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Abstract—Collection of Radio Frequency data can overwhelm
even the largest data storage capacities very quickly due to
high sampling frequencies. There are many sources of possible
error in maintaining an accurate record of the captured signals.
These issues can be solved, in large part, through an automatic
classification of data sets gathered that eliminates the possibility
of human error and assures that the proper type of signals were
captured in a timely fashion. In this paper, we will describe
the process used to produce a classification system. The goal
is to identify and use measures produced from the raw signal
information and/or the spectrograms for input into an algorithm
that produces clusters based on similarity that will classify
the data into subsets with the least amount of computational
complexity. K-means clustering and principal component analysis
are utilized in a two step process to perform the classification of
the data sets. Minimal amounts of measures have been found
to produce satisfactory results in separating the raw signal data
into dissimilar signal types based on a 32768 sample size. This
minimizes computational complexity while still producing output
used in the second stage of the process to classify the data sets.
A method of classification was found that produces minimal false
positive errors while selecting the proper number of clusters
without resorting to more computationally complex methods
thereby decreasing the time spent classifying.

Keywords—Digital Signal Processing; Machine Learning; Ra-
dio Frequency.

I. INTRODUCTION

Collection of Radio Frequency data can overwhelm even
the largest data storage capacities very quickly due to high
sampling frequencies. The sampling frequencies can range up
to two or even five billion samples per second with many
channels collecting the data simultaneously. Data rates can
exceed 200 GB per second[1] and it is prohibitively expensive
to store large samples in real time. Adding to the problem is
the time required to verify the desired signals were recorded
in the data collection and properly annotating the data for
convenient retrieval at subsequent times. Also noteworthy
is the problem created by both expected[2] and unexpected
sources of radio frequency signals that can diminish the value
of the data collected[3]. Human error can also lead to incorrect
annotation of data whose consequences can be difficult to
mitigate. These issues can be solved, in large part, through an
automatic classification of data sets gathered that eliminates
the possibility of human error, assures that the proper type of
signals were captured in a timely fashion and eliminates the
need for storage of uninteresting data sets. A methodology for

signal discovery is proposed in Section II and is compared
with a currently used alternative. Results are presented for
an optimum sample size and input parameters in Section III.
Results of the first clustering process are presented in Section
IV, this process considers each data set independently. The
results of the second clustering process, where data sets are
compared, is discussed in section V. Finally, a conclusion is
presented in Section VI.

II. METHODOLOGY

The radio frequency spectrum ranges from around 3kHz
to 300GHz and is, in part, utilized to carry communication
signals. These communications signals vary widely including
AM radio broadcast signals, television broadcast signals, FM
radio broadcast signals, Cell phone signals, GPS, and wireless
computer networks. All of these signal sources can produce
produce a significant amount of background noise in the RF
spectrum. Typically, the background noise must be considered
when capturing signals in the RF spectrum and the proper
adjustments must be made to ensure they do not interfere with
signals of interest, examples of which are shown in Figure 1
and in Figure 2.

A frequency analysis can be performed on the discrete-time
signal by converting the time-domain sequence to an equivalent
frequency-domain representation. This can be accomplished
with the Fourier Transform of the discrete-time signal. Further
processing can produce a spectrogram which shows the power
level at given frequencies for the timespan in question as shown
in Figure 3. The goal is to use measures/features produced
from the raw signal information and/or the spectrograms
for input into an algorithm that produces clusters based on
similarity that will classify the data into subsets with the least
amount of computational complexity. This would eliminate a
time consuming process that must be undertaken by an expert
in Digital Signal Processing that is prone to error. In order to
discover signals within the data sets, spectrograms[4] would
need to be produced for each segment of data, the known
signals would need to be removed through the application of
digital filters[5] without eliminating any part of the signal we
may be interested in and the images produced would then have
to be examined. Given the large numbers of data segments
to examine and the possibility of a digital filter eliminating
a signal of interest, this method vastly improves throughput
in identifying signals within the data. Several measures were
computed from both the raw signal and the spectrogram to
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Figure 1. This figure shows a time-discrete signal waveform collected on a
regular time interval in the RF spectrum.

