
A Modified Multi-objective Differential Evolution Algorithm with Application in

Reinsurance Analytics

Omar Andres Carmona Cortes

Instituto Federal do Maranhão
Informatics Department
São Luis, MA, Brazil

Email: omar@ifma.edu.br

Andrew Rau-Chaplin

Dalhousie University
Faculty of Computer Science

Halifax, NS, Canada
Email: arc@cs.dal.ca

Abstract—In the reinsurance marketplace, the risk of financial
loss in the event of natural catastrophes (such as earthquakes,
hurricanes and floods) is exchanged between market participants
for a premium. Here, prudent risk management takes the form of
a hedge against the risk of a contingent uncertain loss in exchange
for a payment. Reinsurance contracts that define the terms of
the transfer are elaborated multi-layered financial treaties that
represent complex trade-offs between expected return and risk.
Formulating an effective risk transfer strategy depends on a care-
ful multi-objective optimization process. In this paper, we study
from the perspective of an insurance company the Reinsurance
Contract Optimization problem in which, given the structure
of a multi-layered reinsurance contract, we are required to
discover specific contractual terms that capture the best trade-offs
between expected return and risk for the insurer. Our approach is
based on an adaptation of Multi-Objective Differential Evolution.
In searching for the best mutation operators, we performed
an experimental analysis on large-scale real problem instances
using industrial datasets and evaluated five different mutation
operators. Our experimental results indicate that those mutation
operators based on selecting non-dominated individuals from the
archive tend to produce better outcomes. Since speed is critical
in this application, we also developed a parallel version achieving
a speedup up to 9.3 on a 16 core machine.

Keywords–Risk Analytics; Differential Evolution; Multi-
objective; Parallel Computing.

I. INTRODUCTION

Many real world applications involve the optimization
of two or more conflicting objectives, where the search for
solutions generates a Pareto frontier [1], on which no particular
solution is better than another. Solutions on the Pareto frontier
represent trade-offs between multiple objectives. Given these
trade-offs, human experts can select final solutions based on
other, often more qualitative, criteria.

An interesting real world application in computational
finance is the Reinsurance Contract Optimization (RCO) prob-
lem. RCO is a treaty optimization problem in which we are
given as input the structure of a complex risk transfer treaty
consisting of a fixed number of contractual layers, a simulated
set of expected loss distributions (one per layer), and a model
of reinsurance market costs [2][3]. The task is to generate as
output the best set of shares, a key financial parameter, which
balance the expected return and the risk. In this context, typical
risk measures include variance, Value at Risk (VaR) or a Tail-
Value at Risk (TVaR) [4].

An enumeration method can be used for solving the RCO
problem; however this approach presents two main problems:
1) it has to be discretized, demanding some changes in
numerical algorithms and 2) in practice, it is only applicable
to small problems instances (i.e., 2 to 4 layers), whereas real
instances of the RCO problem can have 7 or more layers.
For instance, a 7 layered problem can take several week to
be solved with a 5% level of discretization on the search
space using the enumeration method as presented in [2]. As
a consequence, it is important to explore alternative methods
for addressing this type of problem.

In this context, evolutionary algorithms, such as differ-
ential evolution (DE) [5], seem to be a natural choice. DE
is reasonably simple to implement and has been success-
fully used in many applications including Reservoir System
Optimization [6], Communication Systems [7], and Speaker
Recognition [8]. Risk and reinsurance problems have also been
tackled using evolutionary methods, such as in [9][10][11];
however, the focus in these particular applications was on stop
loss and ruin prediction, i.e., a very different problem than the
RCO problem studied in this paper. In the context of RCO,
the first studies using evolutionary methods were [2] and [3].

While the techniques proposed in these papers performed
significantly better than the enumeration approach, they suf-
fered from a critical drawback. They were based on single-
objective optimization methods in which the risk could be
optimized only for a given expected return value in any
one call to the optimizer. Consequently, creating a Pareto
frontier that covers a range of expected return values was
very time-consuming, making it unsuitable for many industrial
scale problems. In [12], a faster vector evaluated differential
evolution method for RCO was presented. While this approach
was multi-objective, producing the whole Pareto frontier at
once, it suffered from solution quality issues in that it often
produced Pareto frontiers with holes or large gaps between
solutions especially in the critical middle portion of the curve.

