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Abstract— Large-scale data about learners’ behavior are being
generated at high speed on various online learning platforms.
Knowledge Tracing (KT) is a family of machine learning
sequence models that are capable of using these data efficiently
with the objective to identify the likelihood of future learning
performance. This study provides an overview of KT models
from a technical and an educational point of view. It focuses on
data representation, evaluation, and optimization, and
discusses the underlying model assumptions such that the
strengths and weaknesses with regard to a specific application
become visible. Based on the need for advanced analytical
methods suited for large and diverse data, we briefly review
big data analytics along with KT learning algorithms’
efficiency, learnability and scalability. Challenges and future
research directions are also outlined. In general, the overview
can serve as a guide for researchers and developers, linking the
dynamic knowledge tracing models and properties to the
learner’s knowledge acquisition process that should be
accurately modeled over time. Applied KT models to online
learning environments hold great potential for the online
education industry because it enables the development of
personalized adaptive learning systems.

Keywords- big data applications; educational data mining;
knowledge tracing; sequential supervised machine learning.

1. INTRODUCTION

Big Data Analytics (BDA) is becoming increasingly
important in the field of online education. Massive Open
Online Courses (i.e. Coursera), Learning Management
Systems (i.e. Moodle), social networks (i.e. LinkedIn
Learning), online personalized learning platforms (i.e.
Knewton), skill-based training platforms (i.e. Pluralsight),
educational games (i.e. Quizlet), and mobile apps (i.e.
Duolingo) are generating various types of large-scale data
about learner's behaviors and their knowledge acquisition
[11-[3]. To illustrate this with an example, the 290 courses
offered by MIT and Harvard in the first four years of edX
produced 2.3 billion logged events from 4.5 million learners.
The emerging scientific fields of educational neuroscience
[4] and smart-Education [5][6], which hopefully are going to
provide new insights about how people acquire skills and
knowledge, indicate new big data sources in education.

Artificial Intelligence (AI), Learning Analytics (LA), and
Educational Data Mining (EDM) are three areas under
development oriented towards the inclusion and exploration
of big data analytics in education [2][7]-[9]. EDM considers
a wide variety of types of data, practices, algorithms, and
methods for modeling and analysis of student data, as
categorized by [1][2][10][11]. EDM, LA, Al and Big Data
technologies are well-established and have progressed
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rapidly, however advanced analytic methods suited for large,
diverse, streaming or real-time data are still being under
development. A critical question in this area is whether
more advanced learning algorithms or data of higher quality
[12] and well pre-processed [1], or bigger datasets [8][13]-
[15] are more important for achieving better analysis results.
For all the above reasons, the implementation of BDA in
education is considered to be both a major challenge and an
opportunity in education [2][3][7]-[11][13][16][17].

Knowledge Tracing (KT) is widely applied in intelligent
tutoring systems, and to other modal sources of big data [11]
such as online standardized tests, Massive Open Online
Courses (MOOC's) data, and educational apps. KT is an
EDM framework for modeling the acquisition of student
knowledge over time, as the student is observed to interact
with a series of learning resources. The objective of the
model is either to infer the knowledge state for the specific
skill being tutored or to predict the performance on either the
next learning resource in the sequence or all the learning
resources. KT can be considered as a sequence machine
learning model that estimates a hidden state, that is the
probability that a certain concept of knowledge is acquired,
based on a sequence of noisy observations, that are the
interaction-performance pairs on different learning resources
at consecutive trials. The estimated probability is then
considered a proxy for knowledge mastery which is
leveraged in recommendation engines to dynamically adapt
the feedback, instruction or learning resource returned to the
learner. Furthermore, KT models are applied in mastery
learning frameworks which are used to estimate the moment
that a certain skill is acquired by the learner [18]. These
components empower the development of adaptive learning
systems.

The literature distinguishes two representations of KT
models: the probabilistic and the deep learning. The former
models the knowledge of a learner as a binary hidden state
with a level of uncertainty attached to it. The latter models
the knowledge of a learner with distributed continuous
hidden states that are updated in non-linear, deterministic
ways. Graphical probabilistic models of Hidden Markov
Models and Dynamic Bayesian Networks can be considered
as the baseline models, while deep Recurrent Neural
Networks models with Long Short-Term Memory (LSTM)
units have only recently been employed. Throughout the
paper, the differences between these modeling approaches
and their impact on the educational purposes are discussed.

