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Abstract—This paper describes a method to model, discover, 

and visualize communities in social networks. It makes use of a 

novel method based on the “Six Degrees of Kevin Bacon” 

principle: find the shortest path between entities in a social 

graph and then discover communities based on clustering with 

those shortest-path distances. We have applied this idea to find 

Hollywood’s power clusters based on IMDB (Internet Movie 

Database), which links actors to movies. Using this method, we 

found roughly three clusters of Hollywood elite actors, the 

largest of which contained many of Hollywood’s best-known 

actors. For living actors, we found Colin Firth (who played 

Pride and Prejudice’s Mr. Darcy), Javier Bardem (who played 

a psychopathic killer in No Country for Old Men), and Joaquin 

Phoenix (who played Johnny Cash and a Roman Emperor in 

Gladiator) to be some of the most well-connected actors in 

Hollywood. This suggests that analyzing a social network using 

our method can lead to some surprising results. 

Keywords-Social networks; modeling; disovery; visualization; 

clustering; influence analysis; machine learning. 

I.  INTRODUCTION AND MOTIVATION 

What is a social network? Typically, names such as 

Facebook, Twitter, or Google+ spring to mind when one 

thinks of a social network because that is the moniker these 

websites adopt. While these websites are not the only type 

of social networks, they are good examples of networks that 

are “social.”  This is because they comprise: a set of entities 

that participate in the network.  In social networks such as 

Facebook, Twitter, and Google+, the entities are people. In 

general, entities do not have to be people. They also 

comprise a set of relations between the entities. For 

example, in Facebook, the relations are called “friends.” In 

Twitter, they are follower and followee relationships. 

Finally, social networks comprise weights on those 

relations. For example, the higher the weight, the stronger 

the relationship. While most social networks such as 

Facebook, Twitter, and Google+ are all or none weights 

(i.e., you are either a friend or not; either a weight of a 1 or a 

0), other social networks could have the degree of the 

relationship expressed as a weight. This degree might not be 

explicit. For example, how often someone reads the postings 

of someone they follow could be could be used to determine 

the weight. 

Most real-world networks are not random and exhibit 

locality. That is, a randomly constructed network rarely 

looks like a real-world network and the intuition behind 

locality is that the relationships among entities tend to 

cluster somehow. For example, if X knows both Y and Z, 

then Y and Z probably know each other. One reason that Y 

and Z might know each other is that that they both comment 

on X’s postings and hence they eventually discover and 

befriend each other based on those postings. Or, X could 

have introduced Y to Z other either online or in the real-

world, based on X as a mutual friend. 

This paper considers methods by which Y and Z could 

(or should) get to know each other by the modeling, 

discovery, and visualization of local communities that they 

share. More generally, this article touches on social 

influence in the sense of how a community influences the 

individuals in the community. Social influence is an active 

area of research because it aims to understand how 

information, memes, ideas, knowledge, experience, and 

innovation spread in a social network. Thus, analyzing and 

mining social networks can provide insights into how 

people interact and why certain ideas, memes, and opinions 

spread in the network and others do not. Although this paper 

describes a specific clustering method, it is not about 

clustering. That is, many different clustering methods could 

be used and we would expect comparable results. This paper 

is about how shortest path methods can improve upon 

clustering in social networks. 

Discovery of communities can also be viewed as link 

prediction. Clearly, social networks are dynamic and 

constantly evolving and methods that can anticipate future 

links, such as link prediction, are important. As the network 

evolves, two unconnected nodes in the same community 

may eventually form a link between them.  The intuition is 

that if future links can be predicted, the growth of a social 

network can be facilitated. Moreover, the relationships of 

the entities might be more satisfying from discovering other 

like-minded people faster. Thus, link prediction can be used 

to model how a social network evolves over time. 

A. Social Networks are Ubiquitous 

While social networks such as Facebook, Twitter, and 

Google+ capture the mindshare of the term “social 

network,” social networks go beyond mere friend networks. 

