
Exploiting Wiktionary for Lightweight
Part-of-Speech Tagging for Machine Learning Tasks

Mario Zechner, Stefan Klampfl, and Roman Kern
Know-Center GmbH

Graz, Austria
Email: {mzechner,sklampfl,rkern}@know-center.at

Abstract—Part-of-speech (PoS) tagging is a crucial part in
many natural language machine learning tasks. Current state-of-
the-art PoS taggers exhibit excellent qualitative performance, but
also contribute heavily to the total runtime of text preprocessing
and feature generation, which makes feature engineering a time-
consuming task. We propose a lightweight dictionary and heuris-
tics based PoS tagger that exploits Wiktionary as its information
source. We demonstrate that its application to natural language
machine learning tasks considerably decreases the feature gen-
eration runtime, while not degrading the overall performance
on these tasks. We compare the lightweight tagger to a state-
of-the-art maximum entropy based PoS tagger in clustering and
classification tasks and evaluate its performance on the Brown
Corpus. Finally, we explore future research scenarios where our
tagger and Wiktionary lookup enables efficient processing of big
data due to the significant decrease in runtime.

Keywords—Machine learning; feature engineering; natural lan-
guage processing; part-of-speech tagging; big data.

I. INTRODUCTION

Large scale corpora of unstructured natural language text,
as found on the web or in enterprise document management
systems, are common application fields for various supervised
and unsupervised machine learning algorithms. The goal in
most of these scenarios is to extract structured information
from the unstructured text. This can include global structure
derived from clustering, local structure as detected by topic
segmentation, or meta-data such as authors, named entities,
facts, or genre.

In many of these scenarios, the unstructured text is first
preprocessed and transformed into a suitable feature represen-
tation for the machine learning algorithm used. A common
feature representation is the classical text vector space or bag-
of-words model [1]. In this space, each term in the corpus is
represented by an own dimension. A text is transformed into
this vector space by counting the frequency of each term it
contains and storing these frequencies in the corresponding
components of the vector. In order to counteract certain arti-
facts, such as differences in the length of documents, these raw
term-frequency vectors are often additionally weighted using
various schemes such as term frequencyŰinverse document
frequency (TF-IDF) [2] or BM25 [3].

In addition to weighting term vectors, terms can be pruned
by not taking them into account when transforming texts to
term vectors. Specific word categories do not transport the
concepts or meanings of a text and are thus often omitted
from the feature representation. One way to prune these words
is via stop-word lists [4], which are usually non-exhaustive. A

more sophisticated approach is part-of-speech tagging, which
assigns a word category such as noun, verb or adjective, to each
term in the document. Instead of specific words, entire word
categories are omitted, which are unlikely to encode concepts,
such as determiners, particles, verbs and so on. Nouns and
proper nouns are the most likely word categories to transport
meaning, and it is usually terms from these categories that get
included into the feature representation of a text document.

Part-of-speech (PoS) tagging has been an active research
topic over the last two decades. Various approaches have been
devised, from rule-based systems [5], to different statistical
approaches via Hidden Markov Models [6], Maximum Entropy
Models [7], Conditional Random Field (CRF) models [8] or
Support Vector Machines (SVM) [9]. Especially the statis-
tical approaches exhibit excellent accuracy. However, these
approaches also incur a considerable increase in runtime, and
often the feature extraction based on PoS tags can take longer
than the actual task at hand. Moreover, feature engineering
becomes more cumbersome as modifications of and experi-
mentation with the feature engineering strategy necessitates a
rerun of the feature extraction stage.

For big data scenarios arising from web corpora, this
increase in runtime is a big hindrance. Processing times can
only be decreased at best in a linear manner by adding more
machines to solve the problem. In research scenarios hardware
budgets are bounded, so a different strategy that decreases the
time complexity of tagging is preferable.

Large scale corpora as described above are not only prob-
lematic due to their size, but also due to the fact that they
are often multi-lingual. While English PoS tagging models are
available, PoS tagging models for other languages are harder
to obtain. This can be attributed to the lack of training corpora
through which statistical PoS tagging models can be trained.
Therefore, a tagging system that does not rely on training
corpora would be desirable.

