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Abstract—Risk hedging strategies are at the heart of financial
risk management. As with many financial institutions, insurance
companies try to hedge their risk against potentially large losses,
such as those associated with natural catastrophes. Much of
this hedging is facilitated by engaging in risk transfer contracts
with the global reinsurance market. Devising an effective hedging
strategy depends on careful data analysis and optimization. In this
paper, we study from the perspective of an insurance company
a Reinsurance Contract Optimization problem in which we are
given a reinsurance contract consisting of a fixed number of
contractual layers and a simulated set of expected loss distri-
butions (one per layer), plus a model of reinsurance market
costs. Our task is to identify optimal combinations of placements
such that for a given expected return the associated risk value is
minimized. The solution to this high-dimensional multi-objective
data analysis and optimization problem is a Pareto frontier that
quantifies the best available trade-offs between expected risk and
returns. Our approach to this reinsurance contract optimization
problem is to adapt the evolutionary heuristic search method
called Population Based Incremental Learning, or PBIL, to work
with discretized solution spaces. Our multi-threaded Discretized
PBIL method (or DiPBIL) is able to solve larger “real world”
problem instances than previous methods. For example, problems
with a 5% discretization and 7 or less contractual layers can be
solved in less than 1h:20m, while previously infeasible problems
that would have taken weeks or even months to run with as many
as 15 layers can be solved in less than a day.

Keywords—Financial Risk Management; Reinsurance Contract
Optimization; Population Based Incremental Learning; Insurance
and Reinsurance Analytics.

I. INTRODUCTION

Risk hedging strategies are at the heart of financial risk
management. As with many financial institutions, insurance
companies try to hedge their risk against potentially large
losses, such as those associated with natural catastrophes.
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412889-11. This project is also supported by the Science without Border
program of CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico - Brazil) and Instituto Federal de Educação, Ciência e Tecnologia
do Maranhão

Much of this hedging is facilitated by the global reinsurance
market [1] (See Figure 1). Natural catastrophe reinsurers insure
other insurance companies against the massive claims that
can occur after events such as earthquakes, hurricanes, and
floods. This transfer of risk is done in a manner similar
to how a consumer cedes part of the risk associated with
their private holdings by buying an insurance contract. This
contract is defined in terms of a layer consisting of 1) a limit
(i.e., the maximum payout), 2) a deductible or attachment
(i.e., minimum loss triggering a claim), and 3) the share or
placement (i.e., the percentage of losses in that layer that will
be covered). Unlike the case of the consumer, the insurer has
the ability to define complex multi-layered contracts and offer
them to the reinsurance market. Doing so, it must carefully
analyze the data it has on expected annual loss distributions
and market reinsurance costs in order to identify contractual
terms that maximize its expected reinsurance recoveries for
each of a given set of risk tolerance values. In the insurance
setting, typical risk measures include variance, Value at Risk
(VaR) or a Tail-Value at Risk (TVaR) [1].

Figure 1. Risk and premium flows between consumers, primary
insurers, and reinsurers

In this paper, we study from the perspective of an insurance
company a Reinsurance Contract Optimization problem. Given
a reinsurance contract consisting of a fixed number of layers
and a simulated set of expected loss distributions (one per
layer), plus a model of reinsurance costs, identifying optimal
combinations of placements such that for a given expected
return the associated risk value is minimized. The solution to
this high-dimensional multi-objective optimization problem is
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a Pareto frontier that quantifies the available trade-offs between
expected risk and returns, as illustrated in Figure 2.

Figure 2. The studied reinsurance contract optimization prob-
lem: Inputs and Outputs

There are many heuristics methods that can be applied to
optimization problems like this, such as Particle Swarm Opti-
mization (PSO) [2], Differential Evolution (DE) [3], [4], Ge-
netic Algorithms (GA) [5], Evolution Strategies (ES) [6] and
Population-Based Incremental Learning (PBIL) [7]. Among
these meta-heuristics we tried to use GA, nevertheless its
performance was poor because demanded a lot of time to com-
pute solutions considering our data set. Our approach is based
on an adaptation of the evolutionary heuristic search method
called Population Based Incremental Learning, or PBIL, which
is a type of genetic algorithm where the genotype of an
entire population is evolved rather than individual members
and offers the following advantages. The algorithm is simpler
than many standard genetic algorithms, works well in high
dimensional spaces, and typically leads to equivalent or better
results than standard GAs. Further, the algorithm was amenable
to an important adaptation required by our problem, namely
that solutions (i.e., placement values) must be discretized,
typically in units of 10%, 5% or 1%, rather than being allowed
to take on continuous values. Furthermore, PBIL also demands
less computational power than the other methods since it is not
based on genetic operators like crossover and selection.