In this paper, we present a modified Differential Evolution
for Multi-objective Optimization (DEMO) [13] algorithm -
simpler than Multi-Objective Differential Evolution Algorithm
(MODEA) [14] - which is both fast and solves the previously
noted gaps problem, thus producing high quality Pareto fron-
tiers. Our approach uses an archive of previously identified
solutions in order to avoid losing non-dominated candidates
as the optimization converges. Solutions were lost when the

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

number of non-dominated solutions is truncated by crowding
distance when it is bigger than the population size in the
original version. Additionally, we present a study of different
mutation operators, and propose the use of a non-dominated
solution in the mutation step, instead of any random individual.
An experimental evaluation of our modified DEMO method
applied to the RCO problem demonstrates that it can solve
extremely large real-world RCO problems with between 7
and 15 layers (subcontracts) in under three minutes. Our
experimental results indicate that the quality of solutions, when
evaluated in terms of the average size and hyper volume of the
generated Pareto frontiers, is high and the previously noted
gaps problem, especially in the critical middle portion of the
curve, is now largely absent.

The remainder of this paper is structured as follows:
Section II presents fundamentals concepts of multi-objective
problems and an introduction to the RCO problem; Section III
shows how DEMO works and our proposal; Section IV intro-
duces the metrics that were applied and the results, including
some parallelization features; finally, Section V presents con-
clusion and future work.

II. MULTIOBJECTIVE PROBLEMS

A Multi-objective Optimization Problem (MOP) has to
address two or more conflicting objective function [15] at the
same time. The resulting solution is a Pareto frontier, i.e., a
set of points where no solution is better than another one.
Otherwise, the global optima would be only one point in the
search space [12]. Thus, assuming that a solution to a MOP
is a vector in a search space X with m elements. A function
f : X → Y evaluates the quality of a solutions mapping it
into an objective space. Therefore, a multi-objective problem
is defined as presented in (1), where f is a vector of objective
functions, m is the dimension of the problem and n represents
the number of objective functions.

Max y = f(x) = (f1(x1, ..., xm), ..., fn(x1, ..., xm)) (1)

In order to determine whether a solution belongs to the
Pareto frontier or not, it is necessary to use the concept of
optimality (i.e., Pareto dominance), which states that given two
vectors x, x∗ ∈ < and x 6= x∗, x dominates x∗ (denoted by
x � x∗) if fi(x) is not worse than fi(x∗),∀i and there exist at
least one i where fi(x) > fi(x∗) in maximization cases and
fi(x) < fi(x∗) otherwise. Hence, a solution x is said Pareto
optimal if there is no solution that dominates x, in such case,
x is called non-dominated solution. Mathematically, assuming
a set of non-dominated solutions ℘, a Pareto frontier(pf) is
represented as pf = {fi(x) ∈ R|x ∈ ℘}.

A. A Treaty Optimization Problem: RCO
Insurance organizations, with the help of the global reinsur-

ance market, look to hedge their risk against potentially large
claims, or losses [4]. This transfer of risk is done in a manner
similar to how a consumer cedes part of the risk associated
with their private holdings [2]. The claims received by the
insurer in case of a natural catastrophe are also referred to as
expected return.

The reinsurance contract optimization consists of a fixed
number of contractual layers and a simulated set of expected

loss distributions (one per layer), plus a model of reinsurance
market costs [2]. Hence, the main task is to discover the best
combination of shares, also known as placements, which leads
to a set of trade-offs between expected return and risk. In other
words, insurance companies aim to hedge their risk against
potentially large claims, or losses [4], especially those ones
resulting from natural catastrophes. When these trade-offs are
set, the insurance companies are able to offer them to the
reinsurance market.