Figure 2. This figure shows another example of a time-discrete signal
waveform collected on a regular time interval in the RF spectrum.

be input into the clustering algorithm. Among these features
were:

1) The maximum number of frequencies identified
above a given power threshold at every time pro-
cessed from the spectrogram.

2) The maximum number of continuous frequencies
above a given power threshold at every time pro-
cessed from the spectrogram.

3) The mean power produced over the entire timespan
of each spectrogram.

4) The standard deviation of power produced over the

Figure 3. This figure shows an example spectrogram in the radio frequency
range. The red and yellow lines are background noise caused by

communication signals.

entire timespan of each spectrogram.
5) The minimum power produced at every time pro-

cessed from each spectrogram.
6) The maximum power produced at every time pro-

cessed from each spectrogram.
7) The median power produced over the entire timespan

of each spectrogram.
8) The mode of power produced over the entire timespan

of each spectrogram.
9) The mean value of the covariance of power produced

over the entire timespan of each spectrogram.
10) The mean of the unprocessed signal data of a given

timespan.
11) The standard deviation of the unprocessed signal data

of a given timespan.
12) The minimum of the unprocessed signal data of a

given timespan.
13) The maximum of the unprocessed signal data of a

given timespan.
14) The absolute value of the minimum of the unpro-

cessed signal data of a given timespan.
15) The median value of the unprocesssed signal data of

a given timespan.
16) The mode of the unprocessed signal data of a given

timespan.
17) The absolute value of the mean value of the unpro-

cesed signal data of a given timespan.

The process of identifying the timespan to process the
data with was determined by processing with several different
numbers of sample sizes including 128, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768 and 65536. The sample sizes were
restricted to powers of two due to considerations of applying
a discrete fourier transform to calculate the spectrograms for
each timespan. This is essentially an optimization problem
where the sample size needs to be able to resolve complex sig-
nal information into repeatable patterns while minimizing com-
putational complexity. The k-means clustering algorithm[6]
works by dividing a large sets of points into any number
of ”neighborhoods” requested by the user. In our case, the
points are all the above measurements for computed for every
chosen timespan for a given sample size within a data set. It
is important to note that three separate data set file lengths
were utilized, consequently, the result has to be independent
of the size of the data set processed. Formally, the k-means
algorithm is used to solve the following problem:

Given: a set of observation (x1, x2, .. xn) where each
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observation is a y-dimension vector.
Task: Partition the n observations into k sets (”neighbor-

hoods”) to minimize the within-cluster sum of squares.
The output of the k-means algorithm is an assignment

of each observation into one of the k clusters, the sum of
squares within each cluster, the distance between clusters,
along with other statistical measures. A technique called Prin-
cipal Components Analysis (PCA) is also used to simplify
a complex multivariate data set to expose the underlying
sources of variation in the data. A full description of Principal
Components Analysis is extremely complicated and better
left to more authoritative resources[9]. A challenge with the
k-means algorithm arises from the fact that it can produce
different data clusters in subsequent runs because it may have
found a local minima rather than the global minima. Another
problem with the algorithm is that a user must select the k
(or number of data clusters) prior to starting the algorithm.
There are several options to guard against picking the wrong
value for k including the elbow method[8], using the X-
means algorithm[10], using the Gmeans algorithm[11], and
a proposed manipulation of the k-means output parameters
are also investigated in an attempt to minimize computational
complexity.

It was unknown if the features/measures needed to have
equal or unequal weightings before the methodology was im-
plemented, however, k-means allows for changing the weight-
ings should the need arise. Agglomerative heirarchical clus-
tering methods were eliminated from consideration due to the
added complexity deemed unecessary. There are certainly other
clustering approaches that could also have been considered
such as k-medoids[12] or DBSCAN[13] that are considered
more robust than k-means, however, we have found in ex-
tensive use of k-means that we have never encountered any
instability issues. Therefore, k-means was selected over other
methods for it’s flexibility and simplicity as well as it’s low
computational complexity.

The data was collected in an RF laboratory environment
with a commercial, programmable broadband signal generator.
Repeatability of the experiment is not an issue as the signal
generating codes are archived.