In fact, the entities do not even have to be people to be 
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Figure 1. A "Social' Network in Chemistry 

considered a social network. That is, a social network does 

not necessarily have to be in a social context.   For example, 

social networks that are non-social in context include 

electrical power grids, telephone call graphs, the spread of 

computer viruses, the World Wide Web, and co-authorship 

and citation networks of researchers.  In a citation network, 

the entities might represent individuals who have published 

research papers and the relations between the entities might 

be researchers who jointly co-authored one or more papers. 

Weights might include the number of joint publications—

the higher the weight, the more joint publications.  The 

communities one might be able to discover in this network 

might include researchers working in the same area. Other 

such social networks might be possible to construct. For 

example, two Wikipedia editors can be related if they’ve 

edited the same article. Alternatively, the articles themselves 

can be the entities, which are linked if they have been edited 

by the same person.  

More generally, social networks and their characteristics 

can often be generalized to networks found in a diversity of 

fields such as biology, chemistry economics, mathematics, 

and physics.  For example, Figure 1 shows a social network 

in chemistry, where the entities are atoms and the relations 

are bonds. In the figure, (a) shows the caffeine molecule, (b) 

shows the thesal molecule, and (c) shows the Viagra 

molecule. All of these molecules are biologically and 

pharmaceutically important and hence their network 

analysis of activity is important. 

Social networks can also include collaborative filters, 

where recommendations are based on customer preferences. 

Such networks can be viewed from the point of view of the 

customers as entities and the relations expressing customers 

who bought the same products. Such networks can also be 

viewed from the point of view of the products as the entities 

and the relations expressing products that were bought by 

the same customer. 

Determining the entity vs. the relation can get 

complicated. For example, users can place tags on websites 

on social tagging sites, such as deli.cio.us. Users can be 

connected to other users based on tags they place on the 

same website. Alternatively, users can be connected to other 

users based on the type of tags they use. Both of these, can, 

of course, be flipped: websites can be connected based on 

the same users; tags can be connected based on the same 

users or websites. 

Biological networks include epidemiological models, 

cellular and metabolic networks, food webs, and neuronal 

connections. The exchange of email or communication 

messages can also form social networks within corporations, 

newsgroups, chat rooms, friendships, dating sites, and 

corporate control (i.e., who serves on what boards). The 

entities in an email network represent individuals and a 

relation between entities can include an email exchange in 

any direction between two individuals.  A weight might 

mean the number of emails between two individuals in a 

given period. This view distinguishes normal emailers from 

spammers: a normal emailer has higher frequency 

communication with a small set of individuals whereas a 

spammer has low frequency communication with a large set 

of individuals. 

In a telephone network, the nodes might represent the 

phone numbers and relations might include two phones that 

have been connected over some period of time. Weights 

might include the number of calls.  

Thus, many different networks bear similarities in terms 

of how social networks can be explicitly or implicitly 

derived from them: for paper citation networks entities 

might be papers or people and a relation exists if one paper 

cites another or the same paper was co-authored by two 

people. For collaboration networks entities might be people 

and a relation expresses one person working with another. 

For semantic word graphs, such as in a dictionary or a 

thesaurus, entities might be words and a relation exists 

between two words if they are associated with each other. 

For biological networks, entities might be processes and a 

relation exists if two processes are related (e.g., protein or 

drug interactions). For news networks entities might be 

events, people, or words and relations might be causal links 

or people in common. 

Figure 2.  Social Networks as Graphs: Undirected (a), Directed (b), 

and Weighted (c) 
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B. Social Networks as Graphs 

A reasonable way to model a social network is as an 

undirected or directed or undirected graph. In an undirected 

graph, the entities are modeled as nodes and the relations are 

modeled as edges. The weight is represented by a labeled 

edge. Typically, the relations require a directed graph 

because the distinction between a follower and a followee is 

important. That is, if X follows Y then there is a directed 

edge between X and Y, but not necessarily vice versa. 