Overall, the purpose is both to maximize the amount
of return ($) received from the reinsurance company and
maximize the risk transferred to it. Doing so, the insurance
companies minimize the loss faced per year in case of a
natural disaster. In this context, (2) represents the problem in
terms of optimization, where V aR is a risk metric, R is a
function in term of placements (π) and E is the Expected Value.
In probability theory, the expected value, usually denoted by
E[X], refers to the value of a random variable X that we would
“expect” to find out if we could repeat the random variable
process an infinite number of times and take the average of
the values obtained. For further details about the problems,
refer to [2] and [4].

maximize f1(x) = V aRα(R(π))
maximize f2(x) = E[R(π)]

(2)

III. DIFFERENTIAL EVOLUTION MULTI-OBJECTIVE
(DEMO)

The DEMO algorithm is shown in Figure 1, where we
can observe that it is similar to the canonical version of DE
whose strategy is DE/Rand/1 [16]. The differences start in line
16 when the new population is selected for the next iteration.
Thus, if a new individual (indiv) dominates the target one
(Popi) then the new one is added into a new population; if
the target individual dominates the new one then the target
element is added into the new population; otherwise, both
individuals go to the new population. The dominance process
builds a new population whose size rages from pop size to
2 × pop size. Finally, if the size of the new population is
larger than pop size then the new individuals which go to next
iteration are selected by crowding distance (select cdistance
function).

A. Our Proposal
The main drawback of the original DEMO was not main-

taining an archive, thereby loosing good solutions when the
number of non-dominated points overcomes the size of the
population. Taking this into account, we changed the original
algorithm in two parts. Firstly, we introduce an archive in the
algorithm (after line 31), which is maintained on each iteration
in order to do not lose non-dominated solutions from one
iteration to another due to the crowding distance algorithm
in line 30. Secondly, we tested some mutation operators (line
6 in the Figure 1) as presented in (4), (5), (6), and (7). Unless
the original mutation operator which uses three any random
individuals in order to build the F vector, in (4), we uses a
random individual from the set of non-dominated ones. Thus, it
is necessary to compute the non-dominated set between lines
3 and 4, i.e., before starting the loop which deals with the
population. (5) is similar to the previous one; however, F is
a random number between 0 and 1. Then, in (6) and (7), we

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

Figure 1. DEMO Algorithm

randomly pick up the first individual from the archive which
currently contains the best solutions found by the algorithms.
The difference between the last two equations is the use of F
which is randomly chosen in (7).

v ← non domidx + F ∗ (Popidx1
− Popidx2

) (3)
v ← non domidx +Rand() ∗ (Popidx1

− Popidx2
) (4)

v ← archiveidx + F ∗ (Popidx1 − Popidx2) (5)
v ← archiveidx +Rand() ∗ (Popidx1

− Popidx2
) (6)

(7)

In the next section, the mutation operators will be referred
to as M1 (canonical mutation), M2 (4), M3 (5), M4 (6), and
M5 (7).

IV. COMPUTATIONAL EXPERIMENTS

All tests were conducted using R version 2.15.0 and
RStudio on a Windows 7 64-bit Operating System running
on an Intel i7 3.4 Ghz processor with 4 physical cores and
hyper threading, with 16 GB of RAM. We executed the parallel
version in an Intel Xeon comprising of two Xeon processors
E5-2650 running at 2.0 Ghz with 8 cores and hyper threading
and 256 GB of memory. The experiments used F = 0.7 or a
random F , and CR = 0.9 considering 250, 500 and 1000

iterations with a population size equals to 50. Further, all
averages are calculated in 30 trials. Our data set is composed
by 7 layers of real anonymized data. The 15 layers data set
was synthetically created based on the 7 layers one.

