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Abstract—In their landmark paper ”Where the Really Hard
Problems Are”, Cheeseman et al. describe the relative instance
hardness, measured in computation time, of three decision prob-
lems (Hamiltonian Cycle, Vertex Coloring, K-satisfiability) and
one optimization problem (Traveling Salesman). For these four
problems, they identify a single property, an ”order parameter”
related to specific instance characteristics, for predicting com-
putational hardness. One such characteristic is the probability
of a random graph being Hamiltonian (having a Hamiltonian
Cycle): it depends on its average vertex degree, which is its order
parameter. This Hamiltonian probability goes through a sudden
phase transition as the order parameter increases and the hardest
problem instances, algorithmically speaking, are found close to
this phase transition. As such, the order parameter can be seen
as an analytic on instance data useful for predicting runtimes
on (exponential time) algorithms. In this study, we replicate the
original experiment and extend it with two more algorithms. Our
countribution is as follows: first, we confirm their original results.
Second, we show that an inversion of their heuristic significantly
improves algorithmic performance on the same graphs, at zero
extra cost. Third, we show that an advanced pruning algorithm
by Vandegriend and Culberson further improves runtimes when
run on the same graphs. We conclude that the order parameter
based on problem instance data analytics is useful across different
algorithms. Fourth, we produce high-resolution online interactive
diagrams, which we make available for further research along
with all the source code and input data.

Keywords—Hamiltonian Cycle; exact algorithm; exhaustive al-
gorithm; heuristic; phase transition; order parameter; data analyt-
ics; instance hardness; replication.

I. INTRODUCTION

The ”Great Divide” between P and NP has haunted com-
puter science and related disciplines for over half a century.
Problems in P are problems for which the runtime of the
best known algorithm increases polynomially with the problem
size, like calculating the average of an array of numbers.
If the array doubles in size, so does the runtime of the
best known algorithm - a polynomial increase. A problem
in NP however, has no such algorithm and it is an open
question whether it will ever be found. An example hereof is
”satisfiability” (sometimes abbreviated to SAT), a problem in
which an algorithm assigns values ’true’ or ’false’ to variables
in Boolean formulas like (a∨¬b∨ d)∧ (b∨ c∨¬d) such that

the formula as a whole is satisfied (becomes ’true’), or making
sure that no such assignment exists. Algorithms that do this,
and are guaranteed to give a solution whenever it exists and
return no otherwise, are called complete algorithms.

Being complete is a great virtue for an algorithm, but it
comes at a hefty price. Often, these algorithms operate by
brute-force: simply trying all combinations for all variables
until a solution is found, which usually takes vast amounts of
time. Smarter algorithms exist too; clever pruning can speed
things up by excluding large sections of state-space, at the
cost of some extra computational instructions, an investment
that usually pays off. Heuristic algorithms are also fast but
not necessarily complete - so it is not guaranteed a solution
is found if one exists. After decades of research, runtimes
of even the most efficient complete SAT-algorithm known
today still increases exponentially with the number of variables
– much worse than polynomial, even for low exponents.
Therefore, SAT is in NP, a class of ”Notorious Problems” that
rapidly become unsolvable as their size increases. In practice,
this means that satisfiability problems (and other problems
in NP) with only a few hundred variables are practically
unsolvable, whereas industries such as chip manufacture or
program verification in software engineering could typically
employ millions [1] [2].

So, the problem class NP might be considered ”the class
of dashed hopes and idle dreams”, but nonetheless scientists
managed to pry loose a few bricks in the great wall that
separates P from NP. Most notably, the seminal work ”Where
the Really Hard Problems Are” by Cheeseman, Kanefsky and
Taylor (henceforth abbreviated to ’Cetal’), showed that al-
though runtime increases non-polynomially for NP-problems,
some instances of these hard problems might actually be easy
to solve [3]. Not every formula in SAT is hard – easily
satisfiable formulas exist too, even with many variables, but
the hard ones keep the problem as a whole in NP. But Cetal’s
great contribution was not only to expose the huge differences
in instances hardness within a single NP-problem, they also
showed where those really hard instances are – and how to get
there. Their findings were followed up numerous times and
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truly exposed some of the intricate inner anatomy of instance
hardness, and problem class hardness as a whole.