Informally, one can say that X “points to” Y. Note that this 

relationship could have been modelled the other way, with 

Y pointing to X, but the in-pointers to a node are typically 

more important than the out-pointers. That is, the people 

who follow you are a stronger sign of a relationship than the 

people who you follow because you have control over who 

you follow but not vice versa. For example, one could 

follow Lady Gaga, but that means little to most people. But 

if Lady Gaga follows you, that means a lot. In short, a 

directed graph can capture relationships that are one way, 

but not the other. Social relationships modeled as directed 

graphs are common in the real-world, so common that 

phrases such as “unrequited love” have been invented in 

order to capture them. 

Figure 2 illustrates undirected, directed, and weighted 

graphs. For example, (a) shows an undirected graph. The 

nodes are the dark circles and the undirected edges are the 

lines. Graph (b) illustrates a directed graph. The nodes are 

the same, except the lines are now directed. Graph (c) 

illustrates an undirected weighted graph, where the 

thickness of the edge is proportional to the weight of the 

edge. 

C. Discovering Communities in a Social Network 

Figure 3 shows a social network represented as a graph 

with nodes A, B, C, D, E, F, and G and undirected edges as 

the relations between nodes.  Visually, nodes A, B, and C 

seem more closely related to each other than to the other 

nodes. Similarly, nodes D, E, F, and G seem more closely 

related to each other than to the other nodes. Thus, one way 

in which the nodes can be clustered or groups is in terms of 

distance to each other. More specifically, the act of 

clustering can be viewed as discovering a community in a 

social network. The intuition is that nodes A, B, and C 

might have something in common, at least more in common 

than with nodes D, E, F, and G. In short, one way to 

discover communities is to group by distance in terms of 

relations. An important aspect of a social network is that it 

can be implicit, by virtue of liking the same things, visiting 

the same sites, or having similar attributes. One important 

task is to discover homophily, which can be viewed as 

discovering communities in a social network.  

Another way to discover communities is to form groups 

based on common attributes. For example, Figure 4 shows a 

graph coloring based on interest in music, sports, and 

cooking. In this case, the nodes A, B, C, and D form one 

cluster, nodes C, H, I, and J form another cluster, and nodes 

D, E, F, G form a third cluster. Note that in this case, the 

nodes might have been grouped similarly by their relations 

instead of their attributes. Thus, it might be likely that nodes 

sharing relations are interested in some of the same things 

(i.e., have the same attributes). Otherwise, such nodes would 

have little basis for interacting with each other. 

Although the concerns are different in different fields, 

the idea of community discovery can be treated similarly, as 

described here.  Indeed, one way that complex networks and 

complex systems can be understood is by discovering 

structures in the form of communities in them. Human 

cognition often prevents analyzing the network as a whole; 

finding communities is a way to simplify a network into a 

small set of communities, so that human cognition can then 

take over. In short, this paper recognizes that modeling, 

discovery, and visualization of communities in networks is a 

general methodology applicable to most real-world 

networks. It also recognizes that finding an appropriate 

division of labor between humans and machines is 

important to combine the unique cognitive strengths of 

humans with the tireless computational abilities of 

machines. 

D. Modeling, discovering, and visualizing communities in 

Hollywood actor networks 

We wanted to test our ideas for modeling, discovering, 

and visualizing communities on a large enough data set to 

produce interesting results. For this reason, we choose the 

IMDB (Internet Movie Database) [1], which is publicly 

available. The database contains hundreds of thousands of 

movies, many of which are obscure, and thousands of 

actors, most of whom are obscure bit players.  This database 

can be viewed as a bipartite graph where each node either 

corresponds to an actor or to a movie. In this graph, an edge 

between an actor and a movie means that the actor appeared 

Figure 3. Visual Discovery of Communities by Distance 

Figure 4. Communities Discovered by Common Interests 
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in the movie.  The task is to model this data somehow to 

make it easy to discover and visualize communities. 