We hypothesize that a dictionary and heuristics based
tagging approach is sufficient in quality for the above described
application scenarios if its recall is comparable to that of more
sophisticated methods. Furthermore, this tagging approach
should have a considerable edge over more sophisticated
approaches in terms of runtime performance. In this paper,
we exploit Wiktionary [10] as a freely available, multi-lingual
information source which allows us to tackle the problem in
an efficient and cheap manner.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

Contribution

Our contribution consists of the following:

1) A lightweight, dictionary and heuristics based PoS
tagger based on Wiktionary, that is fast, sufficiently
accurate and cheaply adaptable to other languages.

2) An evaluation of PoS tagging and runtime perfor-
mance on the Brown Corpus relative to a state-of-
the-art tagger, allowing us to estimate its performance
when used for the feature engineering stage of ma-
chine learning tasks.

3) An evaluation of the PoS tagger as part of the feature
engineering stage of a text clustering task, showing
that using the lightweight tagger decreases the overall
runtime of the scenario considerably, while retaining
the same quality as achieved with the state-of-the-art
tagger.

4) An evaluation of the PoS tagger as part of a text
classification task, again showing that the lightweight
tagger decreases the overall runtime while retaining
the same quality as achieved with the state-of-the-art
tagger.

5) A discussion of potential applications and implica-
tions on big data tasks.

II. WIKTIONARY-BASED PART-OF-SPEECH TAGGING

Our lightweight PoS tagger uses Wiktionary as an infor-
mation source. Wiktionary is a freely available, multilingual
dictionary, thesaurus, and phrase book. It is edited by vol-
unteers all over the world and currently contains dictionaries
for 170 languages [11]. Wiktionary has an exhaustive list of
criteria for inclusion of a word [12] and aims to capture
common vocabulary. Proper nouns arising from person and
company names, places and other named entities are included
with specific caveats.

An article describing a term in Wiktionary generally con-
tains information about a term’s part-of-speech, word sense,
pronunciation and so on. Usage examples are also often
provided, as well as synonyms, antonyms, hypernyms and
hyponyms. In addition, different spelling variations as well as
reflections of a term are present.

This information varies across articles for one language,
and between the collections of the 170 languages found
in Wiktionary. The number of terms found in a language
collection is also varying heavily depending on the language,
from a few millions to a few dozens. Table I lists the top
10 languages and their individual article count at the time
of writing. This shows that Wiktionary contains many large
corpora for various languages. In this work we focus on
English; however, performing the following experiments on
corpora of other languages is easily possible, since building a
lightweight tagger for a different languages involves parsing
the corresponding articles in Wiktionary. This task is far less
labour-intense than manually tagging a sufficient amount of
training data.

As a first step we have built a parser for Wiktionary articles
that extracts each word’s forms, possible part-of-speech tags,
synonyms, hyponyms, hypernyms and translations. For most
words in Wiktionary, all its possible inflexions, e.g., "see",

Table I. THE TOP TEN LANGUAGES BY ARTICLE COUNT IN
WIKTIONARY. THE LARGE AMOUNT OF ARTICLES AVAILABLE FOR

DIFFERENT LANGUAGES MAKES OUR TAGGING APPROACH READILY
APPLICABLE TO NON-ENGLISH LANGUAGES, WHICH IS NOT THE CASE FOR

TRADITIONAL POS TAGGING METHODS.

Language # articles

English 3,188,521
French 2,289,494
Malagasy 2,232,273
Chinese 828,580
Lithuanian 610,707
Russian 458,634
Greek 406,259
Korean 349,626
Swedish 329,137
Turkish 311,471

Table II. UNIFIED TAG SET USED BY OUR LIGHTWEIGHT TAGGER.

Tag Examples

ADJECTIVE green, valuable
ADVERB strongly, quickly
CONJUNCTION and, but, so
DETERMINER the, an
NOUN house, car
PROPER_NOUN Stefanie, Linux
NUMBER 3.14, hundred
PARTICLE who, whom
PRONOUN his, theirs
PREPOSITION in, from, on
PUNCTUATION .;:!
VERB see, fell, had
OTHER anything else
UNKNOWN special tag

"saw", "seen" etc., are usually present. It should be noted that
Wiktionary also contains multi-token phrases. For this work,
we omit all such phrases.