So, where are these notorious hard problem instances then?
According to Cetal, they are hiding in the phase transition.
As their constrainedness increases, the problem instances sud-
denly jump from having many solutions to having no solutions.
For an example in satisfiability, most randomly generated SAT-
formulas of two clauses and four variables such as our formula
(a ∨ ¬b ∨ d) ∧ (b ∨ c ∨ ¬d) are easily satisfiable; they have
many assignments that make them true. But as soon as the
order parameter, the ratio of clauses versus variables α, passes
4.26, (almost) no satisfiable formulas exist [4] [5]. So, if
we randomly generate a formula with 20 or more clauses on
these same four variables, it is almost certainly unsatisfiable
and those rare formulas that are satisfiable beyond the phase
transition have very few solutions – which counterintuitively
enough makes them easy again. So, for most complete al-
gorithms, both extremes are quickly decided: for the highly
satisfiable formulas in α << 4.26, a solution is quickly
found, and unsatisfiable formulas in α >> 4.26 are quickly
proven as such. But in between, just around α = 4.26, where
the transition from satisfiable to unsatisfiable takes place, are
formulas that take the longest to decide upon. This is where
the really hard problem instances are: hiding in the phase
transition. But Cetal identify this order parameter not only
for SAT; the Hamiltonian cycle problem (explained in detial
in Section II) has one too, and so does Vertex Coloring. Again,
the phase transition is where the really hard problem instances
are and although their rather coarse seminal results on these
problems have been followed up in more detail, they are solid
[5]–[8]. Or to put it in a later quote by Ian Gent and Toby
Walsh: ”[Indeed, we have yet to find an NP-complete problem
that lacks a phase transition]” [9].

In hindsight, but only in hindsight, the ubiquity of phase
transitions throughout the class is not a complete surprise. Sat-
isfiability, Vertex Coloring and the Hamiltonian cycle problem
are NP-complete problems; a subset of problems in NP that
with more or less effort can be transformed into each other
[10]. This means a lot. This means that if someone finds a
polynomial complete algorithm for just one of these prob-
lems, all of them become easy and the whole hardness class
will simply evaporate. That person would also be an instant
millionaire thanks to the Clay Mathematics Institute that listed
the P ?

=NP-question as one of their Millenium Problems [11].
But the intricate relations inside NP-completeness might also
stretch into the properties of phase transitions and instance
hardness. Or, to pour it into another fluid expression by Ian
Gent and Toby Walsh ”[Although any NP-complete problem
can be transformed into any other NP-complete problem, this
mapping does not map the problem space uniformly]” [9].
So, a phase transition in say, satisfiability, does not guarantee
the existence of a phase transition in Hamiltonian Cycle or in
Vertex Coloring. The fact is though, that Cetal do find them
for all three.

In the next section, we will look at the Hamiltonian cycle

problem, how it depends on the average vertex degree of a
graph, and give an overview of the available algorithms for the
problem so far. In Section III, we will explain the algorithm
from Cetal’s original experiment, and the two algorithms
we’ve added as an extension. In Section IV, the experimental
details and results are laid out in detail. In Section V, we
conclude that the Cetal’s findings are replicable, but also that
the order parameter serves as a predictive data analytic on
other algorithms. We also discuss the implications. Section
VI contains acknowledgements, and a small tribute to Cetal’s
original work.

II. THE HAMILTONIAN PHASE TRANSITION

The Hamiltonian cycle problem comes in many different
varieties, but in its most elementary form it involves finding
a path (a sequence of distinct edges) in an undirected and
unweighted graph that visits every vertex exactly once, and
forms a closed loop. The probability of a random graph
being Hamiltonian (i.e., having a Hamiltonian Cycle), has
been thoroughly studied [12]–[14]. In the limit, it is a smooth
function of vertex degree and therefore the probability for a
random graph of V Vertices and E edges being Hamiltonian
can be calculated analytically:

PHamiltonian(V,E) = e−e−2c

(1)

in which

E =
1

2
V ln(V ) +

1

2
V ln(ln(V )) + cV (2)

Like the phase transition around α in SAT, the Hamiltonian
phase transition is also sigmoidally shaped across a threshold
point, the average degree of ln(V )+ ln(ln(V )) for a graph of
V vertices (also see Figure 1). The phase transition gets ever
steeper for larger graphs, until it becomes instantaneous at the
threshold point as V goes to infinity. For this (theoretical)
reason, the probability of being Hamiltonian at the threshold
point is somewhat below 0.5 at e−1 ≈ 0.368,

The probability of being Hamiltonian is one thing, deciding
whether a given graph actually has a Hamiltonian cycle is
quite another. A great number of complete algorithms have
been developed through the years, the earliest being exhaustive
methods that could run in O(n!) time [15]. A dynamic
programming approach, quite advanced for the time, running
in O(n22n) was built by by Michael Held & Richard Karp,
and by Richard Bellman independently [16] [17]. Some early
pruning efforts can be found in the work of Silvano Martello
and Frank Rubin whose algorithms could still run in O(n!)
but are in practice probably much faster [18] [19]. Many
of their techniques eventually ended up in the algorithm by
Vandegriend & Culberson (henceforth ’Vacul’), which we
rebuilt as part of this replication, and can be found in Section
III [20]. Algorithms by Bollobás and Björklund run faster
than Bellman–Held–Karp, but are technically speaking not
complete for finite graphs [21] [22]. The 2007 algorithm by
Iwama & Nakashima [23] runs in O(21.251n) time on cubic
graphs, thereby improving Eppstein’s 2003 algorithm that runs
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Fig. 1. The probability of a randomly generated graph being Hamiltonian depends on the average vertex degree, and is sigmoidally shaped around the
threshold point of ln(V ) + ln(ln(V )). Top-left inset is a non-Hamiltonian random graph, bottom-right inset is a Hamiltonian graph with the Hamiltonian

cycle itself being highlighted.

in O(21.260n). While these kind of marginal improvements on
specialized instances are typical for the progress in the field,
these two actually deserve some extra attention.

The cubic graph, in which every vertex has a maximum
degree of three, is of special importance in the generation
of 3D computer images. Many such images are built up
from triangle meshes, and as specialized hardware render and
shade triangles at low latencies, the performance bottleneck
is actually in feeding the triangular structure into the hard-
ware. A significant speedup can be achieved by not feeding
every triangle by itself, but by combining them into triangle
strips. An adjacent triangle can be defined by only one new
point from the previously fed triangle, and therefore adjacent
triangles combined in a single strip can speedup the feeding
procedure by a maximum factor three for each 3D object.
Finding a single strip that incorporates all triangles in the
mesh is equivalent to finding a Hamiltonian cycle through
the corresponding cubic graph in which every triangle is a
vertex, which makes both Eppstein’s and Iwama&Nakashima’s
result of crucial importance for the 3D imagery business (see
Figure 2).

So, concludingly, none of the complete algorithms on find-
ing Hamiltonian cycles runs faster than exponential on all in-
stances (with vertices of any degree), and the Bellman–Held–
Karp ”is still the strongest known”, as Andreas Björklund
states on the first page of his 2010-paper [22]. Cetal’s al-
gorithm however, is much closer related to the depth-first
approach by Rubin and Martello and runs in O(n!) time, as
do the other algorithms in the next section.