E. Organization of the Rest of this Paper 

The rest of this paper is organized as follows. Section II 

describes related work. Section III describes our approach to 

modeling, discovering, and visualizing communities in a 

social network. Section IV summarizes our results. Finally, 

Section V presents our conclusions and several promising 

areas for research. 

 

II. RELATED WORK 

Discovering communities in a social network can be 

viewed as clustering. As such, researchers have used two 

general approaches to clustering: hierarchical or 

agglomerative [2] and divisive [3]. Both approaches require 

a distance metric. When the edges have weights, those 

weights can be used as a distance measure. The difficulty 

arises when the edges are unlabeled, as in most online social 

networks: the “friends” network. It’s possible to use a 

weight of 1 or 0 for a direct edge and a large weight for 

those without a direct “friends” relationship, but these 

measures violate the triangle inequality principle of a 

distance metric, which generally causes anomalies in 

clustering. 

Assuming a suitable distance measure can be found, 

researchers have defined the distance between clusters as 

the minimum distance between two nodes of each cluster. 

Hierarchical clustering first combines two nodes connected 

by an edge. It then chooses at random edges that are not 

between the two nodes in the cluster to combine the clusters 

to which each of the two nodes below. This agglomeration 

continues until an appropriate criterion is met. Divisive 

clustering proceeds in the opposite direction: starting with 

one giant cluster, it successively seeks edges that break the 

cluster into smaller and smaller parts. 

These standard clustering methods have produced 

somewhat unsatisfactory results in social networks. As a 

result, researchers have developed specialized clustering 

methods aimed specifically at finding communities in social 

networks. One method, a divisive one, is based on finding 

an edge that is least likely to be in cluster and then removing 

it. This method uses the Girvan-Newman (GN) algorithm 

[4] to calculate the number of shortest paths running 

between every pair of nodes. An edge with a high GN score 

is a candidate for removal. The GN algorithm essentially 

conducts a breadth-first search of the graph and counts the 

number of times the same edge is encountered for all pairs 

of nodes. 

Thus, by using the GN-based score, this specialized 

clustering method removes edges, which has the effect of 

decomposing the graph into subcomponents. The process 

beings with the initial graph and then each time it removes 

that edge with the highest GN score until the graph is 

decomposed into an appropriate number of connected 

components.  

Another approach uses matrix theory (i.e., spectral 

methods as in [5]) to partition a graph such that the number 

of edges that connect different components is minimized.  

But such “cut-based” methods are unstable because cuts are 

not desirable that break the two components into unequal 

size. 

In general, the approaches to finding communities in 

social networks have been somewhat unsatisfactory, often 

relying on arbitrary distance measures. 

Social network analysis is an active area of research and 

this paper can be considered part of that work. For example, 

a Google search reveals nearly three hundred conferences 

on or related to social network analysis. A recent book [6] 

describes some of the network relational structures 

described here. Moreover, the Web Science conferences 

have been publishing leading work in social network 

analysis since 2009. Related work in these conferences 

includes research on six degrees of separation in social 

networks [7], clustering users on social discussion forums 

based on roles [8], topic-author networks [9], influence 

detection in networks [10], status evaluation [11], four (not 

six) degrees of separation [12], the spread of misinformation 

in a social network [13], and social graph annotation based 

on activities [14]. All of these results are consistent with the 

results presented here. For example, we found, just as in 

[12], that much less than six degrees separate most actors. 

III. OUR APPROACH TO MODELING, 

DISCOVERING, AND VISUALIZI’G COMMUNITIES IN 

SOCIAL NETWORKS 

We began our process with the IMDB [1], which links 

actors to movies. Next, we converted this bipartite graph 

into a social network where actors are the entities and a 

relation between one actor and another means that the two 

actors have appeared in the same movie. 