We investigated the output of the k-means/PCA algorithms
after they are applied to each of the 96 sample data sets in
order to classify each of the data sets by the patterns found
within them. This allows for the possibility that a given data
set has more than one type of signal within the data set. It also
means that this is a two stage process whereby the initial k-
means/PCA process serves as input into another k-means/PCA
process to classify each data set from the combinations of
data found by the first process. It should also be noted that
combinations of patterns found in the data set are important
to find thereby rendering the two step process as necessary.

III. RESULTS OPTIMIZING THE SAMPLE SIZE AND INPUT
PARAMETERS

Data was processed from all 96 data sets in sample sizes
of 128, then doubling in size until 65,536 was reached.
This produced 10 different complete sets of data that were
analyzed for suitability. The smaller sample sizes produced
larger amounts of clusters and longer processing times than
the larger sample sizes. The combinations of larger number of

clusters, when combined in the second clustering processes,
would produce a more complex classification set, consequently
the small sample sizes were eliminated from consideration.
The larger sample size of 65,536 was thought to produce
too few samples from the clustering process with smaller
data sets, thereby diminishing the value of the clustering
precision. An optimal sample size of 32,768 was decided upon
as the proper balance between precision, output complexity,
and computational complexity. The input parameters were
compared to determine whether it was necessary to perform
the more computationally complex calculations necessary to
produce spectrograms. The R statistical packages provides
output showing the importance of variables in producing the
principal components analysis, from these results it was clear
that it was not necessary to perform the more computationally
complex work required to produce the spectrograms since
input produced from processing only the raw signal data
could be produced with less work (in less time) without any
significant loss in clustering precision. A subset of the variables
calculated from only the raw signal data were further reduced
due to two factors. The first factor was that in order to produce
a clustering output, all input variables must have a non-zero
variance for all data sets, this eliminated many of the variables
from consideration into the final optimal method. The next
factor that eliminated variables for input into the clustering
was the significance upon the clustering, again as determined
by the principal components analysis. This process left only
the following three variables that need to be calculated on the
raw signal for the clustering process:

1) The mean of the unprocessed signal data of a given
timespan.

2) The standard deviation of the unprocessed signal data
of a given timespan.

3) The absolute value of the mean value of the unpro-
cessed signal data of a given timespan.

IV. RESULTS OF THE FIRST CLUSTERING/PCA PROCESS

The R program that was written to produce the cluster-
ing/pca analysis for the first step in the process also creates
several plots. A small sample of the plots produced are shown
starting with the cluster plot for the first selected data set in
Figure 4. The unique signal that exists in cluster number eight
can be found on the first data line and is shown in Figure 5.
It should be noted that a principal components analysis plot
would look exactly like the cluster plot without the ovals and
with the green numbers shown as symbols or labels indicating
the data set identifiers.

Another set of plots for a selected data set is shown in
Figure 6 and in Figure 7. This time there are two signals that
are separated from all other data points in the file, the line
shows that there are two members in cluster number 12. The
third set of plots for yet another selected data set is shown
in Figure 8 and in Figure 9. This time there are three signals
that are separated from all other data points in the file, the
ellipse shows that there are three members in cluster number
12. More sets of plots can be shown that show similar patterns
with most of the identified clusters being very near each other
on the plot and a few small clusters very isolated from the rest.
However, there is another pattern shown in some plots where
there are no clear outliers amongst the clusters, this occurs
when no signal has been found in the data set (and when only
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Figure 4. This figure shows a cluster plot shown with the axes being the first
two principal component axes. The data point lines are the thinner font dark

green labels and the clusters are identified with the thicker font.

Figure 5. This figure shows the unique signal identified in the cluster plot in
Figure 4.

one type of signal occurs in the data set) and the differences
in the data are small througout the data set.

An additional comment should be made here noting that
with very large data sets, larger than approximately 32GB, it
may be better to switch to the k-medoids algorithm instead
of the k-means algorithm since it is more robust to noise
and outliers. This is because k-medoids minimizes a sum
of pairwise dissimilarities rather than the k-means algorithm
which minimizes a square of Euclidean distances[12].

Figure 6. This figure shows a cluster plot shown with the axes being the first
two principal component axes.

Figure 7. This figure shows the unique signal identified in the cluster plot in
Figure 6.