A. Metrics
In this section, we discuss the experimental evaluation

of MODE algorithm. Firstly, the average number of non-
dominated points (number of solutions) found in the Pareto
frontier was determined. Secondly, the average hyper volume,
which is the volume of the dominated portion of the objective
space as presented in (8), was measured, where for each
solution i ∈ Q a hypercube vi is constructed. The extreme
points are those one belonging to the Pareto front. Having
each vi, we calculated the final hyper volume by the union of
all vi. The final number of solutions after all trials is showed
as well.

hv = volume(

|Q|⋃
i=1

vi) (8)

Thirdly, the dominance relationship between Pareto fron-
tiers obtained with different mutation operators was calculated
as depicted in (9). Roughly speaking, C(A,B) is the percent-
age of the solutions in B that are dominated by at least 1
solution in A [17], therefore, if C(A,B) = 1 then all solutions
in A dominate B, and C(A,B) = 0 means the opposite. It is
important to notice that this metric is neither complementary
by itself nor symmetric, i.e, C(A,B) 6= 1 − C(B,A) and
C(A,B) 6= C(B,A) making important to compute it in
both direction: C(A,B) and C(B,A). Finally, the resulting
frontiers can be reviewed by experts for reasonability. For
further details about the use of these metrics see [15].

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(9)

In terms of parallelism, we calculated the speedup ac-
cording to speedup = Ts

Tp
, where Ts is the execution time

considering one thread and Tp represents the time in parallel
using p threads. This kind of metric is called weak speedup and
it was suggested in Alba [18] because the code is exactly the
same regardless the number of threads, thus it is not necessary
to guarantee that the serial version is the best one.

B. Results
Table I presents the average of number of solutions, the hy-

pervolume, the elapsed time and the final number of solutions
for 7 layers. As we can observe, using non-dominated individ-
uals either from the population or the archive tend to produce
more number of solutions; however, better hypervolumes are
obtained by the version using the archive. Also, the difference
in terms of time is not significant between mutation operators.
Figure 2 shows the final Pareto frontier for 7 layers where we
can noticed that visually it is not possible to identify which
mutation operator is the best for this particular application.

Table II shows the coverage metric between the different
mutation operators where it noticeable that the canonical
mutation M1 dominates only between 5% and less than 1% of
the other approaches. On the other hand, M5 dominates more

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

TABLE I. METRICS FOR 7 LAYERS AND 250 ITERATIONS

#NS Hypervolume Time Final #NS
M1 83.73 2.19E+15 105.18 226

Stdev 5.59 9.40E+13 3.40
M2 151.30 1.96E+15 104.50 339

Stdev 12.91 3.52E+14 2.35
M3 170.77 1.80E+15 103.41 330

Stdev 13.95 3.16E+14 2.60
M4 203.67 2.23E+15 105.08 374

Stdev 10.80 2.60E+14 2.19
M5 232.93 2.21E+15 105.63 383

Stdev 11.44 2.43E+14 2.13

Figure 2. Final Pareto frontier for 7 layers and 250 iterations

solutions from the other operators. For example, M5 dominates
78% of solutions from M1 and 30% of solutions from M4.
On the other hand, M4 dominates only 9% of M5 solutions,
demonstrating that M5 is the most effective in this case.

TABLE II. COVERAGE FOR 7 LAYERS AND 250 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.05 0.06 0.03 0.007
M2 0.66 - 0.19 0.098 0.034
M3 0.66 0.30 - 0.14 0.06
M4 0.73 0.39 0.28 - 0.09
M5 0.78 0.48 0.31 0.30 -

Table III illustrates the same metrics aforementioned for
250 iterations and 15 layers. In this case, the behavior is
similar to the previous one in terms of number of solution and
time; however, M4 presented the best hypervolume. Moreover,
visually there are some differences between the performance
of the operators as we can see in Figure 3, where M4 and M5
seem to be better than the other operators. The coverage metric
in Table IV indicates that M5 dominates more solutions than
M4, therefore, the bigger hypervolume might be caused by the
non-dominated points in the beginning of the Pareto frontier
curve.

The behavior for 7 and 15 layers using 500 iterations are
presented in Tables V and VII. As we can see, the results are
similar to the previous ones including the final Pareto frontier
(Figures 4 and 5) and the coverage rates in Tables VI and VIII;
but, now the differences are in a smaller scale. This result is
expected because as we increase the number of iterations the
differences tend to be smaller. On the other hand, this number
of iterations is not sufficient for approximating the results using
15 layers because this last one is a much harder problem to
solve.