In the remainder of this paper, we first formally define our
reinsurance contract optimization problem in Section 2. Then
we describe a discretized PBIL method and how it can be
applied to our problem in Section 3. In Section 4, we present
a detailed performance analysis comparing our results to an
enumeration method (both implemented in R) in terms of both
speed and quality of result. Finally, we present the conclusions
and future works in Section 5.

II. THE REINSURANCE CONTRACT OPTIMIZATION
PROBLEM

A. Reinsurance Business Basics

Insurance organizations, with the help of the global reinsur-
ance market, look to hedge their risk against potentially large
claims, or losses[1]. This transfer of risk is done in a manner
similar to how a consumer cedes part of the risk associated
with their private holdings.

Unlike the case of the consumer, whom is usually given
options as to the type of insurance structures to choose from,
the insurer has the ability to set its own structures and offers
them to the reinsurance market. Involved in this process are
decisions around the what type and the magnitude of financial

Figure 3. An example two layer reinsurance contract optimiza-
tion problem with two sample solutions

structures, such as deductibles and limits, as well as the amount
of risk the insurer wishes to maintain. The deductible describes
the amount of loss that the insurer must incur before being
able to claim a loss to the reinsurance contract, the limit
describes the maximum amount in excess of the deductible
that is claimable and the placement describes the percentage
of the claimed loss that will be covered by the reinsurer.

Typically, companies try to hedge their risk placing multi-
ple layers at once as illustrated in Figure 3. That is, they may
have multiple sets of limit and deductible combinations. These
different layers may also have differing placement amounts
associated with them. At the same time, insurers are price
takers in terms of the compensation paid to reinsurers for
assuming risk. This compensation, or premium, depends on
both the amount of risk associated with a layer and the
placement amount of the layer. For this reason, it is important
for insurers to choose placements when seeking to buy multiple
layers. This optimal placement ensures that the insurer is
able to maximize their returns on reinsurance contracts for
potentially large future events.

In the remainder, we explore the use of optimization meth-
ods for finding optimal combinations of placements for multi-
layer contracts from the prospective of a property-causality
insurer. To simplify the problem description we focus on
the primary contractual terms. Secondary terms such as the
contractual costs associated with brokerage fee and contrac-
tual expenses, as well as provisions such as reinstatement
premiums, are straightforward to add. As is typically done in
reinsurance markets, contracts are assumed to be enforced for
a one year period.

B. Reinsurance Costs

The basic cost of reinsurance to an insurer comes in the
form of premium payments. As mention previously, the amount
of premium paid for a layer can vary with the amount of the
layer being placed in the market. In general, premiums are
stated per unit of limit, also known as a rate on line. The cost
of the reinsurance layer can then be expressed as follows:

p = πµ(π, l, d)× l (1)

where p is the monetary value of the premium, µ is the rate on
line, π is the placement, d is the deductible and l is the limit.
For contracts with multiple layers, (1) can be generalized such
that:
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p = ~µTL~π (2)

where L is an n × n diagonal matrix of limits, ~µ is a n × 1
vector of rate on lines, ~π is a n × 1 vector of placements, and
n is the number of layers being placed. This matrix defines a
model of expected reinsurance costs.

C. Reinsurance Recoveries

Losses affecting an insurer can be defined as a random
variable X, such that:

X ∼ fX(x) (3)

and fX is some distribution that represents severity of X.
These losses, once claimed, are subject to the financial terms
associated with the contract they are being claimed against.
Any one instance of X, xi, then results in a claim of:

ci = max{0,min{l, xi − d}}π (4)

where ci is the value of the claim for ith instance of X.
Equation 4 can then be extended to contracts with multiple
layers as follows:

ci =

n∑
j=1

max{0,min{lj , xi − dj}}πj (5)

where lj , dj and πj are the limit, deductible and placement of
the jth layer respectively. In addition to this, many contracts
allow for multiple claims in any given contractual year. The
yearly contractual loss is then, assuming no financial terms
that impose a maximum amount claimable, simply the sum of
all individual claims in a given contractual year.

yj =

n∑
i=1

cij (6)

where yj is the annual amount claimed for the jth layer. The
annual return for reinsurance contract is then defined as:

r = ~yT~π − p
= ~yT~π − ~µTL~π
= (~yT − ~µTL)~π

(7)

where ~y is an n × 1 vector of annual claims for each layer.

