
Towards a Scalable Data-Intensive Text Processing Architecture

with Python and Cassandra

Gregor-Patrick Heine
and Thomas Woltron

University of Applied Sciences Wiener Neustadt
Institute of Information Technology

Wiener Neustadt, Austria
Email: heine.gregor@gmail.com

Email: thomas.woltron@fhwn.ac.at

Alexander Wöhrer

University of Vienna
Faculty of Computer Science

Vienna, Austria
Email: alexander.woehrer@univie.ac.at

Abstract—Canonical sentiment analysis implementations hinge
on synchronous Hyper Text Transfer Protocol (HTTP) calls.
This paper introduces an asynchronous streaming approach. A
method for public opinion surveillance is proposed via stream
subscriptions. A prototype combining Twitter streams, Python
text processing and Cassandra storage methods is introduced
elaborating on three major points: 1) Comparison of perfor-
mance regarding writing methods. 2) Multiprocessing procedures
employing data parallelization and asynchronous concurrent
database writes. 3) Public opinion surveillance via noun-phrase
extraction.

Keywords–Cassandra; Streaming; Python; Multiprocessing;
Twitter; Sentiment Analysis

I. INTRODUCTION

Volume, Velocity and Variety, also known as the 3V, gener-
alize big data problems [1]. A fourth (fifth or sixth) V could be
added referring to Value, Variability or Virtual [2]. Sticking to
the more prominent 3V, volume naturally stands for a humon-
gous amount of data. Velocity refers to the ingress, egress and
process speeds. Variety is representative of heterogeneous data
sets, which may be structured, semi-structured or unstructured.
Essentially, the 3V break traditional data processing systems
as they fail to scale to at least one of these attributes [3].

Big data has already found its place in business, society
administration and scientific research. It is also believed to help
enterprises improve their competitive advantage. Managers
believe it to be a panacea and take a one-size fits all approach.
It is also held in high regard with reference to aiding decision
making processes [4].

From a high-level viewpoint, there are seven big data prin-
ciples [4]: good architecture; variety regarding analytics; many
sizes for many needs; perform analyses locally; distributed
in memory computations; distributed in memory storage and
process data set coordination.

However, without deeper understanding and practical
knowledge they remain abstract buzzwords. Putting this into
perspective by using an analogy of combustion engines, it
becomes clear that it is impossible to repair, let alone build, a
V8 (pun intended) by merely knowing the concept of thermo-
dynamics. This paper outlines a practical big data streaming
implementation in alignment with the seven principles.

Research Objective: The goal is to develop a scalable
data-intensive application for text mining. Theory regarding
sentiment analysis and opinion extraction are given in the
working hypothesis. A naive architecture is depicted in Figure
1. In order to be able to monitor opinions, the following
challenges must be tackled: high frequency real-time HTTP
data-streaming; in-memory text mining and persisting results
efficiently in a fault tolerant way.

Hypothesis: When following a publisher (or broadcaster)
like ’The Hill’ it is a matter of time until related public
discussions start. The initial post is referred to as headline,
which introduces the topic. All consecutive replies are regarded
as the discussion’s body.

Since topics are defined by nouns, their corresponding
noun-phrases can be be listed. It can be argued that noun-
frequencies represent a public consensus on what is deemed
important in a topic related discussion. Hence a testable
hypothesis can be formulated as such:

The more replies a headline receives the higher the number
of noun-frequencies. The higher noun-frequencies the more
descriptive are associated noun-phrases. When there are highly
frequent noun-phrases, a clear public consensus regarding a
topic specific headline exists.

We take a novel approach regarding social media sentiment
analyses via streaming live data. Canonical approaches hinge
on hashtag searches via the Representational State Transfer
Application Programming Interface (REST API). Our ap-
proach has both, higher data recency and a clearer topic related
natural language structure by design.

The rest of the paper is organized as follows. Section II
aims at demonstrating how high volumes of data, more specif-

Start

Tweepy Listener

NLTK Text Processing

Insert Cassandra

Stop

Figure 1. Sequential Python architecture under the Global Interpreter Lock

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-681-1

DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics

ically text, can flexibly and efficiently be processed in (near)
real-time. Methods for text stream analyses and storage are
also illuminated. Our main contribution is described in Section
III where we proposes a scalable application architecture and
provide a proof of concept implementation and evaluation.
We close with our conclusions and future work suggestions
in Section IV.