TABLE III. METRICS FOR 15 LAYERS AND 250 ITERATIONS

#NS Hypervolume Time Final #NS
M1 55.23 2.96E+15 166.66 104

Stdev 4.70 2.87E+14 5.61
M2 93.90 2.54E+15 165.20 220

Stdev 8.86 5.83E+14 5.81
M3 139.90 2.39E+15 166.32 354

Stdev 15.20 6.38E+14 2.77
M4 145.23 3.40E+15 166.43 340

Stdev 10.12 8.53E+14 4.41
M5 188.67 3.05E+15 168.57 390

Stdev 12.71 6.81E+14 2.38

Figure 3. Final Pareto frontier for 15 layers and 250 iterations

TABLE IV. COVERAGE FOR 15 LAYERS AND 250 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.036 0.025 0.006 0.000
M2 0.88 - 0.087 0.07 0.036
M3 0.89 0.69 - 0.30 0.10
M4 0.95 0.80 0.42 - 0.11
M5 0.98 0.89 0.70 0.61 -

TABLE V. METRICS FOR 7 LAYERS AND 500 ITERATIONS

#NS Hypervolume Time Final #NS
M1 101.40 2.26E+15 209.48 237

Stdev 9.19 5.40E+13 4.18
M2 182.43 2.20E+15 208.09 373

Stdev 11.74 2.01E+14 4.96
M3 191.57 1.65E+15 205.97 367

Stdev 16.82 4.68E+14 4.88
M4 240.77 2.15E+15 206.66 399

Stdev 10.36 2.75E+14 4.87
M5 290.17 2.20E+15 207.13 397

Stdev 12.02 2.33E+14 5.59

TABLE VI. COVERAGE FOR 7 LAYERS AND 500 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.083 0.087 0.01 0.002
M2 0.616 - 0.19 0.085 0.015
M3 0.60 0.22 - 0.102 0.025
M4 0.718 0.365 0.29 - 0.053
M5 0.747 0.437 0.34 0.235 -

The results for 1000 iterations for 7 and 15 layers are
presented in Tables IX and XI. Visually, the results for 7
layers in Figure 6 are the same; however, Table X indicates
that the differences are still there. Looking at the number
of the Pareto frontier, we will see similar solutions between
M1 and M5; nonetheless, the M5 solutions dominates the

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

Figure 4. Final Pareto frontier for 7 layers and 500 iterations

TABLE VII. METRICS FOR 15 LAYERS AND 500 ITERATIONS

#NS Hypervolume Time Final #NS
M1 65.93 3.27E+15 332.18 139

Stdev 4.46 3.79E+14 13.08
M2 116.67 2.87E+15 331.33 233

Stdev 11.43 6.70E+14 8.75
M3 171.77 2.18E+15 328.35 358

Stdev 16.77 6.18E+14 8.24
M4 191.33 3.71E+15 331.55 379

Stdev 12.99 6.90E+14 8.51
M5 246.067 3.27E+15 329.20 460

Stdev 14.88 8.72E+14 10.02

Figure 5. Final Pareto frontier for 15 layers and 500 iterations

TABLE VIII. COVERAGE FOR 15 LAYERS AND 500 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.051 0.05 0.005 0.00
M2 0.777 - 0.154 0.0474 0.002
M3 0.77 0.70 - 0.184 0.046
M4 0.964 0.83 0.497 - 0.104
M5 0.99 0.897 0.706 0.547 -

solutions from M1 as shown by Table X. On the other hand,
the differences between M4 and M5 are not so substantial
because M5 dominates only 13% of solutions from M4 which
represents that 87% of the solutions on both sets are either the
same or non-dominated solutions.

When we move to 15 layers (Figure 7), a larger number
of iterations do not create better solutions for M1. Also, more
iterations do not significantly approximate M4 from M5 as we
can see in Table XII where M5 dominates 49% of solutions

from M4, whereas M4 dominates only 6.3% of solutions from
M5. This behavior is a strong indication that M5 is the best
operator for solving this problem.