III. THREE HAMILTONIAN ALGORITHMS

Naked depth-first-search is a complete and exhaustive
method, but Cetal mount the algorithm with ”two heuristics”:
1) the starting vertex is the vertex with the highest degree
and 2) when recursing, always prioritize a higher degree
vertex over a lower degree vertex. It should be very clearly
understood though, that Cetal’s ”heuristics” are just speedup
procedures expected to boost the algorithm’s performance by
reducing runtimes but do not compromise its completeness like
a ’heuristic algorithm’ such as Simulated Annealing would.

For this replication, two more algorithms were imple-
mented: Van Horn’s algorithm (named after the first author)
which is identical to Cetal’s, except that it inverts the heuristic,
starting at the lowest degree vertex, and prioritizing lower
degree adjacent vertices over higher ones when recursing.
Inspiration for this inversion came from an almost prophetic
statement by James Bitner and Edward Reingold from their
famous ’75-paper that ”In general, nodes of low degree should
occur early in the search tree, and nodes of high degree should
occur later.” [24]. They were guessing at the time, but it turns
out they were right and their intuition has later been formalized
in a more generalized way [25], but still it is baffling to see
how much performance is gained from such a simple inversion
– at zero extra cost.

Thirdly, we replicated Vacul’s somewhat more sophisticated
algorithm intentionally programming it from scratch for the
sake of replicability. It is also a depth-first-search and it also
prioritizes vertices of lower degree over higher degree but
additionally, it has an iterated-restart feature and three pruning
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Fig. 2. Fast rendering of triangle mesh 3D images critically depends on
finding Hamiltonian cycles through the corresponding ’cubic’ graphs, in

which every vertex has a maximum degree of three.

techniques, employed in preprocessing and during recursion. A
preprocessing stage first runs an iterated pruning routine that
chips away edges that cannot be in any Hamiltonian cycle.
Any vertex v that has two neighbours (adjacent vertices) n1
and n2 which both have degree 2 only keeps those edges
to n1 and n2; all its other edges are pruned off because
they cannot be in any Hamiltonian cycle. It also looks for
a forced path, and prunes the edge between the first and last
vertex if it exists. Since any pruning activity can lead to new
vertices of degree 2, the procedure needs to be run again until
no more edges are pruned off. Then, the graph is checked
for non-Hamiltonicity-properties: degrees smaller than 2 and
articulation points (a.k.a ”cut vertices”). If it has neither of
those two, the preprocessing stage is finished and the depth-
first recursion starts. During recursion, the exact same pruning
methods and one more take place: whenever a vertex is added
to the path, all edges from the previous node are pruned,
except for the two in the path. As is common for depth-
first, all pruned edges get placed back when backtracking.
Finally, Vacul set an upper bound on the number of recursions
for their algorithm. When exceeded, the bound is upped and
a random restart is launched. An interesting technique, but
we omitted it simply because Cetal’s original graph sizes are

small enough to do an exhaustive search – Vacul’s go up to
1500 vertices, Cetal’s only to 24. A peculiar detail to keep in
mind is that these kinds of small randomnesses often improve
runtimes in exact algorithms on large inputs, but also make
them non-deterministic: experiments may vary from trial to
trial - even for two runs on the same input. By omitting this
option, runtimes (such as in Figure 3) are consistent, exactly
reproducible and non-variable on their input.

IV. EXPERIMENT & RESULTS

In Cetal’s study, 20 graphs were generated for ”a given
connectivity”, and analyzed for Hamiltonian Cycles and the
computation times (in iterations) recorded. Some runs are
cut off at ”a prespecified maximum”. The average is taken,
but it ”[severely underestimates the true costs, as it also
contains those saturated values]”. So, although of the exact
experimental parameters are left undefined, Cetal state: ”[The
existence of the phase transition is clear]”.