This study provides an overview of currently existing
representations of KT models from both an educational and a
technical angle. It discusses the underlying model
assumptions such that the strengths and weaknesses of the
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reviewed models are revealed. The review can serve as a
guide for researchers and developers, in that when the
objective is to predict future performance in online learning
environments, the review is informative for which dynamic
KT models should be chosen. In addition to that, we hope
that by highlighting their strengths and similarities,
inspiration for more sophisticated algorithms or richer data
sources would be created, capable of accurately capturing the
process of knowledge acquisition.

This study proceeds as follows. Section II describes the
representation for the knowledge tracing along with a brief
introduction behind the probabilistic and recurrent neural
network sequence models. Section III introduces the baseline
KT model and the other three models, after which the
strengths, weaknesses, differences, and similarities are
highlighted together with their intrinsic behaviors. Section
IV discusses the Item Response Theory (IRT), as it is the
alternative family of models for modeling and predicting
knowledge acquisition. Section V discusses the prospects
and challenges, and Section VI provides the conclusions.

II. DATA REPRESENTATION FOR KNOWLEDGE TRACING

Data representation refers to the choice of a mathematical
structure with which to model the data or, relatedly, to the
implementation of that structure. It turns a theoretical model
to a learning algorithm and embodies assumptions required
for the generalization [19]. If the assumptions of the
representation or the explanatory factors accompanied the
data are not sufficient to capture the reality and determine the
right model, the algorithm will fail to generalize to new
examples. Instances of assumptions could be the linear
relationships of factor dependencies or a hierarchical
representation of explanatory factors. A good representation
is one that can express the available kind of knowledge and
hence can be a useful input to the predictor [15], meaning
that a reasonably-sized learned representation can capture the
structure of a huge number of possible input configurations.
Other elements contributing to a good representation are
outlined in [19]. An interesting point to note is that
predictive analytics that lies in distributed or parallel
systems, a common case in BDA, the choice of
representation will affect how well the data set can be
decomposed into smaller components so that analysis can be
performed independently on each component.

A. The Knowledge Tracing Task

In KT, two AI frameworks have been utilized to
represent the different kinds of available knowledge and
disentangle the underlying explanatory factors: the Bayesian
(inspired by Bayesian probability theory and statistical
inference) and the connectionist deep learning framework
(inspired by neuroscience). Bayesian Knowledge Tracing
(BKT) is the oldest and still dominant approach for modeling
cognitive knowledge over time while the deep learning
approach to knowledge tracing (DKT) is a state-of-the-art
model.

KT in its general form is formulated as a supervised
learning problem of time-series prediction. Suppose a data
set D consisting of ordered sequences of length 7, to be
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exercise-performance observation pairs X =
{(xm,lﬁ ym,l) (xm,T' ym,T)} with Ym,t € {0'1} from the m -
th student on trial t € {1,..,T}. The goal is to compute the
posterior probability distribution for the parameters
p(y|x; 8) for student m.

The objective in the Bayesian approach is to estimate the
probability that a student has mastered a skill S; based on the
sequence of observed answers that tap S;, as determined by
the concept map. The prediction task in the deep learning
approach is the probability that the student will answer the
next exercise correctly in their next interaction while the
network is presented with the whole trial sequence for all the
skills practiced.

A distinction between the two approaches is located on
the existence of the concept map. In BKT, the sequences of
X are passed through a pre-determined concept map which is
assumed to be accurately labelled by experts. The concept
map represents a mapping of an exercise or a step of a
learning resource to the related skills. The domain
knowledge is divided into a hierarchy of relatively fine-
grained component skills, also known as Knowledge
Components (KC). This may include skills, concepts, or
facts. The concept map is used to ensure that students master
prerequisite skills before tackling higher level skills in the
hierarchy [18]. In the Bayesian approach, a different model
is initiated for each new skill while the prediction serves for
drawing inferences about the knowledge state of a student
for the skill. In the BKT, a student’s raw trial sequence is
parsed into skill-specific subsequences that preserve the
relative ordering of exercises within a skill but discard the
ordering relationship of exercises across skills.

Rather than constructing a separate model for each skill,
DKT model all skills jointly. In deep learning though, the
sequences are not passed through a concept map, but through
featurization, that is the distributed hidden units in the layers
that relate the input sequences to the output sequences. This
distributed featurization, which is the core of the RNN’s
generalizing principle, is used to induce features and hence
discover the concept map and skill dependencies.