The parsed information is then fed into an index that is
easily queriable. From this index, we derive the necessary
information to build the lightweight tagger. We only use
the forms and part-of-speech tags of a word. The tagger
itself consists of a simple hash map with the lower cased
word forms/inflexions as keys and the corresponding lists of
potential PoS tags as values. The tags are normalized to a set of
14 word categories, given in Table II. We map other tagging
systems such as the Penn Treebank tag set or the Stuttgart
tag set to these 14 word categories as well. For brevity, we
omit these mappings here, they can be found online [13] (user:
anonymous, no password).

The annotation process consists of the following steps:

1) Tokenize the input text, e.g. via OpenNLP [14] or
JTokenizer [15]

2) Transform each token to lower case, taking its locale
into account

3) For each token, look it up in the hash map
a) If found, return a random PoS tag from the

list of the found entry
b) If not found

i) If the token does not start with a letter,
return UNKNOWN

ii) If the token starts with an upper-case
letter, return PROPER_NOUN

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

iii) Else, return NOUN

This simple dictionary and heuristics based approach is
equal to the baseline systems used in the evaluation of many
statistical PoS tagger models. The handling of unknown words
is motivated by the assumption that Wiktionary covers non-
noun word groups exhaustively, while nouns and proper nouns
are underrepresented. We therefore assume that any word not
in the dictionary is a proper-noun, in case it starts with an
upper case letter, and a noun otherwise. Tokens that do not
start with a letter are tagged with UNKNOWN, indicating that
the tagger has no information about what category this token
belongs to.

III. EVALUATION

Our evaluation strives to provide empirical evidence for the
following hypothesis:

• The lightweight tagger is comparable in recall to state-
of-the-art taggers.

• The lightweight tagger is sufficiently precise.

• The lightweight tagger is considerably faster than the
state-of-the-art tagger.

• The errors introduced do not negatively influence
supervised and unsupervised machine learning com-
putations.

The following sections describe experiments carried out to
gather evidence for the above assumptions.

A. PoS Tagging

We evaluated the lightweight tagger’s precision and recall
on the English Brown Corpus [16], [17] and compared it to
results obtained from the Maximum Entropy based PoS tagger
in the freely available OpenNLP package, which was trained
on the Penn Treebank corpus [18]. The Brown Corpus consists
of roughly one million tagged words, from various genres such
as news articles, editorials, humorous texts and so on. For the
evaluation we mapped both the Brown Corpus tag set and the
Penn Treebank tags emitted by the OpenNLP PoS tagger to
our simplified tag set described in Section II. This allowed
us to directly quantify the relative performance of our tagger
relative to the OpenNLP PoS tagger.

We let both taggers tag the entire Brown Corpus and
then calculated precision and recall based on the ground truth
found in the corpus. We used the tokenization as given in
the Brown Corpus instead of using a dedicated tokenizer. The
results are shown in Figure 1, which shows the precision and
recall of each tagger for specific word categories. Our focus
is on nouns and proper nouns, as these are used to generate
features for text classification and clustering. The lightweight
tagger has similar recall for nouns compared to the OpenNLP
tagger. The precision of the lightweight tagger for nouns is
what one would expect for a baseline dictionary tagger. While
not exactly stellar, it is still performing surprisingly well. For
proper nouns, the OpenNLP tagger is clearly superior in both
precision and recall. We attribute this to the fact that we only
tag tokens that start with an upper case letter as proper nouns.

NO
UN

PR
OP

ER
_N

OU
N

AD
JE

CT
IV

E
AD

VE
RB

CO
NJ

UN
CT

IO
N

DE
TE

RM
IN

ER
NU

M
BE

R
OT

HE
R

PA
RT

IC
LE

PR
ON

OU
N

PR
EP

OS
IT

IO
N

PU
NC

TU
AT

IO
N

VE
RB

UN
KN

OW
N0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

OpenNLP
Lightweight

NO
UN

PR
OP

ER
_N

OU
N

AD
JE

CT
IV

E
AD

VE
RB

CO
NJ

UN
CT

IO
N

DE
TE

RM
IN

ER
NU

M
BE

R
OT

HE
R

PA
RT

IC
LE

PR
ON

OU
N

PR
EP

OS
IT

IO
N

PU
NC

TU
AT

IO
N

VE
RB

UN
KN

OW
N0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Figure 1. Comparison of precision (left) and recall (right) obtained by both
the state-of-the-art tagger based on OpenNLP and our lightweight tagger on
the tag set considered in this paper. For the relevant categories NOUN and
PROPER_NOUN the lightweight tagger shows an acceptable precision and a
recall comparable to the OpenNLP tagger.