II. METHODS & RELATED WORK

Natural Language Processing (NLP): Text mining con-
sists of “a vast field of theoretical approaches and methods
with one thing in common: text as input information” [5, p. 1].
An introduction to the traditional field of NLP is quoted to
be the “process of language analysis [that is] decomposable
into a number of stages, mirroring the theoretical linguistic
distinctions drawn between syntax, semantics and pragmat-
ics” [6, p. 4]. Twitter, with its 140- to 280-character long
tweets (or posts) promises to be a rich medium for scientific
analysis [7]. Overall, Twitter can be regarded as a platform for
political debate [8] and enables measuring the public opinion
with regards to politics [9].

Nouns and noun-phrases are likely to converge towards
a dominant thesaurus. Hinging on frequent nouns and noun-
phrases it can be concluded that they are extracted from text.
Hence, they are countable and highly frequent noun-phrases
can be deemed important. This approach is utilized in the
context of online product reviews and is argued to be domain
dependent. Essential to this approach is Part-of-Speech (POS)
tagging [7].

Mining Tweets: Noun-phrases are indicative of opinions
as they use adjectives and adverbs together with nouns. When
live-streaming tweets there is no a priori means for clustering
them. A topic’s context is created retrospectively when reading
records from a data store.

News agencies concerned with United States politics are
likely to evoke binary reactions. Opinion holders are either
in favor or against Democrats or Republicans. Following that
train of thought, it can be assumed that neutral political head-
lines need to be immediately digested and either be supported
or opposed.

When tweets are received they cannot be put into context
right away. They have to be persisted for later retrieval.
While streaming, it is advisable to process text immediately,
since it is already held in memory. This allows in memory
pointer manipulation, regarding tokenization, Part-of-Speech
tagging, chunking and parse-tree creation. All of which are
needed for later analysis. When reading from the database, a
post’s meaning arises through its sequential context. Reading
preprocessed noun-lists and iterating them in order to create
word frequencies is faster than processing text in bulk after
reading.

Parallelization: It appears that computer science has ex-
hausted Moore’s law as integrated circuits only seem to double
every three years. Today, the real performance boost comes
from running multiple threads simultaneously. This is also
referred to as Thread-Level Parallelism (TLP) [10]. Amdahl’s
law [11] has become more prominent in recent years, it states
that program execution time can be improved through running
code in parallel [12]. It needs to be noted that this law
cannot be exploited ad infinitum as it approaches a point of
diminishing returns.

Parallelization is a powerful means of increasing processing
speed. It needs to be noted that writing parallel code is
much harder than writing serial code. However, generally
speaking, programmers face a choice between two paral-
lelization paradigms: data parallelization has multiple threads
performing the same operation on separate items of data while
task parallelization has separate threads performing different
operations on different items of data [13].

Multiple Threads & Processes: When applying data par-
allelization it is possible to split data sets symmetrically (or
equally) amongst allocated processes a priori. When employing
task parallelization, on the other hand, asymmetrical data sets
can be atomized and put into a queue for dynamic process
retrieval. Since we worked with symmetrical data sets, we
were able to omit atomization. In our approach, the size of
the total data set cannot exceed the size of memory. We split
the data set across processor cores of a single machine. Within
a distributed computing network (or big data architecture) data
records should be split amongst available worker nodes [14].
There is a key difference between multiple threads and multiple
processes: Processes do not share memory while threads share
both state and memory. When performing multithreading, code
segments are scheduled by the Operating System (OS). In the
presence of only one core (or process) the OS creates the
illusion of running multiple threads in parallel when in fact, it
switches between the threads quickly, which is referred to as
time division multiplexing [10].

