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Abstract—Similarity searching has a vast range of applications
in various fields of computer science. Many methods have been
proposed for exact search, but they all suffer from the curse of
dimensionality and are, thus, not applicable to high dimensional
spaces. Approximate search methods are considerably more
efficient in high dimensional spaces. Unfortunately, there are
few theoretical results regarding the complexity of these methods
and there are no comprehensive empirical evaluations, especially
for non-metric spaces. To fill this gap, we present an empirical
analysis of data structures for approximate nearest neighbor
search in high dimensional spaces. We provide a comparison
with recently published algorithms on several data sets. Our
results show that small world approaches provide some of the
best tradeoffs between efficiency and effectiveness in both metric
and non-metric spaces.
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I. INTRODUCTION

Similarity searching is a fundamental topic of computer
science, which naturally appears in the different fields such
as pattern recognition [1], computer vision [2], collaborative
filtering [3], and so on. The goal of a similarity search is to
find points from a data set that are sufficiently similar to a
search pattern ¢, also known as a query.

The similarity of two data points (x and y) is computed
using a distance function d(z, y). The smaller the value of the
distance function, the more similar (close) are the points. When
d is (1) a symmetric non-negative function; (2) satisfies the
triangle inequality; (3) and is equal to zero only for identical
points, it is called a metric. If d violates any of these properties,
then it is called non-metric.

In this paper, we focus on the nearest-neighbor search,
where one needs to find the points whose distance from the
query is the smallest among all points in the data set. A
k-nearest-neighbor (k-NN) search is a generalization of the
nearest-neighbors search. This generalization aims to find &
points closest to the query, i.e., its k nearest neighbors. In
an exact version of the problem, one is required to find
all k£ nearest neighbors. Many exact nearest-neighbor search
methods were proposed. Yet, they work well only in a low
dimensional metric space. (A dimensionality of a vector space
is simply a number of coordinates necessary to represent
a vector: This notion can be generalized to spaces without
coordinates [4]).
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Experiments showed that exact methods can rarely outper-
form the sequential scan when dimensionality exceeds ten [5].
In a literature this problem has been dubbed as “the curse of
dimensionality”. Using approximate search methods, which do
not guarantee retrieval of all neighbors, allows one to lift the
“curse”.

Non-metric spaces represent another domain where most
of the proposed methods are not applicable. Compared to
metric spaces, it is much harder to design exact methods
for arbitrary non-metric spaces, most importantly, because the
triangle inequality is violated. Whenever exact search methods
for non-metric spaces do exist, they also seem to suffer from
the curse of dimensionality [6][7].

Thus, the goal of approximation is two-fold: It allows us to
(1) reduce the search time while obtaining reasonably accurate
results; (2) answer queries for data points drawn from non-
metric spaces, where properties such as the triangle inequality
do not hold.

Approximate search methods can be much more efficient
than exact ones, but this additional efficiency comes at the
expense of a reduced search accuracy. More specifically, k
points obtained by an approximate nearest-neighbor search
methods might not be the k£ closest points to the query point.
One common measure of the search accuracy is a recall. The
recall is equal to the fraction of nearest neighbors returned by
a search method.

There is a lack of evaluations that compare approximate
search methods for both metric and non-metric spaces. Thus,
we carry out this experimental comparison by testing several
efficient benchmarks on metric and non-metric data sets. These
benchmarks are compared against recently proposed method
based on navigable small worlds graphs [8][9]. We measure
efficiency and effectiveness for complete data sets as well as
study how these characteristics depend on the number of data
points.

There are several surveys covering exact nearest neighbor
and range search in metric spaces, in particular, a work by
Chavez et al. [4]. Many classic exact methods for metric spaces
are implemented in the Metric Spaces Library [10]. Skopal and
Bustos [11] surveyed search methods for non-metric spaces.

A Non-Metric Space Library is an evaluation toolkit and a
similarity search library that contains efficient benchmarks for
both metric (e.g., Euclidean) and non-metric spaces [12][7]. In
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particular, the library has an approximate version of the VP-
tree that was shown to be competitive [7] against the multi-
probe locality sensitive hashing [13] in the Euclidean (i.e.,
metric) space, as well as against the bbtree [6] in the case of
KL-divergence [14] and Itakura-Saito distance [15] (which are
both non-metric distance functions).

The paper is organized as follows: In Section II, we
describe the selected benchmarks (implemented in the Non-
Metric Space Library); In Section III, we present evaluation
results; Section IV concludes the paper.

II. IMPLEMENTED METHODS
A. Vantage Point Tree

The Vantage Point Tree is a hierarchical space partitioning
method which uses the triangle inequality to discard partitions
that cannot contain nearest neighbors [16][17]. The classic
version of this method supports only an exact search in metric
spaces. Yet, by stretching, i.e., relaxing, the triangle inequality
[18], it is possible to support approximate nearest neighbor
searching in both metric and non-metric spaces [7].