D. The Risk Value and Optimization Problem

Given a fixed number of layers and loss distributions the
insurer is then faced with selecting an optimal combination
of placements. As with most financial structures, the problem
faced is selecting an optimal proportion, or placement, of each
layer such for a given expected return on the contracts the
associated risk is minimized. This is generally done by using
a risk value such as a variance, Value at Risk (VaR) or a Tail-
Value at risk (TVaR). The Tail-Value at Risk is also referred
to as a conditional Value at Risk (CVaR) or a conditional

tail expectation (CTE). Unlike, the traditional finance portfolio
problem, in the insurance context a claim made, or loss, to
the contract is income to the buyer of contract. This means,
from the perspective of the insurer, they wish to maximize
the amount claimable for a given risk value. In doing so they
minimize amount of loss the insurer may face in a year.

Equation 7 can then be rewritten in matrix format such
that:

R = (Y −ML)~π (8)

where R is a m × 1 vector of recoveries, Y is a m × n matrix
of annual claims and M is a m × n matrix of rates on line.
Since the same year is being simulated each row in matrix M
is the same. This formulation leads to a optimization problem
as follows:

maximize V aRα(R(π))
s.t. E(R(π)) = a

(9)

Given that the expected return a is not specified (9) can be
rewritten to a Pareto Frontier problem, such that:

maximize V aRα(R(π))− qE(R(π)) (10)

where q is a risk tolerance factor greater than zero.

This problem can be approached in using numerous meth-
ods. Mistry et al. [14] use an enumeration approach by
discretizing the search space for the each layer’s placements.
The discretization of the placements may be desirable for
practical reasons (i.e., a placement with more than two decimal
places may be invalid in negotiations) and the full enumeration
method lends itself well to parallel computation. However,
the computational time to evaluate all possible combinations
increases exponentially as the number of layers and the
resolution of the discretization increases. This renders the
enumeration approach infeasible for many practically sized
problems.

Mitschele et al. introduced the use of heuristic methods
for addressing reinsurance optimization problems [13]. They
show the power of two multi-objective evolutionary algorithms
in finding non-dominated combinations, in comparison to the
true non-dominated set of points. Mitschele et al., however,
work exclusively in continuous space and focus on algorithms
that change the limit and deductible aspects of a reinsurance
contract, so there methods are not directly applicable here.

III. DISCRETIZED POPULATION BASED INCREMENTAL
LEARNING

Population-Based Incremental Learning (PBIL) was first
proposed by Baluja [7]. The algorithm’s populations are
encoded using binary vectors and an associated probability
vector, which was then updated based on the best members
of a population. Unlike other evolutionary algorithms, which
transform the current population into new populations, a new
population is generated at random using the updated probabil-
ity vector on each generation. Baluja describes his algorithm as
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a “combination of evolutionary optimization and hill-climbing”
[7].

Since Baluja’s work, extensions to the algorithm have been
proposed for continuous and base-n represented search spaces
[8], [9], [10]. The extension to continuous search spaces using
histograms (PBILH ) and real-code (RPBIL) suggest splitting
the search space into intervals, each with their own probability
[8], [10]. For multivariate cases, the probability vector is then
substituted for a probability matrix, in such that each row or
column of the matrix represents a probability vector for any
given independent variable.