Global Interpreter Lock (GIL): Multithreading in Python is
managed by the host operating system and uses a mechanism
called the Global Interpreter Lock (GIL), which limits the
number of running threads to exactly one at a time. The
GIL implicitly guards data structures from concurrent and
possibly conflicting (write) access to avoid race conditions.
Python prefers a serial development approach and takes a
trade-off between easy scripting and code performance. It
needs to be noted that the GIL, depending on the Python
implementation, is temporarily released for Input Output (I/O)
operations or every 100 bytecode instructions. This is the case
of CPython implementations, which is the default on most
systems. IronPython, PyPy and Jython “do not prevent running
multiple threads simultaneous on multiple processor cores”[10,
p. 4]. In order to get around CPython’s GIL it is necessary
to spawn new processes. Hardware specifically speaking, two
different multiprocessor architectures exist [15]: 1) Symmetric
(equally strong) multi-core chips; 2) Asymmetric multi-core
chips with varying processing power.

Python offers a number of packages for spawn-
ing processes. However, a particularly useful one is
multiprocessing. Bundled with it come queues. Only
through such package implementations [16] is it possible to
take advantage of today’s multi-core chip architectures with
Python.

III. IMPLEMENTATION & RESULTS
Figure 2 summarizes writing speed results. It becomes clear

that a scalable application needs multiprocessing capabilities.
It would be best for concurrent insert processes to dispatch
dynamically in high load scenarios. High frequency input
should be queued, distributed and written as batch operations
within intervals.

Single Thread Synchronous Inserts: Inserts into Cassandra
take about 1.6 ms on average. In order to compare execution

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-681-1

DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics

speeds 1,000 and 100,000 records are inserted. Insert opera-
tions are executed four times and a simple arithmetic mean of
the resulting run times is calculated. In other words, the mean
runtime of 1,000 and 100,000 sequential synchronous inserts
is 0.9 seconds and 80 seconds, respectively.

Single Thread Concurrent Inserts: Insert speed of large
datasets can further be improved via concurrent writes through
the Python Cassandra driver. This package exploits Cassandra’s
Staged Event-Driven Architecture (SEDA) [17]. We went with
the recommended setting of core connections multiplied by one
hundred concurrency = 100 [18]. The Cassandra driver
invokes a multiprocess instance for concurrently writing while
the main program is still under the GIL. Following the same
measurements approach, the arithmetic mean of run times
equals 0.27 seconds and 29.5 seconds respectively. In essence,
this result trisects the synchronous single thread performance.

Multiprocess Concurrent Inserts: Through leveraging
Python’s multiprocessing module with the Cassandra driver
and its SEDA abilities, as introduced in Section II, writing
speed can further be accelerated. Following the idea of data
parallelization introduced in Section II the workload is dis-
tributed onto a number of separate processes as depicted in
Figure 3. While all processes run simultaneously, each process
is executed on a separate core, the dataset is split equally and
distributed accordingly. Execution of 1,000 inserts in parallel
yields a meager 0.03 seconds improvement, while 100,000
inserts distributed amongst four processes take 11.2 seconds
in total. Each trial’s total execution time was determined by
the slowest process’ runtime.

Cassandra Query Language (CQL): When testing the
hypothesis from Section II regarding topic related word con-
vergence tweets need to be retrieved from the database.
Cassandra does not support the Structured Query Language
(SQL) standard with respect to GROUP BY, ORDER BY
clauses. Cassandra uses ORDER BY implicitly through ta-
ble declaration via WITH CLUSTERING on primary key
columns [19]. The order of the composite primary key dec-
laration matters. The partition key decides on which physical
node data are eventually stored by mapping rows. The cluster
key decides the order of given rows [20]. When dealing
with time series data it is advisable to create sectional time
intervals. When attempting to retrieve most recent values
the clause WITH CLUSTERING ORDER BY (timestamp
DESCENDING) is needed for table declaration. This overrides
the default ascending order [20]. Cassandra does not allow
JOIN operations. Filtering is supported but may cause mal-
functions due to the nature of Sorted String Tables (SSTables)
and Log-Structured Merge-Trees (LSM-Trees) [21], [22]. We
query for relevant values, allow filtering and iterate returned
values via Python lists. The following constitutes a valid

1K 0.23s

100K 11.2s

1K 0.27s

100K 29.1s

1K 0.90s

100K 80.2s

Multiprocess

Concurrent

Synchronous

Figure 2. Comparing elapsed seconds inserting records into Cassandra

example: SELECT column_a FROM keyspace.table
WHERE column_b > 0 ALLOW FILTERING; [19].