Even though we built our graph with the entire IMDB, 

we focused on the top 100 actors of all time (based on 

IMDB, 62 of which were all in the same connected 

component, which we focused on for computational 

efficiency and presentation brevity): Jack Nicholson, 

Marlon Brando, Al Pacino, Daniel Day-Lewis, Dustin 

Hoffman, Tom Hanks, Anthony Hopkins, Denzel 

Washington, Spencer Tracy, Laurence Olivier, Jack 

Lemmon, Gene Hackman, Sean Penn, Johnny Depp, Jeff 

Bridges, Gregory Peck, Ben Kingsley, Leonardo DiCaprio, 

Tommy Lee Jones, Alec Guinness, Kevin Spacey, Javier 

Bardem, Humphrey Bogart, Clark Gable, George C. Scott, 

Jason Robards, Peter Finch, Charles Chaplin, James 

Cagney, Burt Lancaster, Cary Grant, Sidney Poitier, Alan 

Arkin, Samuel L. Jackson, Sean Connery, Christopher 

Walken, Heath Ledger, Jamie Foxx, Colin Firth, Joaquin 

Phoenix, Jeremy Irons, George Clooney, Tom Cruise, Matt 

Damon, John Hurt, Brad Pitt, Nicolas Cage, John Travolta, 

Clint Eastwood, Orson Welles, Charlton Heston, Henry 
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Fonda, Ian McKellen, Liam Neeson, Woody Allen, John 

Malkovich, Mickey Rourke, Danny DeVito, Robert 

Mitchum, Buster Keaton, Harvey Keitel, and Martin Sheen.  

We also explored the top 250 and top 1000 actors (as 

ranked by IMDB) and obtained similar results. However, we 

found that the top 100 list adequately captured the core 

ideas well while making the results convenient for 

presentation here.  Another reason we focused on this top 

100 list of well-known actors is that when we ran our 

system on the largest set of actors (i.e., the entire set of 

actors in the IMDB movie database) we found that the 

cluster centers were comprised of these relatively unknown 

actors: Stéphanie Sokolinski, Olivier Rittano, Magid Bouali, 

David Luraschi, Simon Muterthies, David Vincent, 

Stéphanie Blanc, Anne Comte, Juliette Goudot, and Anne 

Nissile. Since no one among our associates could recognize 

even a single actor in these clusters, we felt that the 

interested reader would get a better feel for our system if the 

actors were “well-known” even though the clustering is on 

all the actors in the IMDB movie database. We simply 

ignore the less-known actors even though they are behind 

the scenes in the clustering. Note that the appearance of 

these less-known actors near the cluster centers does not 

mean that our approach does not work. It merely means 

these less-known actors happened to locate near the center 

because they greatly outnumber well-known actors. That is, 

because of their large numbers, a less-known actor is more 

likely to appear near a center than a well-known actor. 

Indeed, watching the credits roll by at the end of any typical 

modern movie confirms that only a few actors in that roll 

are well-known.  

Next, we added an edge between each actor in the same 

movie. For example, Danny DeVito and Jack Nicholson 

were in One Flew Over the Cuckoo’s Nest and hence they 

are connected with a single link. Thus, the initial graph we 

built contains only direct social relationships between 

actors. In our social network the entities are the actors and 

the relations that link them are joint appearance in a movie, 

but we could have just as easily built a social network where 

the entities are the movies and the relations that link them 

are joint appearance of actors in both movies. We choose 

the former because we were more interested in finding out 

the “Hollywood power clusters.” That is, we were interested 

in discovering which well-known actors would turn out to 

be at the center of the largest clusters.  We were also 

interested in finding out which actors were central to 

multiple clusters—which actors act as articulators in 

multiple clusters. Note that this type of analysis is unrelated 

to clustering, but is a post-clustering analysis. 