Algorithm 1 describes the discretized PBIL (DiPBIL)
method used in this paper in terms of the following tunable
parameters:

• NG = Total number of generations or iterations

• n = Size of each population

• I = Number of Increments (i.e., the discretization)

• LR2 = Learning Rate in base 2

• NLR2 = Negative Learning Rate in base 2

• MR = Mutation Rate

• MS = Mutation Shift

• q = Number of best results to be used in updating

Algorithm 1: DiPBIL

Input: NG, I, LR2, NLR2, MR, MS , n, q, function
name(fun)
Output: xbestG , f bestG
Initialization: Pij = 1/I , LRN , NLRN , xbestG ={},
xbesti ={}
for i = 1 to NG do

Generate a population X of size n from Pij ;
Evaluate f = fun(X);
Find xbestG from the current and previous
populations;
Find xbesti for top q-1 members of the current
population;
Update Pij based on xbestG ∪ xbesti using LRN and
NLRN ;

end

While PBILH and RPBIL support continuous search
spaces, a similar method can be applied to a discretized
search space. Here, we substitute the intervals for equidistant
increments in the lower and upper bounds of the search
space. This can also be related to a base-n representation,
where each point in a given probability vector represents one
number [9]. In the same spirit as PBILH and RPBIL the
probability matrix is initialized with all increments having
equal probability and is updated after every generation with the
best combinations member (see Algorithm 1). The updating
of each vector in the matrix, however, is done using the
base-n method, with an adjusted learning rate and updating
function [9]. RPBIL suggests its own updating function which
exponentially increases the probabilities as you move toward

intervals that are closer to the best individuals [8]. The base-
n updating method, however, has the side effect of slightly
increasing the probability of increments further from the best
individuals in the search space and may allow for a chance
at more population diversity [9]. To ensure more population
diversity from across generations, the probability matrix is
updated with best member from previous generations as well as
the top q members from the current generation. This modifies
the updating equation slightly, such that:

pNEWij =

q∑
k=1

pOLDij

LFijk
q

(11)

where LFijk is the ith learning factor, as described in [9], for
the kth best result for the jth variable.

IV. PERFORMANCE EVALUATION

This section presents the experimental evaluation of our
reinsurance contract optimization technique. We first discuss
our setup and methodology as well as the data sets used for the
evaluation. We then present the performance results obtained
in terms of quality of solutions and performance.

A. Experimental Setup and Methodology

We have implemented our discretized PBIL method using
R and RStudio [11] and the doParallel parallelization package
[12]. Our experimental platform consisted of a SunBlade server
x6440, with four Quad-core AMD Opteron 8384 (2.7GHz)
processors and 32 GB Ram, running Red Hat Enterprise Linux
4.8. The prototype code was written in R version x64 2.15.0
and doParallel version 1.0.1 with socket based connections.

All single threaded times were measured as wall clock
times in seconds. All mutli-threaded times were measured as
the wall clock time between the start of the first process and
the termination of the last process. We will refer to the latter
as parallel wall clock time.

For our experiments, we used anonymized industry data
consisting of between 7 and 15 layers, with loss distributions
represented by 50,000 trial loss sets, and a rate on line or
reinsurance cost model defined in 10% increments with linear
interpolation used between data points.

In all runs of DiPBIL, the following values were used for
the fixed parameters: LR2 = 0.1, NLR2 = 0.01, MR =
0.02, MS = 0.05, and q = 3. These parameter settings were
chosen based on recommendations from the literature followed
by empirical testing. In experiments that varied the number of
iterations, discretization, and/or population size the following
values were used: NG = 500, 1000 or 2000; I = 10% or 5%;
and (n = 100, 200 or 400).

Our experiments proceeded in the following steps.

• Comparison of DiPBIL vs exact methods: Quality of
results.

• Comparison of DiPBIL vs exact methods: Speed.

• Performance of multi-threaded DiPBIL.

• Pushing the envelope.
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Figure 4. Percentage of time DiPBIL finds the same solution
as the exact method for varying iterations and population size

Figure 5. Average error when DiPBIL does not find the
same solution as the exact method for varying iterations and
population size

B. Comparison of DiPBIL vs exact methods: Quality of re-
sults.

Figure 4 shows the percentage of time DiPBIL finds exactly
same solution as the exhaustive enumeration approach for
varying iterations and population size on a problem with 7
layers and a 5% discretization. Each data point represents the
average of 50 experiments. As expected, increasing iterations
and population size increases the probability of finding exactly
the same solution as the exhaustive enumeration approach,
with NG = 2000 iterations on a population size of n = 200
providing the best quality vs. time trade-off.