Optimal stretching coefficients were found using a simple
grid search. We indexed a small database sample, executed the
10-NN search for various values of stretching coefficients and
measured performance. Then, we selected coefficients resulting
in the fastest search at a given recall value.

B. Permutation Methods

Permutation methods are dimensionality-reduction ap-
proaches, where each point is represented by a low-
dimensional integer-valued vector called a permutation. To
obtain the permutation, we need to select m pivots 7; (e.g., by
randomly sampling data points). Then, for every point x we
arrange pivots 7; in the order of increasing distance d(m;, x).
An i-th element of the permutation vector is simply a position
of the pivot ¢ in this arrangement. For the pivot closest to
the data point the value the vector element is one, while for
the most distance pivot the value is m. Some of the first
permutation methods were independently proposed by Chavez
et al. [19], as well as by Amato and Savino [20].

A basic version of this method randomly samples pivots
from the data set. Then, it computes permutations for every
data point and stores permutations as an array. During the
search, it scans permutations of the data points sequentially
and computes a distance (usually Euclidean) between the query
permutation and each retrieved permutation (representing a
data point). This step generates a list of candidate data points.

Afterwards, the search method sorts candidate data points
based on the distances between their permutations and the
permutation of the query. A fraction of points which represent
the smallest distances are compared directly against the query,
using the original distance function d. The underlying idea
is that while computation of the original distance can be
expensive, comparing low-dimensional integer-valued vectors,
i.e., permutations, is an inexpensive operation.

This basic method was improved in several ways. First of
all, we need only a small fraction of the data points that have
permutation closest to the query permutation. Thus, computing
the complete ordering of permutations is wasteful. Instead,
one can resort to incremental sorting [19]. Second, one can
index permutations rather than searching them sequentially: It
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is possible to employ a permutation prefix tree [21], an inverted
index [20], or an index designed for metric spaces, e.g., a VP-
tree [22].

More recently, it was proposed to index pivot neighbor-
hoods: For each data point, we select numPre fixz < m pivots
(out of m existing pivots) that are closest to the data point.
Then, we associate these numPrefix closest pivots with the
data point via an inverted file [23]. One can hope that for
similar points two pivot neighborhoods will have a non-zero
intersection.

To exploit this observation, our implementation of the pivot
neighborhood indexing method retrieves all points that share
at least minT'imes nearest neighbor pivots (using an inverted
file). Then, these candidates points are compared directly
against the query.

Preliminary experiments showed that, depending on a data
set, one of the following permutations method was the most
efficient: the basic permutation method with incremental sort-
ing, the approximate version of VP-tree index built over a set
of permutations, or a pivot neighborhood index.

C. Small World

A small world method is a variant of a navigable small
world graph data structure [9]. The small world graph repre-
sents an approximation of the Delaunay triangulation [24] and
its respective Voronoi partitioning [24]. In a small world graph,
data points are graph nodes and edges connect close data
points. Ideally, it should be possible to find nearest neighbors
of any data point by following just a few graph edges.

The nearest neighbor search algorithm is, thus, a greedy
search procedure that carries out several sub-searches. A sub-
search starts at a random node and proceeds to expanding the
set of traversed nodes by following neighboring links. The sub-
search stops when we cannot find points that are closer than
already found M nearest points (M is a search parameter).

Indexing is a bottom-up procedure that relies on the previ-
ously described greedy search procedure. We add points, one
by one. For each data point, we find IV closest points using an
already constructed index. Then, we create an edge between
a new graph node (representing a new point) and nodes that
represent N closest points found by the greedy search. Note
that the greedy search is only approximate and does not
necessarily return all N nearest neighbors. Empirically, it was
shown that this method often creates a navigable small world
graph, where most nodes are separated by only a few edges.
In that, the number of edges is typically logarithmic in the size
of the data set [8].

The indexing algorithm is rather expensive and we accel-
erate it by running parallel searches in multiple threads. The
graph updates are synchronized: If a thread needs to add edges
to a node or obtain the list of node edges, it first locks a node-
specific mutex. Because, different threads rarely update the
same node, such synchronization creates little contention and,
consequently, our parallelization approach is efficient. It is also
necessary to synchronize updates for the list of graph nodes,
but this operation takes little time compared to searching for
N neighboring points.

D. Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a class of methods
employing hash functions that tend to have the same hash
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values for close points and different hash values for distant
points. It is a probabilistic method in which the probability
of having the same hash value is a monotonically decreasing
function of the distance between two points (that we compare).
A hash function that possesses this property is called locality
sensitive. The first LSH method was proposed by Indyk and
Motwani in [25].