We also measured the time spent on tagging. Our test
machine was an Intel Core i7 CPU at 2.8Ghz, with 8GB RAM.
Both the OpenNLP tagger and our lightweight tagger were
written in Java. We ran the experiments in a 64-bit JVM from
Oracle, version 1.7, update 9, assigning a maximum of 1GB
of heap memory to the Java process. We ran each experiment
10 times and averaged the runtimes. The classification results
are deterministic and where thus not averaged. Table III shows
the average time taken by each annotator to annotate the entire
Brown Corpus. As expected, the lightweight tagger was much
faster than the much more sophisticated Maximum Entropy
based tagger, which was outperformed by a factor of 100.

Another attribute of a dictionary and heuristics based tagger
like the one presented here, is that it is more robust to
grammatically incorrect text, found in social media or HTML
pages cleaned and converted to plain text. The OpenNLP
tagger, like other PoS taggers, needs sentence boundaries to
function correctly. Our tagger has no such requirement and

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

Table III. TAGGING RUNTIME OF THE LIGHTWEIGHT TAGGER AND THE
OPENNLP TAGGER FOR THE ENTIRE BROWN CORPUS AVERAGED ACROSS

10 RUNS. THE LIGHTWEIGHT TAGGER OUTPERFORMS THE MORE
SOPHISTICATED MAXIMUM ENTROPY TAGGER BY A FACTOR OF 100.

Lightweight tagger OpenNLP maximum entropy tagger

0.274s 34.219s

lends itself well to noisy text.

To establish whether the decrease in tagging performance
has an impact on common natural text machine learning tasks,
we evaluated both taggers in clustering and classification tasks
as described in the next sections.

B. Feature Generation for Clustering & Classification

Our clustering and classification experiments share the
same feature generation stage. Regardless of the corpus, we
performed the following steps for each text document to
transform it into a term vector. First, we tokenized each
text document using the Maximum Entropy based tokenizer
from the OpenNLP package. Each token was then stemmed
using the Porter stemmer [19], [20] and normalized taking the
English locale into consideration. We also applied a simple
stop-word list found in Gate [21], filtering out high frequency
words. Note that this step could actually be omitted since we
are only taking nouns and proper nouns into account in the
later stage.

For the OpenNLP tagger we also had to detect sentence
boundaries with the corresponding Maximum Entropy sen-
tence splitter in OpenNLP, which added additional processing
time to the feature generation stage. Finally, we either tagged
the tokens using the OpenNLP tagger or our lightweight tagger.

From the resulting list of tokens, we only took the stemmed
and normalized form of nouns and proper nouns and converted
them to term vectors as described in Section I. We then applied
common TF-IDF weighting and normalized the vectors to
unit length. In the TF-IDF scheme, the weight of term t in
document d is given by

wd(t) =
(
1 +

√
n(t, d)

)
· ln
(
1 +

|D|
n(t)

)
, (1)

where n(t, d) is the number of times term t occurs in document
d, n(t) is the number of times the term t occurs in all
documents, and |D| is the total number of documents. These
term vectors were then used as the input to our clustering and
classification experiments.

C. Text Clustering

We evaluated our lightweight tagger in a text clustering
scenario by comparing the achieved performance values to
those obtained when using the OpenNLP tagger in the feature
generation stage. We chose the 20 newsgroups corpus [22],
[23] for our experiments as it is commonly used for text
clustering evaluations. The 20 newsgroups corpus consists
of roughly 20,000 documents, mostly equally collected from
20 different news groups, spanning topics such as atheism,
politics, and sports. Each group is represented by around
1,000 documents. The corpus is split into a training and

Table IV. PURITY AND CONDITIONAL CLUSTER ENTROPY AS WELL AS
THE RUNTIMES OF FEATURE GENERATION (FE) AND CLUSTERING (C) ON

THE SELECTED SUBSET OF 5 NEWSGROUPS. GOOD CLUSTERINGS HAVE
HIGH PURITY AND LOW ENTROPY.

Configuration Purity Entropy FE Run-
time

C
Runtime

All Tokens 0.3461 0.8928 13.678s 1.059s
NN/PN OpenNLP 0.8864 0.2897 29.090s 0.368s
NN/PN Lightweight 0.8915 0.2765 1.978s 0.378s

testing set for classification tasks, which we merged for this
clustering scenario. We ran the experiment on both a manually
selected subset of 5 groups ("rec.motorcycles", "alt.atheism",
"talk.politics.guns", "comp.windows.x", "sci.crypt") as well as
on the complete subset of all 20 newsgroups.