Figure 5 shows the average error for the cases where the
exact solution is not found. We observe that the average error
is always less than our predetermined error tolerance of 1%.
The largest average error occurs, as expected, with the smallest
population size and iteration count, but even in this case the
average error is only 0.06% and with 2000 iterations on a
population size of 200 the average error drops to just 0.013%.
On other words, with 2000 iterations and population size of
200 the difference between the average of 50 runs and the
optimum given by the enumeration method is 0.013%.

C. Comparison of DiPBIL vs exact methods: Speed.

The main reason behind the use of PBIL is the infeasi-
ble time to run the enumeration method, especially in large
problems with many layers. Figure 6 illustrates the required
time for different level of discretizations and number of layers,
where shares 01, 05, 10 and 25 depict the discretization
levels of 1%, 5%, 10% and 25%, respectively. For example,
considering 7 layers and 5% of discretization, the enumeration
method takes more than a week to get the answer.

Figure 6. Required time for different number of layers and
discretization

On the other hand, Figure 7 shows the time on a single core
to compute a single point on efficient frontier for a 7 layer and
5% discretization problem. Note that the enumeration method
takes over 6 days to run with a 5% discretization. The DiPBIL
based approaches take between 100 and 1100 seconds to run
depending on the population size and number of iterations. It
is also important to note that DiPBIL is relatively insensitive
to the discretization level, running in roughly the same time at
1% discretization, while reducing the discretization to 1% for
the enumeration method will (by our estimation) increase the
computing time to over a year. While this graph captures the
relative performance of the methods all of the reported values
based on a prototype R implementation could likely be reduce
by a significant factor with a optimization implementation in
C/C++.

D. Performance of multi-threaded DiPBIL.

Figure 8 shows the time and Figure 9 the corresponding
speedup achieved by the multi-threaded version of DiPBIL,
while computing a 32 point efficient frontier for a realistic 7
dimensional Treaty Optimization problem using a population
size of 200 and 2000 iterations. Even with prototype code
written in R a 75% speedup is achieved with results obtained
in about 1h 20m. Early indications suggest that a tuned
C/OpenMP implementation would be significantly faster.

E. Pushing the envelope.

In order to explore the limits of how large a treaty op-
timization problem we could effectively solve, we executed
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Figure 7. Comparing speed of DiPBIL for varying dimension-
ality

Figure 8. Performance of multi-threaded DiPBIL with increas-
ing thread count

multi-threaded DiPBIL on problems with between 9 and 15
dimensions and a 5% discretization with and measured the wall
clock time. Figure 10 shows the results where each data point
represents the average time to compute a 32 point frontier.
We observed that DiPBIL was able to solve larger instances
of the treaty optimization problem than in any previously
reported implementation. Treaty optimization problems with as
many as 9 layers were solvable in under 4 hours and massive
problems involving 15 layers took significantly less than a
day. This is a significant improvement since the run time for
algorithms solving the treaty optimization problem typically
grow exponentially in the number of layers.

V. CONCLUSION AND FUTURE WORK

In this paper, we have studied a reinsurance contract
optimization problem and shown that an approached based
on a discretized adaptation of Population Based Incremental
Learning generates high quality solutions in a time efficient
manner. Either, Our multi-threaded DiPBIL method is able to
solve “real world” problem instances with a 5% discretization
and 7 or less layers in less than 1h:20m, and with up to 15
layers in less than a day. In contrast to exact enumeration
methods, only treaty optimization problems with less than 7
layers are solvable in a day, while problems with 7 or more

Figure 9. Speedup of multi-threaded DiPBIL with increasing
thread count

Figure 10. Time for multi-threaded DiPBIL to solve high
dimensional treaty optimization problems with at fine level
of discretization (5%)

layers require a week or more of computation, or are simply
infeasible.

This approach makes solving “real-world” problems with
more than 8 layers and a 5% discretization feasible in a
way it previously was not. Moreover, the differences between
the DiPBIL and the enumeration method is not significant
(lower than 0.06% ) even when the lowest configuration (500
iterations and a population size equals to 200) is used.

In the future, we plan to extend our analysis to Differential
Evolution and Particle Swarm Optimization. Also basic ap-
proach by examining alternative heuristic search strategies that
might also support the required solution space discretization,
evaluate the performance gains achievable with an optimized
C/OpenMP implementation, and add constraints necessary to
support secondary financial terms. Moreover, a multi-objective
approach of DiPBIL is also in development.
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