One drawback of this method is that it is hard to design
a locality sensitive hash function for an arbitrary non-metric
space. Yet, it is a very strong benchmark in the case of the
Euclidean distance. This is why we used it in our experiments.
More specifically, we employed a memory-efficient multi-
probe LSH due to Dong et al. [13], which is implemented
as a part of the LSHKIT library [13].

E. List of Clusters

The list of clusters [26] is an exact search method for
metric spaces, which relies on flat (i.e., non-hierarchical) clus-
tering. Clusters are created sequentially starting by selecting
an arbitrary cluster center. Then, close points are assigned
to the cluster and the clustering procedure is applied to the
remaining points. Closeness is defined either in terms of the
maximum distance R from the cluster center (points with
distances larger than R are not included into the cluster) or in
terms of the number of points NV closest to the cluster center.
In our work, we rely on the latter strategy and select cluster
centers randomly.

The search algorithm iterates over the constructed list of
clusters and checks if answers can potentially belong to the
currently selected cluster (using the triangle inequality). If
the cluster can contain an answer, each cluster element is
compared directly against the query. Next, we use the triangle
inequality to verify if answers can be outside the current
cluster. If this is not possible, the search is terminated.

We modified this exact algorithm by introducing an early
termination condition. The clusters are visited in the order of
increasing distance from the query to a cluster center. The
search process stops after vising a certain number (a method
parameter) of clusters.

III. EXPERIMENTS

A. Data Sets
Overall, three different distance functions were used:

e The Euclidean metric distance (Ls);
e  The non-metric distance function KL-divergence [14]:
d(z.y) = 3 i log 2
Z ZilYi

e The non-metric cosine similarity: 1 — ——==—22 .
A Sr= o ShE

In what follows, we summarize employed data sets and
respective distance functions.

1) CoPhIR (Ls): data set is the collection of
208-dimensional vectors extracted from images in MPEG7
format [27]. Vectors are composed of five different MPEG7
features.

2) SIFT (Ls): is a part of the TexMex data set collection
[28]. It has one million 128-dimensional vectors. Each vector
corresponds to descriptor extracted from image data using
Scale Invariant Feature Transformation (SIFT) [29].
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Wikipedia sparse-vector data set.

3) Wikipedia (cosine similarity): is a data set that contains
3.2 million vectors represented in a sparse format. Each
vector corresponds to the TF-IDF vector of the Wikipedia
page extracted using the gensim library [30]. This set has
an extremely high dimensionality (more than 100 thousand
elements). Yet, the vectors are sparse: On average only about
600 elements are non-zero.

4) Unif64 (Ly): is a synthetic data set of 64-dimensional
vectors. The vectors were generated randomly, independently
and uniformly in the unit hypercube.

5) Finall6, Final64, and Final256 (KL-divergence): are
sets of 0.5 million topic histograms generated using the Latent
Dirichlet Allocation (LDA) [31]. The numeric suffix of a data
set name indicates the dimensionality, which is also equal to
the number of LDA topics. This data set was created by Cayton

[6].

B. Evaluation

Experiments were carried out on an Linux Intel Xeon
server (3.60 GHz, 32GB memory) in a single threaded mode
using the Non-Metric Space Library as an evaluation toolkit
[12]. The code was written in C++ and compiled using GNU
C++ 4.7 (-Ofast optimization option).

We relied on optimized distance functions implemented
with a help of SSE 4.2 SIMD instructions. In the case
of the KL-divergence, further speed up are achieved by
precomputing logarithms of vector elements at index time
[7]. An implementation of the cosine similarity used the
all-against-all comparison instruction _mm_cmpistrm. This
implementation (inspired by the set intersection algorithm of
Schlegel et al. [32]) is about 2.5 times faster than a pure C++
implementation based on the merge-sort approach.

We randomly divided a data set into two subsets. A smaller
subset contained only 1000 points and was used as a query
set. The remaining points were indexed. After indexing, we
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evaluated performance of a 10-NN search (all indexes were
memory-resident). To this end, a search was repeated several
times to produce results at different recall values (method pa-
rameters were selected manually). This procedure was repeated
five times and evaluation results were averaged over five data
set splits. The variance in query times was low and, hence, we
report only point estimates.

Most methods were evaluated on all data sets. Yet, the
multi-probe LSH and the list of clusters were used only
with the Euclidean distance. The VP-tree was not used for
Wikipedia, because, due to extremely high dimensionality of
this data set, the VP-tree was only marginally better than
sequential searching.