B. Probabilistic Sequence Models

The problem of knowledge tracing was first posed as a
special case of Hidden Markov Models (HMM) with a
straightforward application of Bayesian inference. DBN
employed afterward to solve for the assumption of
independence of latent states among the different skills. A
DBN is a Bayesian network repeated among multiple time
steps.

HMM and DBN are Probabilistic Graphical Models
(PGM). In PGMs, two concepts are always present: i) the
data or random variables are represented as nodes in a graph
and i) a probabilistic distribution is attached over the nodes
via the edges of the graph [20]. HMM is an undirected PGM
while Bayesian networks are Directed Acyclical Graphs
(DAG) describing probabilistic influences between the nodes
of the graph. To briefly explain the benefits of each
representation, DAG are useful for expressing causal
relationships between random variables, whereas undirected
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graphs are better suited to expressing soft constraints
between the latent and observed random variables [20].

HMM is used to model sequences of possible events in
which the probability of each event depends only on the state
attained in the previous event, i.e., Markov processes, with
unobserved states, also called hidden or latent states. The
latent variables are the discrete variables h, describing
which component of the mixture distribution is responsible
for generating the corresponding observation. They can take
only one value of all the possible hidden states K where each
hidden state has got its own internal dynamics described by a
transition matrix A describing stochastic transitions between
states. The inference of the probability distribution over the
hidden states allow us to predict the next output. The outputs
produced by a state are stochastic and hidden, in the sense
that there is no direct observation about which state produced
an output, much like a student’s mental process. However,
the hidden states produce as observables the emission
probabilities @ that govern the distribution (i.e., actions of a
learner).

The parameters that need to be evaluated and learned in
HMM are A = {II,A, @}, where I is the initial latent
variable z; which doesn’t depend on some other variable. In
HMM, including DBN and all generative models, the
inference problem is firstly solved: given the parameters 8
and a sequence of observations (practice attempts) X = {X;},
t € {1,..,T}, what is the probability that the observations are
generated given the model P(X|A); and secondly the
learning problem P ( A|X) is solved.

In the DBN, this is equivalent to P(X, h| 1), where we
marginalize over the hidden states h of the latent variables.
Since this is a directed graph and edges carry arrows that
have directional significance, the joint distribution is given
by the product over all of the nodes of the graph, whose
distribution is conditioned on the variables corresponding to
the parents of each node. A detailed explanation of the
computations in the DBN is provided by [20][21].

C. Recurrent Neural Network Sequence Models

Deep Recurrent Neural Networks and specifically the
Long Short-Term Memory (LSTM) unit was only recently
employed to the KT task to solve for the binary, highly
structured representation of the hidden knowledge state.
Recurrent Neural Networks (RNN) are a family of Artificial
Neural Networks (ANN) used for modeling sequential data
that hold a temporal pattern. ANN relate the input units to
the output units through a series of hidden layers, each
comprising a set of hidden units. The latter is triggered to
obtain a specific value by events found in the input and
previous hidden states, a process implemented by a non-
linear activation function.

RNNs are layered ANNSs that share the same parameters,
also called weights, through the activation function. This
property is illustrated in Fig.3 with the formation of a
directed circle between the hidden units. RNNs are very
powerful because they combine the two following properties:

i. The distributed hidden state allows them to

forget and store a lot of information about the
past such that they can predict efficiently.
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il. The non-linear activation functions allow them
to update their hidden state in complicated
ways which can yield high-level structures
found in the data.

LSTM is a type of hidden units in RNN that includes ‘gates’
which let the hidden state to act as a memory able to hold
bits of information for long periods of time and thus can
adjust the flow of information across time. When there is no
specific trigger, the unit preserves its state, very similar to
the way that the latent state in HMM is sticky—once a skill
is learned it stays learned [22].