Tombstones are deletion markers [17]. It needs to be
pointed out that they also occur when inserting null val-
ues or collections. Time To Live (TTL) data expiration
may be an additional cause for Tombstone creations [23].
If a query exceeds the default value of 1,000 tombstones
with respect to the tombstone_warn_threshold Cas-
sandra issues and logs a warning. When, however, the
tombstone_failure_threshold exceeds 10,000 tomb-
stones Cassandra aborts the query.

When attempting to isolate tombstone issues it may be
worth executing sstabledump in the Bourne Again Shell
(BASH). This produces a JavaScript Object Notation (JSON)
file of Cassandra’s SSTable, which shows deletion markers
as "d" next to data entries [23]. However, with Cassandra
active, it is recommended to run flush first. This flushes all
in memory data structures (MemTables) of associated tables
to disk.

Public Debate Example: An exemplary headline by
The Hill with status_id = 974246607607779328
recorded 656 replies. This amount of replies is deemed suffi-
ciently large for demonstrative purposes regarding topic related
word convergence. “Senate [Grand Old Party (or Republican
Party)] GOP: We will grow our majority in midterms” [24] is
the headline of the chosen debate. Preliminary results indicate
“that the general opinion, regarding the given headline, appears
to be ridicule. Overall, little credence is given [... to] the Trump
administration [25]”.

Once noun-phrases and their respective user’s follower
counts have been retrieved from Cassandra and appended to a
Python list they need to be traversed. The goal of this operation
is to convert the list into a more tractable data structure.
Dictionaries, which hold key value pairs, are great for this
purpose, as the number of followers can be preserved, which
allows more versatile analyses.

In order to get an overview of the public opinion related to
the headline, it is recommended to print the six highest ranking

Start

Tweepy Listener

Input Queue

NLTKNLTK NLTK

TextP
rocessing

Output Queue

Data Batch

InsertInsert Insert

C
assandra

Stop

Figure 3. Concurrent Python multithread architecture to bypass GIL

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-681-1

DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics

dictionary entries to the Python console. Naturally, the number
of followers indicates the influential weight of a post whereas
overall noun frequencies yield the public consensus. Lower
case converted stemmed word frequencies best illustrate topic
related word convergence. This is due to the fact that the effects
of word differences, capitalization, misspellings and affixes are
effectively minimized.

IV. CONCLUSION & DISCUSSION
Elaborating and realizing a scalable data-intensive text pro-

cessing application relies on several components: 1) suitable
data sources, 2) associated use cases, 3) processing power and
memory size, 4) data persisting methods. Twitter is one of the
biggest social platforms and provides a myriad of data sets.
The choice of Cassandra as a highly available database is advo-
cated and its inner workings are illuminated. Overall, a scalable
text processing application is developed. The development of
a big data application is taken on holistically and finds both
innovative and uncommon solutions. Streaming Twitter data in
the context of text mining and persisting it with Cassandra has
not been discussed as such in literature. Twitter’s discussion
related topics, noun-phrases and word frequency convergences
are both reviewed and analyzed in a novel way. This paper
specifically contributes to a means of analyzing public debates
(or discussions) in (near) real-time. Simultaneously, data is
persisted without superimposing topic restrictions via search
terms. Introduced methods could also be employed for public
surveillance.

The introduced Python prototype still needs better func-
tional multiprocessing package integration. Overall,
three independent process groups should run concurrently and
use queues to communicate as depicted in Figure 3. Our results
indicate that inserts into Cassandra can be greatly improved
through data parallelization. Future research should focus on
accruing records in memory before batch insertion.

Conclusively, it is recommended to keep the real-time
streaming focus a priority. Cassandra proves to be an exquisite
choice for both data persistance and retrieval. Last but not least,
while this paper focused rather on the processing and storage
performance of our architecture, further optimization towards
an adequate retrieval and re-analysis approach seem promising
by combining Cassandra with Apache Hadoop Distributed File
System (HDFS) [26] and exploiting Apache Spark [27] on top
of an HDFS-based data lake.

