

is the graph for being mined. given by
Let G,, be an undirected graph havidg;,...,v,} as its Ags = P¢Ag”P¢_1.
set of nodes. The adjacency matrix®f, Ag, € {0,1}"*" ) ) _
is defined as We compute this adjacency matrix @., the entropy

Hp (52, k) the compression rati€R; 21 p (Ags) for several
(A )i = 1 if there is an edge between andv; in §, values ofk and permutations. !
977710 otherwise. We randomly generated graphs with = 60 nodes
and various number of edges ranging framto 1765.
We denote withCRc(Ag,) the compression ratio of the For each generated graph, we randomly produced twenty
adjacency matrix of grapl§,, obtained by applying the permutations of its set of nodes and compuiég (3¢, k)
compression algorithnC'. Define the principal subcom- andCR;zrp(Ags ).
ponentof matrix Ag, with respect to the set of indices  Finally, for each graph we calculated the ratio of standard
S ={s1,...,s} € {1,2,...,n} to be thek x k matrix  deviation over average for the computed compression ratios
Ag, (S) such that followed by the same computation for distribution entrspie
The results of this experiment are shown in Figures 5
) and 6 against the number of edges. As it can be seen, the
Ag, (S)ij = in Sy deviation over mean of the compression ratios fioe= 60
0 otherwise does not exceed the numb@n5. Also, the deviation over
_ ) ) ) average of the distribution entropies for various values of
The matrixAg, (S) is the adjacency matrix of the subgraph ;. 4o not exceed).006. In particular, the deviation of the
of S, which consists of the nodes with indices $halong jistribution entropy for the graphs d0 to 1500 edges
with those edges that connect these nodes. We denote Byjis pelow 0.001, which allows us to conclude that the
Pn (k) the collection of all subsets ofl,2,...,n} of sizé  geyiations of both compression ratio and distribution @myr

k where2 < k < n. We have|P, (k)| = (}). with respect to isomorphisms are negligible.

1 if there is an edge between, andv,

Let (M{,...,Mj,) be an enumeration of possible adja- For eachk e {3,4,5}, we generated randoml§60
cency matrices of graphs with nodes wherd,, = 2 sy graphs having@0 vertices and sets of edges whose size were
We define the finite probability distribution varying from10 to 1760. Then, the number¥»(S,,, k) and

. L CR;zrp(Ag, ) were computed. Figure 7 captures the results
PG, ) = (”1(9n) ”ék-(9n>> of the experiment. Each plot contains two curves. The first
’ |Pu(B)] 7 | Pu(R)] ) curve represents the changes in aver@ggz;p(Ag, ) for

' _ forty randomly generated graphs of equal number of edges.
wherenf(§,,) for 1 < i < £ is the number of subgraphs The second curve represents the variation of the average
of G, with adjacency matriM;. The Shannon entropy of 3( (g, k) for the same forty graphs. The trends of these

this probability distribution is: two curves are very similar for different values jof
0 Table IV contains the correlation betwe€R;z;p(Ag,,)
4 k k n
I k) — — ni (Sn) 1 ni (Sn) and 3p(S,, k) calculated for the560 randomly generated
P(gn; ) 0g2o .
S Pa(R)] 77 [Palk)] graphs for each value df.
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IV. FREQUENTITEMS SETS AND COMPRESSIONRATIO n =60 andk = 4
. . 12
A market basket data set consists of a multigetof
transactions Each transactiort is a subset of a set of 10 —
items I = {iy,...,in}. A transaction is described by its //—\
characteristicV-tuple t = (¢1,...,tn), where 8 / \
1 if i €t. ;;‘E” & / =#=DIST ENT
t .
k 0 otherwise a // \ ~8=CMPRTIO
for 1 < k£ < N. The length of a transaction is : M
[t] = Zszotk! while the average size of transactions is o e @@ f-a
DALt In T} S RN 88888 8 88 8 8 8
T ) — ™ m o= W @ S 8 % 2
The support of a set of item& of the data sefl’ is Edge Count
the numbersupp(K) = % The set of itemsK is  ,, — 60 andk = 5

s-frequent Ifsupp(K) > S . . Figure 7. Plots of averag€R;z;p(Ag, ) (CMP RTIO) and average

the identification of association rules. A pair of item setsnumber of edges with respect to the number of edges.
(X,Y) is an association rule. Its supposypp(X — Y)

equalssupp(X) and its confidenceonf(X — Y') is defined

as

supp(XY)

conf(X —-Y) = supp(X) -
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Table IV
CORRELATIONS BETWEENCR z7p(Ag,, ) AND Hp(Gn, k)

investigations show that identifying compressible arefs o

human DNA is a useful tool for detecting areas where the

Correlation
0.92073175
0.920952812
0.919256573

Y i W X

(1]

Using the artificial transaction ARMiner generator de-
scribed in [3], we created a basket data set. Transactiorﬁ]
are represented by sequences of Hits,---,ty). The
multiset of M transactions was represented as a binary string
of length M N obtained by concatenating the strings that[s]
represent transactions. 4]

We generated files with 1000 transactions, with 100 itemi
available in the basket, adding up to 100K bits.

For data sets having the same number of items and trans-
actions, the efficiency of the compression increases Whepj]
the number of patterns is lower (causing more repetitions).
In an experiment with an average size of a frequent item
set equal tol0, the average size of a transaction equal to
15, and the number of frequent item sets varying in the sef6]
{5, 10, 20, 30, 50, 75, 100, 200, 500, 1000}, the compression
ratio had a significant variation ranging betwe@g0 and
0.75, as shown in Table V. The correlation between the numm
ber of patterns an@€R was0.544. Although the frequency
of 1s and baseline compression ratio were roughly consta:[neé
(at 0.75), the number of patterns and compression ratio we
correlated.

Table V
NUMBER OF ASSOCIATION RULES ATO.05SUPPORT LEVEL ANDO.9
CONFIDENCE

Number of assoc.
rules

9,128,841
4,539,650
2,233,049

Baseline
compression
0.75
0.73
0.73
0.76
0.75
0.75
0.75
0.75
0.75
0.75

Number of Patterns | Frequency of 1s Compression

ratio

5 16%
10 17%
20 17%
30 17%
50 19%
75 18%
18%

0.20
0.34
0.52
0.58
0.65
0.67
0.67
0.70 163
0.735 51
0.75 3

106,378
2,910,071
289,987
378,455
18%
18%
18%

Further, there was a strong negative correlation (-0.92)
between the compression ratio and the number of association
rules indicating that market basket data sets that satiafyym
association rules are very compressible

V. CONCLUDING REMARKS

Compression ratio of a file can be computed fast and easy,
and in many cases offers a cheap way of predicting the
existence of embedded patterns in data. Thus, it becomes
possible to obtain an approximative estimation of the use-
fulness of an in-depth exploration of a data set using more
sophisticated and expensive algorithms. The use of compres
sion as a measure of minability is illustrated on a variety
of paradigms: graph data, market basket data, etc. Recent
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[9] T. Welch.

gene replication mechanisms are disturbed (a phenomenon
that occurs in certain genetically based diseases.
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