Evaluation results for the Euclidean distance and for the
KL-divergence are presented in Figures 1 and 2, respectively.
The graphs in the first row show reduction in the number
of distance computations (compared to sequential, i.e., brute
force searching without an index) against the search accuracy
measured by the recall (equal to the fraction of nearest
neighbors returned by a method). An exact method has an
ideal recall of one, which means that the exact method finds
all nearest neighbors. The graphs in the second row show
the overall improvement in efficiency (again, compared to
sequential searching). Note that the permutation method with
incremental sorting is denoted as simply permutation in the
plots’ legends.

As can be seen from the Figures 1 and 2, the small world
algorithm provides the best tradeoffs between reduction in
the number of distance computations and effectiveness for all
three data sets. Consider, for example, the CoPhIR data in
Figure 1. At the recall value of 0.9, the improvement in the
number of distance computations for the small world is 1000.
For all the other methods, the improvement in the number of
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distance computations is less than 100. To obtain a comparable
improvement in the number of distance computations for, e.g.,
LSH, one has to tolerate the recall as low as 0.4.

Typically, the larger is the reduction in the number of
distance computations performed during the search, the more
efficient is the method. Yet, for inexpensive distance functions
(such as the Euclidean distance), the reduction in the number
of distance computations does not directly translate into the
overall improvement in performance. Consider the Unif64 data
in Figure 1 and Final256 data in Figure 2: Despite that the
small world method performs fewer distance computations
than other methods in almost all the cases, the bookkeeping
cost related to traversal of the small world graph can be high.
As a result, the pivot neighborhood index or the multi-probe
LSH are sometimes more efficient (at same recall values).

Note that both the small world and the pivot neighborhood
index work well in the case of the KL-divergence (see Fig-
ure 2). For all three KL-divergence data sets, it is possible to
achieve a ten-fold speed up over sequential searching while
keeping the recall as high as 0.9.

The results for the complete Wikipedia data set are pre-
sented in Figure 3. The upper graph shows the reduction in
the number of distance computations against the recall, while
the lower graph shows the improvement in efficiency against
the recall. Despite our optimized SIMD implementation of the
cosine similarity is 2.5 times faster than the pure C++ version,
it is still quite expensive to compute the scalar product between
sparse TF-IDF vectors. As a result, in most cases, reduction in
the number of distance computations maps well to the overall
improvement in efficiency.

Note that the small world method is substantially better
than the other methods. For example, at the recall value 0.87
it is about 40 times faster than sequential searching. The next
fastest method (the pivot neighborhood index) achieves this
speedup only at a significantly lower recall value of 0.6.

To measure how performance depends on the size of a
data set, we also obtained results for Wikipedia subsets whose
sizes varied from 12.5 thousand to 3.2 million data points.
For each step and for each method we ran a search procedure
several times with different options to measure performance at
various values of recall (again, we manually tweaked method
parameters to achieve different recall values). In the case of
the small world, we selected runs that resulted in recall values
closest to 0.9, while for other methods we selected runs with
recall closest to 0.8. The results are presented in Figure 4,
where the lower plot includes all the tested method, while the
upper plot includes only the small world method and the pivot
neighborhood index.

As can been seen from the Figure 4, all permutation
methods have a near linear dependency for the number of
distance computations on the number of data points. For
the small world method, the dependence is close to being
logarithmic (see the upper plot in Figure 4). In that, the small
world method exhibits a greater reduction in the number of
distance computations at higher recall values (0.9 vs 0.8).
Compared to other permutation methods, performance of the
pivot neighborhood scales much better as the number of data
points increases. Yet, this method is still substantially slower
and/or less accurate than the small world method.
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IV. CONCLUSION AND FUTURE WORK

We carried out an extensive experimental comparison using
several large data sets. Our experiments involve both metric
and non-metric distance functions including the challenging
KL-divergence: The KL-divergence is not symmetric and does
not satisfy the triangle inequality. To ease reproduction of
results, we make our code publicly available, as a part of
the open-source Non-Metric Space Library [12]. All data sets
except CoPhIR are publicly available as well.

Our experiments show that the small world method outper-
forms the other methods for most recall values. Experiments
with the sparse-vector Wikipedia data set demonstrate that the
small world method has a near logarithmic dependence for the
number of distance computation on the number of data points,
which confirms previous findings [8]. That is, despite dealing
with an extremely high-dimensional data set, it is possible to
obtain accurate results (recall 0.9) quickly. We hypothesize that
small world graph approaches are some of the most efficient
high-accuracy methods in both metric and non-metric spaces.

The small world method is almost always superior in terms
of the reduction in the number of distance computations. In the
case of inexpensive distance functions, this does not always
result in better overall performance, because traversing the
small world graph can be expensive (note that the small world
method is still the fastest in most cases). In the future, we plan
to design a more efficient version of the small world method.
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