As a result, we wanted to link all the actors together 

somehow. The problem, as with the distance measures that 

we mentioned, is that actors either have a link (i.e., a weight 

of 1) or they do not (i.e., a weight of 0).  A high weight, as 

assigned in the previously mentioned research, is clearly 

unacceptable because there could just be a few actors 

separating any two actors. For example, the game of “Six 

Degrees of Kevin Bacon,” assumes that any actor can be 

linked through his or her film roles to Kevin Bacon within 

six steps. (Sadly, Kevin Bacon does not make an appearance 

in this paper even though the title mentions his name. This 

is because he is not a member of the Hollywood power 

clusters we found.) 

To combat what we call the “binary problem” of edges 

(i.e., either a 1 or nothing), we ran a shortest-path algorithm 

between all pairs of actors in all connected components, one 

such algorithm per connected component. We then focused 

on the largest connected component, which contained 

roughly 5000 actors.  Here is an example of the edge 

weights between a few selected pairs of actors, emanating 

from Buster Keaton, silent movie star of the 1920’s: 

Humphrey Bogart:1, Daniel Day-Lewis: 2, Matt Damon: 2, 

Javier Bardem: 2, Jamie Foxx: 2, Joaquin Phoenix:2, Henry 

Fonda:2, and Johnny Depp:2. 

This example illustrates Buster Keaton’s connection to 

both modern and old-time movie stars. For example, he’s 

directly connected to Humphrey Bogart (having starred in 

the same film), but is only two connections away from Matt 

Damon. That is, he starred in a film with someone who 

starred in a film with Matt Damon, a modern movie star. We 

were not surprised that the “Six Degrees of Kevin Bacon” 

holds true, but we were surprised at how few steps away an 

actor of the 1920’s was from actors of the new millennium, 

over 80 years later.  Going the other way, from recent actors 

to old-time actors, we see that Jamie Foxx is similarly 

connected to both old and new actors: Humphrey Bogart: 2, 

Daniel Day-Lewis: 2, Matt Damon: 2, Javier Bardem: 1, 

Johnny Depp: 1, and Charles Chaplin: 2. 

We would not have guessed that Jamie Foxx, who 

recently appeared in Tarantino’s Django Unchained, is a 

mere two steps away from Charles Chaplin, silent movie 

star of the 1920’s. Conducting a shortest-path analysis 

reveals such connections between actors. Thus, the 

motivation behind the shortest-path analysis is to compute 

indirect relationships, which we believe are as important as 

direct relationships in clustering and in discovering 

communities.  

Next, we applied a clustering algorithm to find how the 

actors clustered based on these shortest-path distances in the 

largest connected component of actor relations.  We choose 

K-Means clustering as the method to cluster the actors. K-

Means clustering partitions the data points into K clusters 

such that each data point belongs to the cluster with the 

nearest mean [15]. Thus, each cluster’s mean serves as a 

summary of the data points in the cluster.  The resulting 

partition can be viewed as a set of Voronoi cells. We used 

Lloyd’s algorithm to find the K means [16]. This algorithm 

begins with an initial random set of K means. Next, it 

assigns each data point to the nearest mean of the K means. 

It then recalculates the K means for each cluster and repeats 

the assignment. This continues until the assignments no 

longer change. Although there is no guarantee that a 

globally optimum set of assignments can be obtained (i.e., 
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those that minimize the sum of a least squares fit between 

the data points and their closest clusters), multiple random 

restarts can increase the confidence that a globally optimum 

set of assignments can be founds. To start with good initial 

parameters, we used the K means ++ assignment algorithm 

[17], which is an effective way to ensure faster convergence 

by choosing better initial values.  We choose the K-Means 

clustering method both because of its simplicity and because 

of its ability to deal with numerical values through a 

straightforward distance measure, which is consistent with 

the distance measure in our application. 

IV. SUMMARY OF RESULTS 

Using the standard estimate of the mean-squared error 

over all the data points, we obtained the following results 

for K-means clustering: K = 5: 32790, K = 25: 24957, K = 

50: 21781. After K = 50, the train-and-test error rate began 

climb, so we stopped with K=50 and used that as the 

baseline K for all the results described here. 

The largest cluster contained the following actors: Jack 

Nicholson, Marlon Brando, Al Pacino, Daniel Day-Lewis, 

Dustin Hoffman, Tom Hanks, Anthony Hopkins, Denzel 

Washington, Laurence Olivier, Jack Lemmon, Gene 

Hackman, Johnny Depp, Jeff Bridges, Gregory Peck, Ben 

Kingsley, Leonardo DiCaprio, Tommy Lee Jones, Alec 

Guinness, Kevin Spacey, George C. Scott, Jason Robards, 

James Cagney, Burt Lancaster, Cary Grant, Sidney Poitier, 

Samuel L. Jackson, Sean Connery, Christopher Walken, 

Heath Ledger, Colin Firth, Jeremy Irons, Tom Cruise, John 

Hurt, Brad Pitt, Nicolas Cage, John Travolta, Clint 

Eastwood, Orson Welles, Charlton Heston, Henry Fonda, 

Ian McKellen, Liam Neeson, Woody Allen, John 

Malkovich, Mickey Rourke, Danny DeVito, Robert 

Mitchum, Buster Keaton, Harvey Keitel, and Martin Sheen. 

Based on our cluster analysis, this largest cluster can be 

viewed as Hollywood’s true power brokers in terms of their 

connections. In other words, cluster analysis shows this to 

be the true “A-list” of actors. Actors on this list tend to be 

tightly connected to each other.  

The next largest cluster contained Spencer Tracy, 

Humphrey Bogart, Clark Gable, Peter Finch, Charles 

Chaplin, Jamie Foxx, and Joaquin Phoenix. These are also 

well-known power-brokers, but nothing like the first list. 

Finally, the next largest cluster contained the remaining 

actors: Sean Penn, Javier Bardem, Alan Arkin, George 

Clooney, and Matt Damon. The rest of the clusters (i.e., the 

other 47) contain nearly all unknown actors and hence we 

will not discuss them here. This suggests that it is difficult 

to break into the top three Hollywood power clusters. 

Next, we “softened” the notion of cluster membership in 

K-means and found the list of the 10 closest actors to each 

cluster’s center. Membership is “soft” because these actors 

might not necessarily be in the cluster.  Names such as 

Jamie Foxx, Javier Bardem, and Spencer Tracy appear on 

many of clusters. Subsequently, we counted the number of 

times each actor appeared in the top 10 closest actors in 

each cluster and obtained the following results: Peter Finch 

(50), Spencer Tracy (49), Colin Firth (49), Charles Chaplain 

(48), Javier Bardem (48), Heath Ledger (48), and Joaquin 

Phoenix (48).  After a big gap, Matt Damon comes in at 30. 

The rest of the actors do not appear in as many clusters as 

these. Among dead actors, Peter Finch, Spencer Tracy, and 

Heath Ledger would have been the ones to get to know to 

make Hollywood connections. Among living actors, Colin 

Firth, Javier Bardem, and Joaquin Phoenix appear to be the 

go-to guys to make connections.  These actors can be 

viewed as major “articulators” who are well-connected to 

nearly everyone. Intuitively, this means that if you get to 

know these actors they might help you unlock the doors to 

the most power clusters in Hollywood. Colin Firth was a 

surprise to us. But then, upon closer examination, we found 

out that Colin Firth’s films have earned more than $936 

million and that he’s had over 42 movie releases worldwide.  

Based on our analysis, our advice to a young actor interested 

in Hollywood social climbing is to get to know Colin Firth. 

For the largest cluster (the “Jack Nicholson” one), Figure 

5 shows a visualization of the ten closest actors in that 

cluster and their distance apart. We used the NetworkX 

Python facility [18] to produce a planar graph, given the 

inter-node distances. What is interesting about this 

visualization is that James Cagney appears to be the 

prototypical actor in this largest cluster. That is, he is most 

like the average member of this cluster than anyone else. 