TABLE IX. METRICS FOR 7 LAYERS AND 1000 ITERATIONS

#NS Hypervolume Time Final #NS
M1 122.83 2.32E+15 412.13 281

6.80 2.05E+13 9.14
M2 215.93 2.27E+15 411.85 400

14.21 2.28E+14 11.16
M3 199.73 1.88E+15 410.44 353

20.62 3.75E+14 6.91
M4 292.57 2.20E+15 413.74 404

11.19 2.42E+14 8.87
M5 333.27 2.19E+15 412.37 397

14.25 2.59E+14 11.29

Figure 6. Final Pareto frontier for 7 layers and 1000 iterations

TABLE X. COVERAGE FOR 7 LAYERS AND 1000 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.190 0.187 0.131 0.118
M2 0.665 - 0.136 0.029 0.005
M3 0.68 0.240 - 0.066 0.00
M4 0.79 0.305 0.21 - 0.00
M5 0.808 0.350 0.240 0.133 -

TABLE XI. METRICS FOR 15 LAYERS AND 1000 ITERATIONS

#NS Hypervolume Time Final #NS
M1 75.00 3.36E+15 655.36 147

6.88 3.00E+14 26.82
M2 143.43 3.22E+15 656.79 298

12.18 6.30E+14 23.45
M3 211.33 2.25E+15 662.09 361

21.87 6.30E+14 10.68
M4 242.53 3.67E+15 655.87 439

13.17 7.48E+14 20.70
M5 299.37 3.52E+15 679.67 507

14.33 7.31E+14 29.95

TABLE XII. COVERAGE FOR 15 LAYERS AND 1000 ITERATIONS

M1 M2 M3 M4 M5
M1 - 0.067 0.017 0.006 0.006
M2 0.782 - 0.061 0.041 0.012
M3 0.857 0.775 - 0.273 0.065
M4 0.952 0.778 0.243 - 0.063
M5 0.972 0.88 0.46 0.49 -

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

Figure 7. Final Pareto frontier for 15 layers and 1000 iterations

C. Parallel Version
In order to parallelized the code, we used the Snow pack-

age [19] from R which is a package for automatic paralleliza-
tion. We parallelized the iteration loop using a foreach instruc-
tion associated with the parameter %dopar%. This parameter
is responsible for dividing the iterations between threads. The
main advantage of this approach is to maintain intact almost
the entire code, being necessary to add instructions only for
gathering results delivered by each thread. On the other hand,
the main disadvantage lays in the fact that as we increase the
number of threads the results tend to be worse in terms of
quality.

The mutation operator we used is the M5 with 1000
iterations because it presented better results than the other
ones. Figures 8 and 9 show the time and speedup reached in
the Xeon architecture variating the thread count. Regardless the
number of layers, the best efficiency is reached using 2 thread
representing an efficiency of 96.7% and 98.2%, respectively.
In terms of speedup, it is almost linear up to 4 threads. Then,
the best one is reached using 32 threads representing 9.38 and
8.33 for 7 and 15 layers, respectively; however, the use of 32
threads represents an efficiency of 29.3% and 26% for 7 and
15 layers. Moreover, the best speedups are reached by 7 layers
saturating in approximately 16 threads.

Figure 8. Time for 7 and 15 layers and 1000 iterations on Xeon

Figure 10 presents the Pareto frontier obtained by varying
the thread count for 1000 iteration and 7 layers, where we
can observe that visually all Pareto frontiers seem to be the

Figure 9. Speedup for 7 and 15 layers and 1000 iterations on Xeon

same. Table XIII depicts the averages in term of metrics. Even
though, the number of solutions decrease as we increase the
number of threads, the final number of solutions is not affected.
Moreover, the hypervolume is quite stable between threads;
therefore, the faster the execution the better. In fact, the small
numbers in Table XIV, which represent the coverage, mean
that the Pareto frontiers are very similar regardless the number
of threads.