For clustering, we implemented the efficient online spher-
ical k-means algorithm [24], using a constant learning rate
of 0.01. We set the number of desired clusters to 5 and 20,
respectively, and terminated the clustering algorithm after 3
iterations over the document set. For centroid initialization we
used the k-means++ seeding strategy [25], which stochastically
selects the initial centroids based on their distance to each
other. In order to guarantee that all runs have the same initial
conditions we provided a constant seed to the random number
generator used. This enables a more effective comparison of
different PoS taggers.

For each experiment we measured the purity and condi-
tional cluster entropy of the resulting clusterings, as well as the
runtimes of feature generation and clustering, averaged over
10 runs on our test machine described in Section III-A. Purity
and conditional cluster entropy are both criteria for evaluating
the clustering quality against a ground truth labeling [26].
Purity ranges between 0 and 1 and measures the accuracy
of the assignment that is obtained if every instance would
be labeled with the majority label within its corresponding
cluster. A perfect purity of 1 is thus reached if all instances
within each cluster have the same label. On the other hand,
conditional cluster entropy measures the average amount of
uncertainty about the cluster assignment of one instance that
remains if its label is known. That is, a perfect clustering has
a conditional cluster entropy of 0, since knowing the label
completely determines the assigned cluster.

We performed the experiment on a total of 6 configurations,
3 runs for the selected subset of 5 newsgroups and another 3
runs on the full dataset of 20 newsgroups. The 3 configurations
defined how the feature generation stage was carried out:

1) all tokens, stemmed, normalized,
2) nouns and proper nouns, stemmed, normalized, using

the OpenNLP tagger,
3) nouns and proper nouns, stemmed, normalized, using

the lightweight tagger.

Table IV summarizes the results on the 5 newsgroup subset,
Table V describes the results on the full 20 newsgroup corpus.

The runtime of the feature generation stage was con-
siderably lower for the lightweight tagger compared to the
OpenNLP tagger. This was expected, though the relative
speed-up is here 10 to 20-fold. This is a result of timing

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

Table V. PURITY AND CONDITIONAL CLUSTER ENTROPY AS WELL AS
THE RUNTIMES OF FEATURE GENERATION (FE) AND CLUSTERING (C) ON
THE FULL CORPUS OF ALL 20 NEWSGROUPS. GOOD CLUSTERINGS HAVE

HIGH PURITY AND LOW ENTROPY.

Configuration Purity Entropy FE Run-
time

C
Runtime

All Tokens 0.2659 0.7537 79.692s 12.833s
NN/PN OpenNLP 0.4432 0.5532 143.706s 4.145s
NN/PN Lightweight 0.4486 0.5541 7.300s 4.202s

Table VI. TOTAL NUMBER OF FEATURES GENERATED BY EACH
CONFIGURATION, FOR BOTH THE SELECTED SUBSET 5 NEWSGROUPS AND

THE FULL CORPUS

Configuration # Features 5 NG # Features 20 NG

All Tokens 99220 343408
NN/PN OpenNLP 28432 83388
NN/PN Lightweight 20842 63853

the entire feature engineering stage instead of just the PoS
tagging stage as described in Section III-A. Clustering times
were comparable in case of the OpenNLP and lightweight
tagger configurations, and higher in case of using all tokens.
This can be explained by the fact that the clustering time is
dominated by adjusting cluster centroids, which is proportional
to the number of features in a cluster centroid. Using all
tokens significantly increased the number of features of cluster
centroids, as shown in Table VI.

As far as the quality of the resulting clusterings is con-
cerned, using all tokens was highly detrimental to the clus-
tering quality as shown in Tables IV and V. The additional
tokens generated much noise, and the resulting cluster cen-
troids were capturing features from all newsgroups. The other
configurations for which only nouns and proper nouns were
used performed considerably better. Both performed at approx-
imately the same level on both the subset and the full corpus,
supporting our hypothesis that using a sufficiently accurate PoS
tagger like our lightweight tagger does not decrease clustering
performance.

D. Text Classification

We evaluated our lightweight tagger also in a text classifi-
cation scenario, by comparing the achieved performance values
to those obtained with standard feature engineering methods.
For this comparison we chose a classification task on the
Reuters RCV1 corpus [27], a well-known dataset for document
classification. It consists of 806,791 newswire stories that were
collected over the period of one year, manually categorized,
and made available by Reuters Ltd for research purposes.
The dataset was labeled with respect to three different sets of
categories: Topics, Industries, and Regions; in this paper we
focus on the 103 Topic categories. Note that in contrast to the
results described in [27] we use the raw RCV1 corpus without
any additional corrections, thus the obtained performance
values should not be directly compared.

The documents were transformed into term vectors as
described in Section III-B. According to [27], the documents
were then split into a training set of 23,149 documents, and a
test set consisting of 781,278 instances. This is a chronological

Table VII. COMPARISON OF THE NUMBER OF FEATURES OBTAINED
WITH DIFFERENT FEATURE ENGINEERING METHODS ON BOTH THE TOTAL

REUTERS CORPUS AND THE TRAINING SET ONLY. BOTH OUR
LIGHTWEIGHT TAGGER AND THE STATE-OF-THE-ART OPENNLP TAGGER

ONLY EXTRACT NOUNS AND PROPER NOUNS.

training set total

documents 23,149 806,791
features (all tokens) 49,427 303,732
features (OpenNLP) 44,840 281,170
features (lightweight) 42,049 255,147

Table VIII. COMPARISON OF THE RUNTIMES OF VECTORIZATION AND
CLASSIFICATION OF THE REUTERS CORPUS IN DIFFERENT FEATURE

ENGINEERING SCENARIOS.

vectorization classification

all tokens 382s 1810s
OpenNLP 1171s 1172s
lightweight 395s 1100s

split that selects all documents published within the first 12
days in the corpus as training documents, while retaining most
of the complete year as test data. This asymmetric split resulted
in the interesting fact that only a relatively small subset of all
terms in the corpus occurred in the training set (Table VII).

Classification was then performed by training a linear SVM
on the training set for each of the 103 available topics, i.e.,
for each topic we solved a binary classification problem.
We used the SVM implementation from LIBLINEAR [28]
with default parameters C = 4 and eps = 0.1 (solver
L2R_L2LOSS_SVC_DUAL). The individual performance val-
ues obtained for each topic on the test set were then combined
using micro- and macro-averages and compared for the same
feature engineering scenarios described in Section III-C: i)
using all available tokens, ii) using nouns and proper nouns
tagged by the state-of-the-art maximum entropy based tagger
provided by the OpenNLP library, and iii) using nouns and
proper nouns tagged by our lightweight tagger based on
Wiktionary.

Table VII shows the number of features extracted for
each of these scenarios. Interestingly, about 90% to 95% of
all tokens are nouns, indicating the rather factual nature of
newswire articles. This further supports the hypothesis that in
many real world scenarios, the restriction to nouns in feature
engineering preserves most of the information contained in
documents.

The runtimes of the Reuters classification algorithm in all
three feature engineering scenarios are shown in Table VIII.
All times were averaged over 10 runs on our test machine
specified in Section III-A. It can be seen that in the vector-
ization stage the lightweight tagger significantly outperforms
the heavy-weight OpenNLP tagger and is almost as fast as
using no tagger at all (all tokens). The runtime of the SVM
classification is only indirectly depending on the type of
feature engineering used; since the other preprocessing steps
(tokenization, stemming, stop word removal) and the number
of data samples are the same for all three scenarios, its runtime
mainly depends on the number of features, which is highest
for the case where all tokens are used.

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

Table IX. COMPARISON OF THE CLASSIFICATION PERFORMANCE
OBTAINED WITH DIFFERENT FEATURE ENGINEERING METHODS. SHOWN
ARE MACRO- AND MICRO-AVERAGES OF PRECISION, RECALL, AND F1,

RESPECTIVELY, FOR THE THREE DIFFERENT SCENARIOS.

Macro-Averages Micro-Averages
Precision Recall F1 Precision Recall F1

all tokens 0.446 0.692 0.519 0.721 0.852 0.781
OpenNLP 0.428 0.663 0.497 0.704 0.840 0.766
lightweight 0.418 0.657 0.491 0.691 0.835 0.756

Finally, Table IX shows the classification performance for
the different feature engineering scenarios. Macro- and micro-
averages are calculated over the individual performance values
obtained by single binary classifiers on different topics. Micro-
F1 values of about 0.75 to 0.8 are comparable to other studies
on the RCV1 corpus [27], [29]. It can be seen that the
performance is higher when all tokens are used compared to
the cases where only nouns and proper nouns enter the feature
space, which is expected since the higher the dimensionality
of the input space, the more likely the linear classifier is able
to find a good separating hyperplane. However, a comparison
of only the noun-based preprocessing methods reveals that
both the lightweight tagger and the OpenNLP tagger roughly
achieve the same classification performance.

Thus, we can conclude that also for supervised classifica-
tion tasks the significant reduction of runtime when using the
lightweight tagger does not come at the cost of a decreased
performance, even though the general restriction to nouns and
proper nouns indirectly influences classification performance
through the dimensionality of the feature space.

IV. APPLICATIONS & FUTURE WORK

Our lightweight tagger enables the processing of big data
in tolerable amounts of time as compared to using more
sophisticated PoS tagging models. As shown in Section III-A,
our tagger has comparable recall for nouns and proper nouns
compared to state-of-the-art PoS taggers. As outlined above,
it lends itself well as a subsitute for more sophisticated PoS
tagging models in various text machine learning tasks. How-
ever, the tagger as well as the parser and index for Wiktionary
from which the tagger is built can be exploited for other tasks
as well.

A recent hot topic in text mining literature is the extraction
of facts from large (web) corpora [30]. Part-of-speech tagging
plays a role in fact extraction, as it is often the basis for
extracting patterns that could represent factual information. We
envision a big data scenario, e.g., on the Common Crawl cor-
pus [31], where our lightweight tagger can be used to extract
a set of candidate patterns quickly. These candidate patterns
can then be further refined by using a more accurate PoS
tagger. Instead of having to tag the entire corpus accurately, we
preselect a much more managable set of candidates to which
we apply the costly, more precise PoS tagger. We plan on
investigating this approach in future research.

The parser and index we devised for Wiktionary has
other interesting application scenearios. Lemmatization [32]
could greatly benefit from using Wiktionary as an information
source. Wiktionary entries provide us with information on the

lemma of words, together with all or most of their inflexions.
This allows us to build a comprehensive dictionary that can be
used to lemmatize known words. Developing a hybrid model of
Wiktionary based lookup and statistical methods for unknown
words is planned for future research.

V. CONCLUSION

Part-of-speech tagging is a crucial and time-consuming
preprocessing step in many machine learning scenarios on
natural language text. Our work tries to reduce the runtime
of this step by approximating the performance of state-of-
the-art PoS taggers, exploiting Wiktionary as the information
source. We demonstrated that our approach can be used as
a replacement for more precise but also more expensive PoS
tagging models. The feature generation stage is considerably
faster, while the quality of the machine learning results do not
deteriorate. Furthermore, our approach is extendable to other
languages without having to manually PoS tag large corpora
of text. Instead, language collections from Wiktionary can be
easily parsed and integrated. Our approach is especially well
suited for big data scenarios, where short processing times
directly translate into more experiments that can be carried out
within a fixed time span. We described possible application
scenarios and our planned future work, which includes fact
extraction from large web corpora and lemmatization.

REFERENCES

[1] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
Nov. 1975.

[2] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[3] S. E. Robertson and S. Walker, “Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval,” in
Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, ser. SIGIR ’94.
New York, NY, USA: Springer-Verlag New York, Inc., 1994, pp. 232–
241.

[4] C. Fox, “A stop list for general text,” SIGIR Forum, vol. 24, no. 1-2,
pp. 19–21, Sep. 1989.

[5] E. Brill, “A simple rule-based part of speech tagger,” 1992.
[6] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-of-

speech tagger,” in In Proceedings of the Third Conference on Applied
Natural Language Processing, 1992, pp. 133–140.

[7] A. Ratnaparkhi, “A maximum entropy model for Part-Of-speech tag-
ging,” in Proceedings of the Empirical Methods in Natural Language
Processing, E. Brill and K. Church, Eds., 1996, pp. 133–142.

[8] P. V. S. Avinesh and G. Karthik, “Part-Of-speech tagging and chunking
using conditional random fields and Transformation-Based learning,” in
Proceedings of the IJCAI and the Workshop On Shallow Parsing for
South Asian Languages (SPSAL), 2007, pp. 21–24.