V. RESULTS OF THE SECOND CLUSTERING/PCA
PROCESS

With promising results found from similarities of the
principal component plots, we hypothesize that information
contained in the clustering/PCA analysis might be enough to
classify all the data sets into subsets. Data for each clustering
of all 96 data sets were gathered to provide as much statistical
data as possible. This was done in two differing techniques,
the first was an attempt to characterize the data set by cluster
size alone and yielded 22 columns of data for each of the data
sets. The hypothesis here is that the distribution of cluster sizes
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Figure 8. This figure shows a cluster plot shown with the axes being the first
two principal component axes.

Figure 9. This figure shows the unique signal identified in the cluster plot in
Figure 8.

might prove to be enough to classify the data sets. The second
technique attempts to capture information from the clustering
analysis about the geometry of the clusters by separating
them into three parts, the cluster with the smallest number
of members, the cluster with the next smallest number of
members and by all the number remaining clusters combined.
Centers of mass for all three input factors were then calculated
for all three inputs and distances were calculated between
them. The sizes of the members were normalized and added
to this data producing 24 columns of data. The data was
processed by cluster size alone to determine the total within
sum of squares metric, also known as distortion, this yielded

Figure 10. This figure shows a plot of the minimum value of distortion
derived from any choice of starting points of the clustering.

the plot in Figure 10. This plot also includes the first and
second derivatives to clarify how the distortion curve moves
with increasing numbers of clusters. This shows that there is
no clear choice that stems from minimizing distortion. The
value of distortion continues to decline as more clusters are
added and it is clear that the limit will be reached when there
are 96 clusters (the same number as the data points). This
is due to the fact that there is no penalty for creating new
clusters. A penalty for creating new clusters was added to
the calculation by dividing the distortion value by the median
number of members in the clusters, this is shown in Figure 14.
This works well for geometrically processed data sets (but not
for the cluster size processed data sets) and shows a clear
minimum of seven as a choice for k.

The geometrical processing of the data sets produced
better results that were better defined as evidenced by lesser
distortion numbers output from the clustering. The x-means
algorithm chose a value for k of 14 clusters whereas, the
G-means algorithm chose a value for k of only 7 clusters.
Verification of the clusters was done by noting if the data
set had signals, what kind, and if there were high degrees of
background noise in the data sets. A cluster plot shown in
Figure 12 shows clusters 4 and 6 isolated on the left hand
side, these clusters have no signals present in any of the
data sets enclosed in these clusters. Cluster 1 has the most
background noise of the clusters that have signals in them.
This cluster also had three data sets in which we haven’t found
any signals, consequently they are thought to be misclassified
by this method. All three of these data sets labeled 22-2, 23-2
and 24-2 in Figure 13 are shown as the points furthest from the
center of cluster 1 and closest to cluster 4 by the cluster map
plot in Figure 14. This result shows that the 3 misclassified data
sets are closest to the boundary of the the data sets that have no
signals in them raising the possibility of further improvement
by adding another measure to the clustering to eliminate this
error. However, due to the assymetric cost of missing a signal
of interest over including false positives, we are confident that
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Figure 11. This figure shows a plot of the minimum value of distortion
derived from any choice of starting points of the clustering, this time the

distortion value is divided by the median number of members in each cluster.

Figure 12. This figure shows a cluster plot of the the lowest distortion plot
derived for seven clusters with geometrical processing of the data sets.

method is exceptionally suited to our needs.

VI. CONCLUSION

A process has been described here that uses Machine
Learning algorithms to classify data sets composed of RF sig-
nals. Only three measures/features have been found to produce
satisfactory results in separating the raw signal data samples
into classifications based on a sample size of 32,768 and the
necessity of producing spectrograms was eliminated. This min-
imizes computational complexity while still producing output
used in the second stage of the process to classify the data

Figure 13. This figure shows a principal components analysis plot with the
labels showing the data set identifiers.

Figure 14. This figure shows a principal components analysis plot with the
labels showing the data set identifiers.

sets. A fast method of classification was found that produces
minimal false positive errors while selecting the proper number
of clusters without resorting to more computationally complex
methods, thereby, decreasing the time spent classifying.
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