Figure 10. Pareto frontier varying thread count for 1000 iteration and 7
layers

TABLE XIII. METRICS FOR 7 LAYERS AND 1000 ITERATIONS

#NS Hypervolume Time #NS Final
1T 337.3666667 2.25E+15 626.3866667 403

12.60673967 2.14E+14 3.61856901
2T 336.6333333 2.30E+15 323.8888 398

11.60999371 1.59E+14 1.890259066
4T 329.6333333 2.34E+15 181.6333667 390

10.49296425 1.05E+14 0.808078286
8T 315.8666667 2.35E+15 103.0467333 406

12.01359383 1.28E+13 0.340365719
16T 288.9666667 2.35E+15 67.123 403

9.86628999 3.00E+13 0.711079801
32T 246.9 2.35E+15 66.7494 390

13.47628824 1.45E+13 2.711422067

Figure 11 shows the Pareto frontier obtained by varying the
thread count for 1000 iteration and 15 layers, where we can
observe that visually the difference between Pareto frontiers
obtained by different counting of threads is not meaningful.

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

TABLE XIV. COVERAGE FOR 7 LAYERS AND 1000 ITERATIONS

T1 T2 T4 T8 T16 T32
T1 - 0.028 0.03 0.08 0.16 0.20
T2 0.04 - 0.04 0.09 0.16 0.215
T4 0.03 0.03 - 0.07 0.14 0.20
T8 0.030 0.035 0.028 - 0.14 0.17

T16 0.019 0.015 0.015 0.057 - 0.16
T32 0.017 0.022 0.026 0.02 0.086 -

Figure 11. Pareto frontier varying thread count for 1000 iteration and 15
layers

TABLE XV. METRICS FOR 15 LAYERS AND 1000 ITERATIONS

#NS Hypervolume Time #NS Final
1T 290.73 3.39E+15 1426.90 517

22.97 8.93E+14 6.33
2T 296.03 3.82E+15 726.32 515

15.83 7.22E+14 2.16
4T 280.37 4.03E+15 387.39 470

12.70 5.74E+14 1.13
8T 237.40 4.22E+15 232.96 450

13.63 3.72E+14 1.12
16T 201.00 4.12E+15 182.87 378

13.43 3.30E+14 9.25
32T 164.00 3.99E+15 171.36 336

12.71 4.05E+14 16.34

TABLE XVI. COVERAGE FOR 15 LAYERS AND 1000 ITERATIONS

T1 T2 T4 T8 T16 T32
T1 - 0.50 0.57 0.68 0.79 0.87
T2 0.40 - 0.32 0.54 0.65 0.77
T4 0.30 0.14 - 0.46 0.61 0.75
T8 0.20 0.09 0.15 - 0.52 0.70

T16 0.13 0.05 0.10 0.16 NA 0.55
T32 0.059 0.017 0.04 0.08 0.20 NA

Table XV presents data showing the relationship between
the number of solutions and the number of threads used. As
we increase the number of threads the number of solutions
decreases. Overall, 8 threads seems to be a sweet spot due
to the size of the associated hyper volume combined with the
reduction in running time. Table XVI reinforces this view in
that the 8 thread solution dominates 52% and 70% of solutions
using 16 and 32 threads, respectively.

V. CONCLUSION

This paper presented a modified version of a DE algorithm
for multi-objective algorithms with application in reinsurance
analytics. Five mutations operators were tested. Results indi-
cated that the best one is called M5, where the first element

of the mutation operator is chosen from the archive. Parallel
speedup experiments were performed on a Xeon based multi-
core machines achieving a speedup of 9.38 using 32 threads.

ACKNOWLEDGMENT

The authors would like to thank NSERC, CNPq and IFMA
for funding this research.

REFERENCES
[1] J. Branke, K. Deb, K. Miettinen, and R. Sowiski, ”Introduction to

Multiobjective Optimization: Interactive and Evolutionary Approaches“,
Lecture Notes in Computer Science (LNCS), vol. 5252, 2008.

[2] O. A. C. Cortes, A. Rau-Chaplin, D. Wilson, I. Cook, and J. Gaiser-
Porter, “Efcient Optimization of Reinsurance Contracts using Discretized
PBIL”, DATA ANALYTICS, Porto-Portugal, 2013, pp. 18–24.