For the next largest cluster (the “Spencer Tracy” one), 

Figure 6 shows a visualization of the ten closest actors in 

that cluster and their distance apart. Spencer Tracy sits 

comfortably in the middle of this cluster, even though he 

died over half-century ago. This visualization vividly 

demonstrates the temporal reach of good actors: they can 

die, but they never really leave Hollywood. For the third-

largest cluster, Figure 7 shows that Colin Firth, who we 

have already said is worth getting to know for social 

climbing, is at the center of this web of actors. 

V. CONCLUSIONS AND FUTURE WORK 

Evaluating the quality of these clusters is difficult as 

there is no standard grouping of actors against which we can 

compare our results. It may be possible to borrow evaluation 

ideas from the research focused on “power” users in social 

networks [19], but this work lacks a clustering component. 

Short of such an evaluation, these results can be viewed 

as the discovery of power communities among Hollywood 

actors. We believe that the process of Modeling, Discovery, 

and Visualization of Communities, as we have presented 

it, is a powerful way to analyze social networks. Modeling 

comprises Choosing Entities and Relations  Building a 

Social Graph Based on Relations  Calculating an All-

Pairs Shortest-Path Metric.  Discovery comprises 

Finding the Parameters of a Piece-wise Linear Function 

(i.e., this is what K-Means clustering discovers). 

Visualization comprises Laying out the Nodes and Their 

Relations In the Discovered Communities on a Planar 
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Graph such that the layout preserves the distance metric 

between nodes.  

We believe this process is an appropriate division of 

labor between machines, which are good at mind-numbing 

calculations, and humans, who are good at detecting visual 

patterns. It is difficult to perceive visual patterns in a large 

multi-dimensional space such as that produced after the all-

pairs shortest-path metric is calculated. However, once the 

discovery process is completed and the resulting 

communities are displayed on a planar graph, the human 

visual system, with all its virtues, can take over and unlock 

patterns difficult for machines to see. Without this 

discovery, these patterns are nearly impossible to visually 

unlock. We believe this type of discovery and analysis 

might be important in determining how to spend advertising 

dollars on the Internet: find those nodes that are most 

influential and spend the most money there. The scientific 

contribution of this paper is a way to combine shortest-path 

methods with clustering to yield better results. 

Based on our results, our conclusion is that when it 

comes to well-known actors, there are only three Hollywood 

power clusters, with one cluster dominating the other two in 

terms of size. Some actors are more well-connected than 

others, namely Colin Firth, Javier Bardem, and Joaquin 

Phoenix. 

Could similar results be expected for other types of 

networks? We have applied the same idea to geo-locating 

the world’s routers [20]. This work builds a map of directly 

connected internet routers based on time delays between 

routers (as returned by the trace command), calculates the 

shortest path time-delay between all pairs of routers based 

on this map, and then clusters the results. In this application, 

the time delay is analogous to the degree of separation 

between actors. 

We are currently investigating several promising 

directions for future work including a more sophisticated 

clustering algorithm (e.g., EM), adding attributes for 

additional clustering knowledge (e.g., when and where each 

actor was born and the types of roles for which they are 

known), and applying our idea to predicting the geographic 

location of the world’s routers (the entities) based on the 

round-trip transit time between the routers (the relations). 

Working with large social networks can be 

computationally difficult. We believe our method can be 

extended to networks will millions of nodes by making use 

of frameworks, such as Hadoop and Spark, which we are 

currently investigating. An important advantage of our 

method is that every step in the process we have described 

can easily be parallelized to make it scalable. 
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Figure 5. The Ten Actors Closest to the Center of the Largest Cluster 
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Figure 6.  The Ten Actors Closest to the Center of the Next-Largest Cluster 

Figure 7. The Ten Actors Closest to the Center of the Third-Largest Cluster 
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