[9] J. Gimenez and L. Marquez, “Svmtool: A general pos tagger generator
based on support vector machines,” in In Proceedings of the 4th
International Conference on Language Resources and Evaluation, 2004,
pp. 43–46.

[10] http://www.wiktionary.org/, [Online; accessed July 10, 2013].
[11] http://meta.wikimedia.org/wiki/Wiktionary, [Online; accessed July 10,

2013].
[12] http://en.wiktionary.org/wiki/Wiktionary:Criteria_for_inclusion,

[Online; accessed July 10, 2013].
[13] https://www.knowminer.at/svn/opensource/components/ie/trunk/api/src/

main/java/at/knowcenter/ie/postags/, [Online; accessed July 10, 2013].
[14] http://opennlp.apache.org/, [Online; accessed July 10, 2013].

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

http://www.wiktionary.org/
http://meta.wikimedia.org/wiki/Wiktionary
http://en.wiktionary.org/wiki/Wiktionary:Criteria_for_inclusion
https://www.knowminer.at/svn/opensource/components/ie/trunk/api/src/main/java/at/knowcenter/ie/postags/
https://www.knowminer.at/svn/opensource/components/ie/trunk/api/src/main/java/at/knowcenter/ie/postags/
http://opennlp.apache.org/

[15] https://github.com/andyroberts/jTokenizer, [Online; accessed July 10,
2013].

[16] W. N. Francis and H. Kucera, “Brown corpus manual,” Department
of Linguistics, Brown University, Providence, Rhode Island, US, Tech.
Rep., 1979.

[17] http://nltk.org/nltk_data/, [Online; accessed July 10, 2013].
[18] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large

annotated corpus of english: the penn treebank,” Comput. Linguist.,
vol. 19, no. 2, pp. 313–330, Jun. 1993.

[19] M. Porter, “An algorithm for suffix stripping,” Program: electronic
library and information systems, vol. 14, no. 3, pp. 130–137, 1980.

[20] M. F. Porter, “Snowball: A language for stemming algorithms,” Pub-
lished online, October 2001, accessed 11.03.2008, 15.00h.

[21] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,
I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic, T. Heitz,
M. A. Greenwood, H. Saggion, J. Petrak, Y. Li, and W. Peters, Text
Processing with GATE (Version 6), 2011.

[22] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of
the Twelfth International Conference on Machine Learning, 1995, pp.
331–339.

[23] http://qwone.com/~jason/20Newsgroups/, [Online; accessed July 10,
2013].

[24] S. Zhong, “Efficient online spherical k-means clustering,” in Proc.
2005 IEEE International Joint Conference on Neural Networks, vol. 5,
2005, pp. 3180–3185.

[25] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, ser. SODA ’07. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[26] C. D. Manning, P. Raghavan, and H. Schuetze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[27] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New
Benchmark Collection for Text Categorization Research,” Journal of
Machine Learning Research, vol. 5, pp. 361–397, 2004.

[28] R.-e. Fan, K.-w. Chang, C.-j. Hsieh, X.-r. Wang, and C.-j. Lin, “LIBLIN-
EAR: A Library for Large Linear Classification,” Journal of Machine
Learning Research, vol. 9, no. 2008, pp. 1871–1874, 2012.

[29] R.-e. Fan and C.-j. Lin, “A Study on Threshold Selection for Multi-label
Classification,” Tech. Rep., 2007.

[30] M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain, “Names and
similarities on the web: fact extraction in the fast lane,” in Proceedings
of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational
Linguistics, ser. ACL-44. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2006, pp. 809–816.

[31] http://commoncrawl.org/, [Online; accessed July 10, 2013].
[32] T. Korenius, J. Laurikkala, K. Järvelin, and M. Juhola, “Stemming and

lemmatization in the clustering of finnish text documents,” in Proceed-
ings of the thirteenth ACM international conference on Information and
knowledge management, ser. CIKM ’04. New York, NY, USA: ACM,
2004, pp. 625–633.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

https://github.com/andyroberts/jTokenizer
http://nltk.org/nltk_data/
http://qwone.com/~jason/20Newsgroups/
http://commoncrawl.org/

	Introduction
	Wiktionary-based Part-Of-Speech Tagging
	Evaluation
	PoS Tagging
	Feature Generation for Clustering & Classification
	Text Clustering
	Text Classification

	Applications & Future Work
	Conclusion
	References