This left us with some choices. Generally, we tried to stick
to Cetal’s work as closely as possible, generating two sets
of graphs, one with 16 vertices and one with 24 vertices and
employed the full range of 0 to the maximum 1

2n
2− 1

2n edges.
We generated 20 random graphs for every number of edges,
resulting in 2400 random graphs for the 16-vertex graphs, and
5520 random graphs for the 24-vertex graphs. We could not
consult Cetal’s source data, but judging by their figures, our
numbers might be higher than Cetal’s original work, which
makes our replication a little more rigourous. In the remainder
of the paper, we will discuss results on the 24-vertex graphs,
but results for the 16-vertex graphs are comparable and the
reader is encouraged to try our online interactive diagrams
when interested.

We ran Cetal’s algorithm, Van Horn’s algorithm, and Vacul’s
algorithm all on the same input data and recorded the number
of iterations for each algorithm on each random graph. We set
our cutoff point at 109 iterations, which was reached 65 times
by Cetal’s algorithm and 57 times by Van Horn’s algorithm
(but not on the same graphs). Van Horn’s algorithm, with
its inverted heuristic, performs better with shorter runtimes
on 4627 out of the 5520 graphs (83.8%), but nonetheless
peaks in runtime near the Hamiltonian phase transition. Vacul’s
algorithm with advanced pruning outperformed both other
algorithms on 3334 out of the 5520 graphs (61.3%). It did
not reach the cutoff point even once, even though its hardest
graphs are still near the Hamiltonian phase transition, roughly
between vertex degrees 4 and 7 for 24 vertices. Note that the
vertical axis is logarithmic, so the computational difference
between easy and hard graphs is astoundingly large, even for
these small instances.

V. CONCLUSION AND DISCUSSION

It seems fair to say that Cetal’s results on the Hamiltonian
cycle problem are reproducible and valid. Harder graphs
do reside around the Hamiltonian phase transition for their
algorithm and the average vertex degree indeed functions as
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Fig. 3. Results of a replicated study by Cetal, which we extended with algorithms by Van Horn and Vacul. The top-right inset is Cetals original figure, and
it covers no data points. Note how the order parameter is a useful predictive data analytic for all three algorithms.

an order parameter, and is to some degree useful for predicting
runtimes. Furthermore, the same order parameter also seems
to hold for Van Horn’s algorithm, which largely outperforms
Cetal’s with shorter runtimes simply by inverting the heuristic
from prioritizing higher degree vertices to prioritizing lower
degree vertices.

Finally, Vacul’s algorithm of sophisticated pruning lives up
to its promise and outperforms both other algorithms, being
so effective it practically erases the phase transition for our
problem instances. Still, the harder graphs are near the phase
transition and the average vertex degree might still be seen as
an order parameter. Much of this is due to the pruning done
during preprocessing and recursing. This procedure however,
is quadratic-time and gets executed during every iteration
in an exponential algorithm. So, even though the number
of iterations may be much lower, the amount of wall clock
time per iteration is likely to be higher. To what extent this
is a purely theoretical issue remains to be seen; the cost-
benefit tradeoff of such ’intermediate speedup procedures’ is
classically related to constructive algorithms, and we would
like to quantitatively investigate the details for these specific
algorithms in future work.

For now, these pruning procedures appear quite beneficial
and firmly instantiate Steven Skiena’s famous take-home les-
son ”[Clever pruning can make short work of surprisingly
hard problems.]” [26]. Furthermore, Bitner & Rheingold’s

early observation that nodes with tighter constraints should be
prioritized over looser constraints seems like a good guiding
principle for designing these kinds of complete algorithms –
at least for Hamiltonian cycle detection, but possibly for a
much wider class of problems because after all, it (still) is
NP-complete.

With the seminal work of Peter Cheeseman, Bob Kanefsky
and William Taylor, the field of instance hardness has seen
the light. Ever since, principles such as solution backbones,
complexity cores and algorithm selection have all emerged as
important scientific concepts, scraping ever more plaster off
the wall that separates P from NP. We think these concepts,
and their paper, should be part of any serious curriculum in
computer science or artificial intelligence.
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