[3] O. A. C. Cortes, A. Rau-Chaplin, D. Wilson, and J. Gaiser-Porter, “On
PBIL, DE and PSO for Optimization ofReinsurance Contracts”, EvoStar,
EvoFin, LNCS, Barcelona, 2014, pp. 227–238.

[4] J. Cai, K. N. Tan, C. Weng, and Y. Zhang, “Optimal reinsurance under
VaR and CTE risk measures”. Insurance: Mathematics and Economics,
43, 2007, pp. 185–196.

[5] R. Storn and K. Price, “Minimizing the real functions of the ICEC96
contest by differential evolution”, Proc. of IEEE International Conference
on Evolutionary Computation, Nagoya, Japan, 1996, pp. 842–844.

[6] M. J. Reddy and D. N. Kumar, “Multiobjective Differential Evolution
with Application to Reservoir System Optimization”, Journal of Com-
puting on Civil Engineering, no. 21, 2007, pp. 136–146.

[7] S. P. Sotiroudis, S. K. Goudos, K. A. Gotsis, K. Siakavara, and J. N.
Sahalos, “Application of a Composite Differential Evolution Algorithm
in Optimal Neural Network Design for Propagation Path-Loss Prediction
in Mobile Communication Systems”, Antennas and Wireless Propagation
Letters, IEEE, vol. 12, 2013, pp. 364–367.

[8] H. Zhou and J. Zhang, “Application of Differential Evolution Opti-
mization Based Gaussian Mixture Models to Speaker Recognition”, The
26th Chinese Control and Decision Conference (2014 CCDC), 2014, pp.
4297–4302.

[9] A. F. Shapiro and R. P. Gorman, “Implementing adaptive nonlinear
models”, Insurance: Mathematics and Economics, vol. 26, Issues 23,
2000, pp. 289–307.

[10] P. Posı́k, W. Huyer, and A. Pál, “A comparison of global search
algorithms for continuous black box optimization”, Evolutionary Com-
putation, vol. 20, 2012, pp. 509–541.

[11] S. Salcedo-Sanz, L. C. Calvo, M. M. C. Bielsa, A. Castañer,
and M. Marmol, “An Analysis of Black-Box Optimization
Problems in Reinsurance: Evolutionary-Based Approache”.
Available at SSRN: http://ssrn.com/abstract=2260320 or
http://dx.doi.org/10.2139/ssrn.2260320, 2013, [Retrieved: May-2015]

[12] O. A. C. Cortes, P. F. do Prado, and A. Rau-Chaplin, “On VEPSO
and VEDE for Solving a Treaty Optimization Problem”, Data Analyt-
ics, IEEE International Conference on System, Man, and Cybernetics,
Sandiego-USA, 2014, pp. 2427–2432.

[13] T. Robič and B. Filipič,“DEMO: Differential Evolution for Multi-
objective Optimization”, 3rd International Conference on Evolutionary
MultiCriterion Optimization, LNCS, 2005, pp. 520-533.

[14] M. Ali, P. Siarry, and M. Pant, “An efficient Differential Evolution based
algorithm for solving multi-objective optimization problems”, European
Journal of Operational Research, Volume 217, Issue 2, 2012, pp. 404–
416.

[15] Deb. K., “Multi-objective Optimization using Evolutionary Algo-
rithms”, John Wiley and Sons LTDA, 2001.

[16] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimiza-
tion”, IEEE Transactions on Evolutionary Computation, vol. 13, no.2,
2009, pp. 398–417.

[17] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Al-
gorithm Based on Decomposition”, IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, 2007, pp.712–731.

[18] E. Alba, “Parallel Evolutionary Algorithms Can Achieve Super-Linear
Performance”, Information Processing Letters, vol. 82, 2002, pp. 7-13.

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

[19] Snow Package, http://cran.r-project.org/web/packages/snow/index.html,
[Retrieved: May-2015]

[20] H. Wang, O. A. C. Cortes, A. Rau-Chaplin, “Dynamic Optimization of
Multi-layered Reinsurance Treaties”, Symposium on Applied Computing,
ACM, Salamanca-Spain, 2015, pp. 125–132.

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