ITII. SEQUENCE MODELS APPLIED IN KNOWLEDGE
TRACING

A. Standard Bayesian KT: skill-specific discrete states

The BKT [18] includes four binary parameters that are
defined in a skill-specific way. The two performance-related
variables that are emitted from the model are the following:

i. S-slip, the probability that a student will make an error
when the skill has been learned, and

ii. G-guess, the probability that a student will guess
correctly if the skill is not learned;

The two latent and learning-related variables are the
following:

i. P(6;_1) = P(8y) which is the initial probability of
knowing the skill a priori, and

ii. P(T) which represents the transition probability of
learning after practicing a specific skill on learning activities.
The estimated acquired skill-knowledge, which is the
probability of P(6,), is updated according to (1c) using the
P(T) = P(6;,, = 1| 8, = 0) and observations from correct
or incorrect attempts X computed either by (la) or (1b),
respectively. Equation (1d) computes the probability of a
student applying the skill correctly on an upcoming
practicing opportunity. The equations are as follows:

P(6,) = (1= P(S))
P(6,) * (1= P(S)) + (1 — P(8) * (P(G))
P(0:)*P(S)

P(B1lye = 1)

(1a)

P@ralye = 0) = s rora—rora—ro (1b)
P(8¢41) = P(Opsalye) + (1 - P(0t+1|yt)) * P(T) (19
P(Cey1) = P(BY) * (1 —P(S)) + (1 —P(6Y) = P(G) (1d)

At each t, a student m is practicing a step of a learning
opportunity that tap a skill S. The step-by step process of a
student trying to acquire knowledge about S is illustrated in
Fig.1. Given a series of y;, and t for the student m, the
learning task is the likelihood maximization of the given data
P(y| 1) , where 1 ={P(S),P(G),P(T),P(6,)}. In the
original paper, this is done through Curve Fitting and
evaluated via Mean Absolute Error, which is considered an
insufficient measure [26]. The key idea of BKT, is that it
considers guessing and slipping in a probabilistic manner to
infer the current state and update the learning parameter
during the practicing process.
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Even though BKT updates the parameter estimates based
on dynamic student responses, it is assumed that all of the
four parameters are the same for each student. In essence,
the actual probability of a correct response is averaged across
students, and the models predicted probability of a correct
response is averaged across skills. Because the data of all
students practicing a specific skill are used to fit the BKT
parameters for that skill, without conditioning on certain
student’s characteristics, a big part of the research is focused
on adding learner-specific variables by assuming variability
among students’ process of learning. Yudelson [23] found
that the inclusion of student-specific parameters has a
significant positive effect on prediction accuracy and
interpretability, as well as in dealing with over-fitting. [24]
added Dirichlet priors for the initial mastery 8,_,, while [23]
extended their work and found that adding variables of
learning rates P(T) for individual learners, provides higher
model accuracy.

B. BKT with student-specific features of learning rates:
Personalized predictions

The Individualized BKT (IBKT) model [23] includes
apart from skill-specific, student-specific parameters as well.
The model is developed by splitting the skill-specific BKT
parameters, substituted by w , into two parameters
components (i) w*-the skill-specific and (7)) w¥-the student-
specific component; and combining them by summing their
logit function 1(p) = log (1%) , and sigmoid function

1

O'(X) = m.

These two procedures are illustrated in (2a)
w= o(l(wk) +IWw*)) (2a)

Updating the gradients of the parameters is possible using

the chain rule, as illustrated in (2b) for the student-specific

component of the parameter.

9] _ 9] ow (2b)

ow ow dwl

The IBKT models are built in an incremental manner by
adding w" in batches and where the effects of each addition
are examined on Cross Validation (CV) performance. It is
also possible to improve the overall accuracy by
incrementally updating the w¥* once a new group of students
finishes a course or a course unit.

Figure 1 depicts the structure for the HMM model of
both BKT and IBKT. Although the underlying HMM model
and hence the process of a student practicing exercises
remains the same, the fitting process is different. The
parameters A are spitted into two components and the model
is fitted for each student separately by computing the
gradients of these parameters.

The blue circular nodes capture the hidden students’
knowledge state per skill, while the orange rectangles denote
the exercise-performance observations associated to each
skill correspondingly. We note that, in the upcoming figures
the blue circular nodes and orange rectangles are also used to
describe the same meaning. The nodes in the probabilistic
models denote stochastic computations whereas in the RNN
deterministic ones.
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Figure 1. Baseline and Individualized Bayesian Knowledge Tracing
represented as a Hidden Markov Model. In IBKT, the four parameters
{G,S,8,, T} are splitted to include student-specific parametrs.

Both the BKT and IBKT assume independent skills sets
and cannot deal with hierarchical structures since they are
undirected graphs. This assumption is restrictive because it
imposes that different skill sets cannot be related and, as a
result, observing an outcome for one skill set is not
informative for the knowledge level of another skill set.
However, the expert model in educational domains, that is
the decomposition of the subject matter or set of skills into a
set of concepts (KCs) that need to be acquired by a learner, is
frequently hierarchical. DAG is the optimal data
representation for describing the expert model in traditional
and adaptive learning systems that incorporate parallel
scalable architectures and BDA [3].

C. Dynamic Bayesian Network: Discrete Skill-Specific
Dependencies in KT

DBN is a DAG model allowing for the joint
representation of dependencies among skills within the same
model. [21] applied DBN in knowledge acquisition modeling
in a KT setting.

Again, at each trial t, a student m receives a quiz-like
assessment that contains learning opportunities, but this time
these belong to different skills S. The Bayesian network is
repeated itself at each time step ¢ with additional edges
connecting the knowledge state on a skill att tot + 1. The
set of variables X contains all skill nodes S as well as all
observation nodes Y of the model while H denote the domain
of the unobserved variables, i.e., learning opportunities that
have not yet been attempted by students and hence their
corresponding binary skill variables S are also latent. The
objective is then again to estimate the parameters 6 that
maximize the likelihood of joint probability p(¥y,, h.,|0),
where y,,, and h,,, denote the observed and hidden variables
respectively.

The enhancement of the model is that even without
having observed certain outcomes for a skill, say y; in time
step t,, is still possible to infer the knowledge state
regarding S3. To illustrate that, consider the example model
depicted in Figure 2. It depicts that, the probability of skill
S3 being mastered at t, depends not only on the state of S3
at the previous time-step t;, but also on the states of S1 and
S2 at t,. Suppose now that a student solves a learning
opportunity associated with S2 at step t,; then the hidden
variables at t, will be h,, = {§1,52,53,y3,y1} while the
observed variables will be y,,, = y,.
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In KT, the objective function is the log (likelihood) loss.

In DBN, it is reformulated using a log-linear model to obtain

a linear combination of a lower dimensional representation

of features F. Equation (3) shows the log likelihood function
of DBN:

Lw) = ) In( > exp@ToOm hn) ~In@) | 3)

m hm

, where ¢: Y x H— R¥ denotes a mapping from the latent
space H and the observed space Y to an F -dimensional
feature vector. Z is a normalizing constant and w denotes
the weights that can be directly linked to the parameters of
the model 6.

DBNs grapple with the same limitations as HMM: the
representation of student understanding is binary and
reported per skill, given that each skill can be associated with
exactly one observable, and there is the requirement for
accurate concept labeling. RNN have only recently tried to
model student understanding in order to break the
beforementioned assumptions.

w1 W33 w22

Y1 Y3 Y2 Y1 ¥3 Y2

Figure 2. Bayesian Knowledge Tracing represented as a Dynamic
Bayesian Network unrolled over T time steps. The hierarchical
relationships between the skills are depicted and incorporated to the
estimation of knowledge growth, shown by the arrow lines.

D. Recurrent Neural Networks: Continuous Knowledge
States & Skill Dependencies

In an RNN, the hidden layer provides a continuous and
high dimensional representation of the latent knowledge state
h¢, which learns the properties of sequences of observations
of student responses x; = (xg,..,Xr), denoted as a; in (4c),
on learning activities, denoted as q; in (4c). DKT [25]
exploits the utility of LSTM whose fully and recurrent
connection allow them to retain information of x; for many
time steps; and use it in a prediction at a much later point in
time. The distributed representation allows an RNN to
induce features related to skill dependencies or concepts
(KCs) associated with exercises. The hidden-to-hidden
connections encode the degree of overlapping between skills
and exercises. According to (4a), the hidden units are
activated via the hyperbolic tangent, which employs
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information on both the input x, and on the previous
activation h;_q ,
hf = tanh(thxt + Whhht—l + bh) (4a)
where by, is the bias term and Wy, Wy, are the weights of
units corresponding to the input and hidden layer. The non-
linear and deterministic output h, will be passed to the
sigmoid function o to give the probability of getting each of
the learning activities correct y, = (yy,..,¥r) in the
students’ next interaction t + 1, as shown in (4b):
ye = c(Wyphe + by) (4b)
Finally, the loss for a single student will be the negative log-
likelihood, as shown in (4c):

L= ZI(YT5(CIH1)' Apy1) (4¢)
t

where [ is the binary cross entropy and § denotes the one hot
encoding transformation of the input, a necessary step for
ANN and a suitable preprocessing step for small data-sets.
Compressing Sensing is suitable for big data sets.

Figure 3 depicts an example architecture of RNN, where
X represents the entire sequence of exercises a student
receives in the order the student receives them. After feeding
X to the network, each time the student answers an exercise,
a prediction is made as to whether or not she/he would
answer an exercise of each concept (KC) correctly on her
next interaction. It’s important to note that, in the DKT a
deep RNN is employed, whose architecture include many
hidden layers.

Figure 3. Deep Knowledge Tracing represented as a Recurrent Neural
Network unrolled over T time steps. The arrow lines represent the
change in the hidden knowledge state which is updated in non-linear

E. Comparison of the sequence models for KT

Table I outlines and compares important features of the
models described above. The modeling of knowledge
acquisition and the prediction of future performance in the
BKT are binary and skill-specific without conditioning in
individual learning or skill interdependencies. The
predictions in the other models allow for individualization,
skill dependencies, or continuous latent states and the
discovery of the concept map. All models share the
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assumption that each learning activity is a learning
opportunity rather than an opportunity to assess the acquired
knowledge.

The criterion of choosing the right algorithm is a
combination of the efficiency of the available data along
with the learning algorithm’s components; these are the
representation, evaluation, and optimization [15]. The rows
of representation, optimization, evaluation, learnability, and
efficiency in Table I comprise the technical-oriented
elements whereas the remaining ones reflect the impact on
educational settings. In the below paragraphs, we briefly
describe each of
these components considering the KT task. The data
representation has been already introduced in Section II.

1)  Evaluation of the predictions

Model evaluation metrics analyze the performance of the
predictive model and are widely discussed in the context of
general machine learning applications including educational
ones [26]-[28]. In KT, these include the Root Mean Square
Error (RMSE), classification accuracy, and Area Under the
Curve (AUC). RMSE is the standard performance metric,
and it has demonstrated a high correlation to the log-
likelihood function and the ‘moment of knowledge
acquisition’ [26]. AUC should be used only as an additional
metric, in order to assess the model’s ability to discriminate
incorrect from correct performance, since it has several
important disadvantages with regard to KT. DKT was
criticized in terms of the employment of AUC, because it
computes the accuracy on a per-trial basis instead of per-
skill.

TABLE L COMPARISON OF KNOWLEDGE TRACING MODELS
Model BKT IBKT DBN DKT
Extension Baseline Personalization Detailed Continuous

Skill Knowledge
Estimation State
Representati HMM HMM DBN RNN
on
Optimization Curve Fitting, Gradient Descent Constrained Stochastic Gradient
Expectation Latent Descent
Maximization Structure
Learnability- 158 2 datasets: 5 datasets: 3 datasets: Total
Fitting i observations- 1.8,918,054 Size range: size: 65.000 students,
55 skills observations, 100-500 2.000 observations-
3,310 students observations answers
515 or 541 skills 3-9 Skills 230 items
ii. 20,012,498 77- 7265
observations students
6,043 students
800-900 skills
Efficiency 4 /skill, 4 /skill + 4/skill + 250,000 with 200
2 /student (a) 2" forn hidden units & 50
skills skills.
4((input size+1) *
output size + output
size’)
Evaluation MAE RMSE, RMSE, AUC AUC
Accuracy
Restrictions Prone to Bias Independent Complex & Highly Complex
Skills hard-coded & not interpretable
Variation in X v X v
learner
ability
Inclusion of | X X v v
forgetting
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Inter-Skill X X v v
Similarity

Exercise X X X v
ordering

effect

a. the initial probability and the learning rate is individualized

2) Optimization, Identifiability and Degeneracy

The optimization function derives the optimal possible
values for the parameters of the objective function. Unlike in
most other optimization problems, the function that
generated the data and should be optimized is unknown and
hence training error surrogates for test error [15]. The
optimization of the log-likelihood function is performed
using Curve Fitting (CF), Expectation Maximization (EM),
Constrained optimization, and Gradient Descent methods
(GD). All of them with appropriate initialization conditions
[18][28]-[30] of the parameters, can solve for the
identifiability issue which is considered an issue in the
probabilistic approaches [20][28]. The identifiability issue is
directly linked with the interpretability of the parameters
values computed by the probabilistic models [20], where
inferences about knowledge states are being made. It arises
when there is more than one combination of parameters that
optimizes the objective function. Constrained optimization
[21] uses log-linear likelihood to ensure the interpretability
of the constrained parameters, and it is suitable for DBNs.
GD allows IBKT to introduce student-specific parameters to
BKT without expanding the structure of the underlying
HMM and hence without increasing the computational cost
of fitting [23].

Equally important for the optimization methods is to be
robust to degeneracy, where it is possible to obtain model
parameters which lead to paradoxical behavior [30]. The
standard KT model is susceptible to converging to erroneous
degenerate states depending on the initial values of the
parameters [28], and many research has focused on this
property of the models [29]-[31]. An example in the BKT is
the probability that the student acquired the instructed
knowledge dropping after three correct answers in a row
[29]. An instance in DKT includes the alternation between
known and not-yet-known instead of transiting gradually
over time [31].

3) Computational & Statistical Efficiency

Learnability comprises statistical efficiency, that is the
number of student interaction examples required for good
generalization, namely to correctly classify the unseen
examples of interactions. The number of examples required
to establish convergence, which is related to the number of
training data that is used to learn the parameters of the
model, is depicted in the table as Learnability-Fitting. The
training of BKT model is faster, while deep neural networks
and IBKT is relatively slow due to the requirement of large
datasets for effective training. Generalization in DBN is
inferred by using different learning domains datasets.
According to the authors [21], the performance differences
between DBN and BKT, especially the influence of the
different parameters, need to be investigated further.

Computational efficiency refers to the number of
computations during training and during prediction. These
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include the number of iterations of the optimization
algorithm and the number of resources (i.e., the number of
hidden units). In the table, we note only the number of model
parameters which is not necessarily the most appropriate
measure of model complexity. Nonlinear functions and large
datasets increase the model complexity which offers
flexibility in fitting the data [20]. In DKT, there are high
demands regarding computational resources. Nowadays,
there are many parallel and distributed computing
infrastructures that can be used to boost the efficiency of
such data-intensive tasks. IBKT models take the advantage
of parallel computing infrastructures. Comparing HMM and
DBN, the latter needed 21-86 parameters for the datasets
used in the paper. DBN is more computationally expensive
due to their complex loopy structure and the skill-
dependencies [21].

It is important to note that, the parameter estimates and
the behavior of KT models should be researched in
scalability cases in either the number of students or the
increased number of observations per student [30].

4) Features related to performance and learning

The DKT model allows for differences in learning ability
of the student by conditioning on recent performance of the
student. By giving the complete sequence trial of
performance-exercise pairs to the model, it can condition on
the average accuracy of previous trials. DBN and DKT allow
for skill-dependencies and can also infer the effect of
exercise ordering on learning, which is considered an
important element in learning and retention. The
probabilistic KT tends to predict practice performance over
brief intervals where forgetting the acquired knowledge, the
probability of transitioning from a state of knowing to not
knowing a skill, is almost irrelevant; whereas DKT
incorporates recency effects and allows for long-term
learning.

The complex representation in DKT is chosen based on
the grounds that learning is a complex process [25] that
shouldn’t rely only on simple parametric models because
they cannot capture enough of the complexity of interest
unless provided with the appropriate feature space [22]. The
assumption embodied in this approach is that the observed
data is generated by the interactions of many different factors
on multiple levels. DKT is a complex model, and thereby it
should be applied to more complex problems and data.
Hence, as long as there are sufficient data more behavioral in
nature to constrain the model, a shift to connectionist
paradigms of modeling will offer superior results when
compared to classical approaches [11].

DKT success is attributed to its flexibility and generality
in capturing statistical regularities directly present in the
inputs and outputs, instead of representation learning [22].
When the performance of the baseline BKT and DKT
models is compared [22], it is found that both models
perform equally well, when variations of BKT models allow
for more flexibility in modeling statistical regularities, that
DKT has already the ability to explore. These are forgetting,
variability in abilities among students, and skill discovery
that allows for interactions between skills.
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IV. ITEM RESPONSE THEORY FOR PREDICTING FUTURE

PERFORMANCE

This review focuses specifically on Knowledge Tracing,
thereby ignoring the only available alternative which is Item
Response Theory (IRT) [32]. Theoretically, IRT models
differ from KT models on that the former is developed for
assessment purposes (i.e., the theory focuses on short tests in
which no learning occurs) or for modeling very coarse-
grained skills where the overall learning is slow (i.e.,
summative rather than formative assessments) [33].
Technically, IRT wuses the responses on learning
opportunities directly to estimate the learner’s ability, while
KT models go through the concept map or featurization.

The concept of IRT assumes that the probability of a
correct response to an assessment item is a mathematical
function of student parameters and item parameters. The
latter is better estimated when there is a large amount of data
to calibrate them. The student parameters can be used to
account for variability in student a priori abilities. It’s
interesting to note that, (2a) of IBKT incorporates the
compensatory logic behind the IRT, when summing the
logistic functions to incorporate skill and student-specific
parameters [23]. The prediction task in the baseline model is
done by mapping a difference between a student knowledge
on a skill & and an item difficulty § into the probability of a
correct answer 1, = 1 using a logistic function o(x), as
depicted in (5). The estimate of ability is continually re-
calibrated based on learner’s performance.

1

P =110) = o Tom

®)

The baseline IRT model is a logistic regression based
Rasch model, also known as the One Parameter (1PL) IRT
while its descendants include the Performance Factor
Analysis (PFA) and the Additive and Conjugate Factor
Model. The latter model is better estimated when there is a
large amount of data available for calibration. The PFA
model is highly predictive, but it’s not useful for adaptive
environments in the sense that it cannot optimize the subset
of items presented to students according to their historical
performance. The literature has already compared the models
of PFA and BKT, both in theoretical [34] and in practical
[35] terms (i.e., predictive accuracy and parameter
plausibility). Both models are considered difficult to
implement in an online environment and are rarely evaluated
with respect to online prediction performance [33][36][37].

V. PROSPECTS AND CHALLENGES

Predicting future performance through modeling
knowledge acquisition is a complex task; as human learning
is grounded in the complexity of both the human brain and
knowledge. This raises the opportunity to increase our
understanding of knowledge prediction by synthesizing
methods from various academic disciplines such as human-

machine  interaction  design, machine learning,
psychometrics, educational science, pedagogy, and
neuroscience.

127



DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics

From a social science perspective, learning is influenced
by complex macro-, meso- and micro-level interactions,
including affect [38], motivation [39][40], and even social
identity [41]. Predicting student knowledge with the mere
observation of correct versus incorrect responses to learning
activities provides weak evidence since it’s not a sufficient
data source.

Currently, there are some KT models augmented with
non-performance data such as metacognitive [42], affect
[43], and other student traits apart from learning rates [44]
[45]. As educational apps and smart learning environments
increase in popularity, it may be possible to collect valuable,
diverse and vast amounts of student learning data, that will
capture the reality of learning, and hence they will create
opportunities, as well as new challenges, to deepen our
understanding of knowledge acquisition and employ these
insights to personalize education better.

VI. CONCLUSIONS

Modeling learner’s skill acquisition and predicting future
performance is an integral part of online adaptive learning
systems that drive personalized instruction. Knowledge
Tracing is a data mining framework widely used for that
purpose because of its capability to infer a student’s dynamic
knowledge state as the learner interacts with a sequence of
learning activities. Embarking from the baseline Bayesian
model and based on the principles desired for adaptive
learning systems, we outline three of the model’s most recent
extensions. These include the individualization of learning
pace among students, the incorporation of the relationships
among multiple skills, and the continuous representation of
the knowledge state, which is able to induce both student and
skill-specific features.

We show how probabilistic and deep learning approaches
are related to the task of modeling sequences of student
interactions by outlining their technical and educational
requirements, advantages and restrictions. In particular, we
investigate the assumptions in representation, the potential
pitfalls in optimization, and the evaluation of the predictions.
The general idea is that by investigating these aspects, one
can gain an understanding why prediction models work the
way they do or why they fail in other cases. A crucial
question is how efficient and accurate these learning methods
are regarding learning and generalization when they are
applied to online adaptive learning environments where
scalability and computational speed are important elements.
The current study is useful both for researchers and
developers allowing for a comparison of the different
models. In addition, the corresponding citations throughout
the paper can be used to provide further guidance in
implementing or extending a model for a specific data
source, online learning environment, or educational
application.
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