ACKNOWLEDGMENT
This work is based on the thesis of G-P. Heine named

’Developing a Scalable Data-Intensive Text Processing Ap-
plication with Python and Cassandra’, University of Applied
Sciences Wiener Neustadt, April 2018.

REFERENCES
[1] D. Laney, “3d data management: Controlling data volume, velocity and

variety,” META Group Research Note, vol. 6, no. 70, 2001.
[2] P. Zikopoulos, C. Eaton, and IBM, Understanding big data: Analytics

for enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[3] D. e. a. Jiang, “epic: an extensible and scalable system for processing
big data,” The VLDB Journal, vol. 25, no. 1, 2016, pp. 3–26.

[4] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sci-
ences, vol. 275, 2014, pp. 314–347.

[5] I. Feinerer, D. Meyer, and K. Hornik, “Text mining infrastructure in r,”
Journal of Statistical Software, vol. 25, no. 5, 2008, pp. 1–54.

[6] R. Dale, “Classical approaches to natural language processing,” in
Handbook of Natural Language Processing, Second Edition, N. In-
durkhya and F. J. Damerau, Eds. Chapman and Hall/CRC, 2010,
vol. 2, ch. 1, pp. 3–7.

[7] B. Liu, Sentiment Analysis. Cambridge: Cam-
bridge University Press, 2015. [Online]. Available:
ebooks.cambridge.org/ref/id/CBO9781139084789

[8] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, “Predict-
ing elections with twitter: What 140 characters reveal about political
sentiment.” vol. 10, no. 1, 2010, pp. 178–185.

[9] B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith,
“From tweets to polls: Linking text sentiment to public opinion time
series.” vol. 11, no. 122-129, 2010, pp. 1–2.

[10] N. Singh, L.-M. Browne, and R. Butler, “Parallel astronomical data
processing with python: Recipes for multicore machines,” Astronomy
and Computing, vol. 2, 2013, pp. 1–15.

[11] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[12] S. Binet, P. Calafiura, S. Snyder, W. Wiedenmann, and F. Winklmeier,
“Harnessing multicores: Strategies and implementations in atlas,” in
Journal of Physics: Conference Series, vol. 219, no. 4. IOP Publishing,
2010, pp. 1–7.

[13] D. Gove, Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[14] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. ”O’Reilly Media, Inc”, 2015.

[15] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, 2008, pp. 33–38.

[16] Python Software Foundation, “Python/c api reference manual,”
https://docs.python.org/2/c-api/, 2018, retrieved: 09, 2018.

[17] H. Eben, Cassandra: The definitive Guide. O’Reilly Media, Inc., 2010.
[18] DataStax, “Python cassandra driver,” datastax.github.io/python-

driver/index.html, 2017, retrieved: 02, 2018.
[19] Apache Software Foundation, “Cassandra query language (cql) v3.3.1,”

cassandra.apache.org/doc/old/CQL-2.2.html, 2017, retrieved: 03, 2018.
[20] P. McFadin, “Getting started with cassandra time series data mod-

eling,” patrickmcfadin.com/2014/02/05/getting-started-with-time-series-
data-modeling/, 2014, retrieved: 03, 2018.

[21] G. Graefe, “Modern b-tree techniques,” Foundations and Trends in
Databases, vol. 3, no. 4, 2011, pp. 203–402.

[22] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media,
Inc., 2017.

[23] A. Babkina, “Common problems with cassandra tombstones,”
opencredo.com/cassandra-tombstones-common-issues/, 2016, retrieved:
04, 2018.

[24] A. Bolton, “Senate gop: We will grow our majority in midterms,”
thehill.com/homenews/senate/378517-senate-gop-we-will-grow-our-
majority-in-midterms, 2018, retrieved: 03, 2018.

[25] G.-P. Heine, “Developing a scalable data-intensive text processing
application with python and cassandra,” Master’s thesis, University of
Applied Sciences Wiener Neustadt, 2018.

[26] Apache Software Foundation, “Welcome to Apache Hadoop!”
http://hadoop.apache.org/, 2014, retrieved: 09, 2018.

[27] Apache Software foundation, “Apache spark unified analytics engine
for big data,” http://spark.apache.org/, 2018, retrieved: 09, 2018.

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-681-1

DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics

