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Abstract—Apache Hadoop is a well-known open-source 
framework for storing and processing huge amounts of data. 
This paper shows the usage of the framework within a project 
of the university in cooperation with a semiconductor company. 
The goal of this project was to supplement the existing data 
landscape by the facilities of storing and analyzing the data on a 
new Apache Hadoop based platform. 
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I.  INTRODUCTION 
Over the past few years, the world of data changed. More 

and more data-driven processes are coming up. They can be 
used to monitor or even improve existing processes. 
Especially the industry benefits from this new know-how that 
can be retrieved from analyzing Big Data where Big Data 
refers to the large volumes of structured, semi-structured, or 
unstructured data, acquired from a variety of heterogeneous 
sources. On the other hand, new devices and techniques need 
to be applied to enable such potential of Big Data. This often 
leads to high costs for the acquisition of new hard- and 
software, and even the knowledge how to implement a Big 
Data solution.  

The semiconductor industry is one of the most complex 
manufacturing processes, and large amount of data retrieved 
during the manufacturing process has to be stored in huge 
databases [1]. The automatic analyses of that data may lead to 
reduction in the manufacturing cost. This is true for basic 
analyses, but especially for advanced analyses like anomaly 
detection and quality control. Insights can be gained about the 
production process if those data can be stored, retrieved and 
analyzed in an easy way. 

The Institute for Machine Learning and Analytics (IMLA) 
[2] together with a semiconductor manufacturer from 
Germany examines how large data - collected during the 
manufacturing process - can be stored and analyzed in a Big 
Data system. The company has widened their machines with 
sensor technology, to be able to track their production process 
in large part. This led to a mass of new data, that must be 
stored and processed in an adequate duration of time, to be 
able to handle all this data and react as fast as possible on 
different events (especially in case of a problem). Another 
challenge comes with the previous analyses, which are based 
on different datasets – a lot of this data was collected and 

joined manually by some employees, which meant a huge 
overhead and delay on the analyses.  

The goals of the project are to build a cost-effective and 
scalable database for storing and processing the sensor-
generated data, to accelerate the search and analysis of data 
and to implement advanced analyses with machine learning. 
In this paper we focus on the first two goals:  the architecture 
and implementation of a scalable data base and the integration 
in the IT environment to support the analysis process. The 
approach is based on the Apache Hadoop [3] and Apache 
Spark [4] framework, very popular platforms for subjects 
concerning Big Data handling. The next step of the project is 
the implementation of machine learning algorithms. 

The structure of this paper is organized as follows: Section 
II provides background information about the data base, while 
Section III shows the basic information about the Apache 
Hadoop cluster that was used to implement the project. 
Section IV of this paper discusses various ways to store the 
data and shows ways to import and analyze this data. Section 
V provides first benchmarks on the imported data, and Section 
VI concludes the paper with a brief summary. 

II. BACKGROUND 
This section describes the data and the database used so 

far. The company uses different database systems and 
Network-based File Systems (NFS) to store the data that 
accrues during the different production processes. The data 
consists of various types: 

1) Structured Data 
• Lot history (tracking of the steps that were passed 

by each lot during production) 
• Machine data (events that occur on the different 

machines, lot independent) 
• Many more smaller datasets  

2) Semi-structured Data 
• Results of quality tests (results of tests that run 

after production, e.g., power consumption, heat 
development, mechanical checks) 

The structured data comes with a fix schema, like every 
entry has the same amount and datatypes of columns. Typical 
examples for this format are CSV files, which represent data 
in a table-like form.  

In contrast to that comes the semi-structured data, which 
can have a very different schema from file to file. The quality 
test results are of this schema-less format, so every file (or 
even every entry) can have different number of columns 
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and/or datatypes. Due to the various families of 
semiconductors there are also different test cases for each. 
This data diversity has also a second reason: In the course of 
time, the sensors for checking the products and the software 
changed, which also led to different test cases (which are 
reflected in the different schemas) within the same product 
families. Saving these differing data sets inside the same 
storage pool was also a big challenge on the project. 

Altogether these information sets filled up (amongst 
others) an Oracle database with approximately 13 TB of data. 
Since this system run into capacity limits, one of the main 
goals of the project was to source older data out into another 
file storage, e.g., the Hadoop Distributed File System (HDFS), 
which is part of the Apache Hadoop ecosystem. More about 
the task of data moving in the “Solution” section. 

As already mentioned in the introduction section, there 
were a lot of analyses that took a long time or even overloaded 
the system, that ran on capacity limits. In addition to this issue, 
many analyses needed some manually gathered and filtered 
data as input. These issues are pain points because a lot of time 
is wasted on getting and processing the desired data. Realtime 
results (or even getting any results at all) were not possible for 
these kinds of analyses. By using the parallelism of the 
Apache Hadoop platform, we wanted to be able to automate 
the information gathering and bring up new ways for faster 
analyses.  

III. THE APACHE HADOOP CLUSTER 
The IMLA runs an in-house Apache Hadoop cluster, 

which is based on the Hortonworks Data Platform [5]. This 
platform is a combination of different tools that can be used 
for storing and analyzing huge datasets [6]. Figure 1 shows the 
main structure of the cluster components: 

 

 
Figure 1.  The coarse structure of the components in the Hadoop cluster 

Since the Hadoop ecosystem is a collection of different 
tools for storing and analyzing datasets, it is applicable for 
most tasks all around working with Big Data. Some important 
tools that were used in the project are the following: 

• HDFS: Distributed data storage inside a cluster. 
• Apache Hive: SQL-like interface to structured data 

stored inside HDFS. 
• Apache HBase: Distributed NoSQL database, using 

HDFS as background data storage. 

• Apache Spark: In-memory processing engine with 
interfaces to various datastores, like HDFS, Hive, 
HBase and many more.  

Stand May 2019 the Hadoop cluster of the university has 
the following setup: We use eight nodes, two of which are set 
up as name nodes (high availability) and the other six as data 
nodes. The name nodes are responsible for the administration 
of the metadata of the HDFS and the requests of the different 
services running inside the cluster and coordinate the 
incoming tasks submitted by the users. The data nodes hold 
the datasets in themselves and execute the processes, which in 
turn work with this data. 

These are the actual components of the cluster: 
• 2 x NameNode 

o CPU: 2 x Intel Xeon E5-2630v4 @ 2.2 GHz 
(10 cores, 20 threads) 

o RAM: 256 GB (DDR4, ECC-reg.) 
o SSD: 2 x 480 GB (RAID-1) 
o OS: CentOS 7 

• 6 x DataNode 
o CPU: 2 x Intel Xeon E5-2630v2 @ 2.6 GHz 

(6 cores, 12 threads) 
o RAM: 64 GB (DDR3, ECC-reg.) 
o HDD (System): 1 x 1 TB 
o HDD (HDFS): 4 x 3 TB 
o OS: CentOS 7 

We use the Hortonworks Data Platform 2.6.5, which is a 
free Hadoop distribution from Hortonworks that is based on 
the Hadoop 2.7 stack. As operating system we use CentOS 7. 
In the future, the cluster will be upgraded to Hadoop 3 and 
equipped with graphics cards to enable also GPU computing. 

IV. SOLUTION 
This section covers the realization of the project, which 

consists of the four thematic areas data import, storage of 
structured data, storage of semistructured data, and the data 
processing. For a better understanding of the other topics, first 
the storage of the data is treated, before continuing with the 
import of the data into the cluster. 

A. Storing the structured data 
First, the Hadoop framework contains a distributed file 

system that can be used to store all types of data. The user has 
access to appropriate interfaces for writing and reading this 
storage. Even other tools used in a Hadoop platform usually 
store their data on the filesystem called HDFS. 

The basic Hadoop framework can be extended with a data 
warehousing software called Apache Hive that is based on 
HDFS [7]. Hive is an interface for working with structured 
data (that is stored in HDFS) using an SQL-like syntax called 
HiveQL. It brings also new interfaces (e.g., command line 
tool, JDBC driver and REST-based webservice) and supports 
the common data types like numeric, date/time, string, misc 
(boolean, binary) and complex (array, maps, structs).  

There are also multiple file formats that can be read and 
written by Hive. One of the best-known formats in storing 
structured data in Hadoop is the Apache Optimized Row 
Columnar (ORC) [8] format, which is also supported by Hive 
and used in this project for storing the structured data. ORC is 
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a memory-optimized and column-based data format with 
helpful features like ACID support, built-in indexes and 
support of complex types. It is optimized for Big Data 
workloads, especially for parallel readings from HDFS. It 
allows filtering close to the data, by passing the filter criteria 
to the data store, thus selecting and returning only the desired 
data at a lower level. This feature is called “predicate 
pushdown” and accelerates queries many times over, because 
it significantly reduces the network load and therefore the size 
of data, that must be processed in further steps. ORC also 
supports zlib and Snappy compression to reduce data size in 
addition to the default column-based compression. 

There are different ways to bring any Hive-readable 
format into the ORC format and vice versa. This is very 
helpful, especially to bring data from external systems into 
this optimized format (e.g., if the external system can not work 
with ORC files but can export data as CSV). For example, to 
put CSV-based data into an ORC-based table, a user could go 
one of the following ways: 

• Create an external hive table to reference the newly 
imported data (e.g., in CSV format) in HDFS. Then 
add an internal hive table that contains the same 
column definitions but uses the ORC format for 
storing [9]. After that, the ORC table can be filled 
using a simple "INSERT INTO ... SELECT ... FROM 
..." command. This generates the corresponding ORC 
files on HDFS in background [10]. 

• Using a Spark job to read in the original files (e.g., in 
CSV format), optionally transform the data and write 
it to Hive (or HDFS) in ORC-based format. 

B. Storing the semistructured data 
As explained in the introduction section, the data base of 

the project partner also consists of semistructured data 
created during the quality tests after production (different 
schema from file to file, depending on test type, and software 
version). Since this data makes up a large part of the data 
base, the outsourcing of these files was also examined. 

1) Composition of the semistructured data 
The quality test results don not have this well-known CSV 

structure, as they contain some metadata at the beginning of 
each file, and every file can have another bunch of columns, 
that contain the test results. Figure 2 is an illustration of the 
coarse structure of such a test result file: 

 

 
Figure 2.  Schema of a test result file 

The header rows (A) have always the same structure and 
can help to identify a single test file within all the files. Also, 

the first columns (C) are always the same in every file, they 
identify the rows inside a test file. Area (B) contains meta 
information about the following rows, like column names, 
min / max values, and units. Its width depends on the amount 
of test columns. The test columns (D) contain the results of 
the test cases and can be different in each file (but are the 
same within one file, containing null values if necessary).  

2) Storing the semistructured data in HBase 
Since these files have different schemas, the default bulk-

load mechanisms can not be used for importing this data. That 
is why we have decided to process the data with Apache 
Spark, because it has an extensive API and can handle almost 
any kind of data. Spark also has interfaces to almost all 
datastores that exist for Hadoop, e.g., HDFS, Hive and 
HBase. We examined two different approaches for storing 
these test data files, that follow in the next sections. 

a) Spark-Job that writes an HBase table 
The first approach of storing the data was a combination 

between Spark and Apache HBase. We decided to use Spark 
to read in and transform the data into key-value pairs, that 
could be written into the NoSQL database HBase afterwards. 
Since HBase stores data in form of key-value pairs this is an 
interesting opportunity for storing un- or semi-structured 
data. To do so, we had to split the regarding rows that 
contained the test results into a combination of row key and 
key-value pairs. The row key is used to identify a row 
globally within the entire data base (i.e., across all files). To 
get a unique key, we had to combine the information of the 
header rows (file identification) and the base columns, which 
identify the rows inside a single file. So, the key consists of 
the following parts: 

 
idFile = <Lot>_<Sublot>_<WaferID>_<Date>_<Revision>_<UserText> 

keyRow = <idFile>_<PID>_<HBIN>_<DIE_X>_<DIE_Y> 
Figure 3.  Composition of the row key. DIE_X and DIE_Y are the x and y 

coordinates of the die on the wafer. 

In combination with the row key, a list of key-value pairs 
(that represent the test name and its value) can be added to a 
HBase Put object to be sent to the database by using a Spark 
application. After reading the different CSV files (test results) 
from HDFS, Spark creates these Put objects by processing the 
files in parallel and afterwards calling a bulk-load function on 
the HBase API. Here is the relevant code snippet: 

 
// This is inside the Spark Job 
JavaRDD<HBaseRowEntry> rowsRDD = ... 
hbaseContext = new JavaHBaseContext(sc, baseConf); 
hbaseContext.bulkPut(rowsRDD, name, new PutFunction()); 
 
public class PutFunction  
 implements Function<HBaseRowEntry, Put> { 
  @Override 
  public Put call(HBaseRowEntry entry) throws Exception { 
    Put put = new Put(entry.getKey().getBytes()); 
    for(MyKeyValue kv: entry.getKeyValues()) { 
      put.addColumn(kv.getCF, kv.getCQ(), kv.getValue()); 
    } 
    return put; 
}} 

Figure 4.  Writing to HBase using the Java API 

C D 

B 

A 
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We were able to try this approach in a test phase and we 
successfully imported more than 100 GB of test result files 
into HBase by running this Spark Job. The problem is that 
additional skills would be needed to launch and administrate 
the HBase infrastructure.  

b) Spark-Job that writes an Hive table 
After evaluating the first approach, we took a closer look 

at the data and found out that it was possible to bring this 
semistructured data into a structured form. That was possible, 
because we learned from the company’s employees that they 
will always read at least one entire column of the test result 
files for analysis purposes. With this new knowledge, we were 
able to plan a new data structure, which then enabled to have 
a fix schema over all files. Figure 5 shows the transformation 
that brings the data into a globally identical schema: 

 

 
Figure 5.  Transforming the test result file 

As shown in the figure, the headers that identify a file have 
been moved into the test rows below. They are still used to be 
able to find a specific file. The main difference is the 
transformation of the test columns, as they have been 
converted to row-based key-value pairs. The new “Key” 
column contains the test names, while the test results can be 
found in an array of values under the new column 
“ValueList”. This means, that the array of the ValueList 
column has as much elements as the test result file had test 
rows before. Also, there will be generated as much rows for a 
test result file as the original file had columns. This schema 
can be used to store the contents of all test result files in a 
common, structured table together. As already mentioned, this 
only works performant under the condition that the smallest 
unit read out is an entire (former) test column, which means 
the reading of a complete ValueList array in the new format. 
Reading smaller units could cause performance issues, as the 
array has to be iterated to find the correct item (then the key-
value approach with HBase would be a better solution). But 
since the company wants to read complete test columns this is 
a better solution, as we could use Apache Hive to save this 
data. As Hive is already chosen in the company for storing the 
structured data, they don nott need to administrate and learn a 
new tool. Spark also has native connectors to the Hive 
warehouse and can write this data to it in parallel, after 
bringing the test results into the new format. 

C. Realizing the data import process 
Now that it has been determined, how and where the data 

will be stored, the import process could be planned. An SAP 

system acts as the data supplier, while the HDFS and Apache 
Hive serve as data sink. We also decided to use Apache Spark 
for data import, as it is flexible and can operate natively with 
these Hadoop components, and this also avoids the 
introduction of another tool. The idea now was to upload the 
relevant data files into HDFS and then read them via Spark, 
transform (if necessary) and finally write them into the 
corresponding Hive tables. A basic scheme of the import 
process is shown in Figure 6. 

 
Figure 6.  Import Process steps 

The following steps are performed in the import process: 
• SAP: Exporting the data as CSV files and 

uploading them into HDFS. 
• Spark: Read the files from HDFS and read in the 

corresponding Hive table into datasets (in-
memory). 

• Update the dataset by combining the CSV file(s) 
with the Hive table content. 

• Writing the final dataset content back to Hive 
table (overwrite). 

The CSV file that is exported from SAP system must have 
a separate column that contains information, whether the 
corresponding row shall be added or removed – updates are 
realized by a deletion, followed by an insert. Figure 7 is an 
example of such an import file: 

 

 
Figure 7.  Example of an import file 

As explained before, Spark first reads in the complete Hive 
table, where the updates should be run against. The table 
content is held in-memory during Spark job execution. In the 
next step, the update file is read from HDFS and split into 
delete and insert rows. Then the delete rows are used to 
remove the corresponding rows from the table content (null 
values are treated as wildcards). Afterwards the rows 
containing the inserts are appended to the table content. 
Finally, the dataset containing the updated content is written 
back into the Hive table. The complete Hive table is 
overwritten in this step. 

To trigger the explained Spark import job, we use Apache 
Livy. Livy is a REST based interface that enables to submit 
Spark jobs from everywhere, also from outside the cluster. 
This is helpful since the company needs to start the import job 
from their SAP system, after writing the update files into 
HDFS. In the final status (May 2019), the data is gathered 
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inside the SAP system at night and written to HDFS, before 
the Spark import job is triggered by a Livy call. 

D. Data processing 
The data processing is also done by using Apache Spark 

jobs. Since Spark has connectors to data stores like Hive and 
HBase, it is possible to read and write them from a native 
Spark application. There is also another tool that is 
particularly suitable for prototyping new Spark jobs. Apache 
Zeppelin is a web-based notebook, with interfaces to Hive (via 
JDBC), HBase (via Phoenix) and Spark. The respective tools 
are connected to Zeppelin via so-called interpreters. A user 
gets access to a Spark session, that is created automatically on 
starting the corresponding interpreter. In these notebooks, for 
example, Spark program code can be tried out in a direct and 
uncomplicated way, without the effort of creating Spark 
sessions, application packaging and publishing in the phase of 
prototyping.  

The partner company also decided to use Zeppelin 
notebooks to introduce and try out new application logic. 
After a successful test phase, the logic is moved into a 
separate, stand-alone application, that is created, compiled and 
packaged in an appropriate IDE. Since the Spark interpreter 
for Zeppelin works with Scala (alternatively also with 
Python), we use a Scala IDE to export the final application 
logic as JAR files. These files are moved into the HDFS and 
can be executed by using the spark-submit script or by making 
a corresponding Livy call from outside the cluster. Second is 
the standard procedure, since a large part of the applications 
are started from the external SAP system or from user’s client 
computers. Since the results of these data processing 
applications can be very big, storing these datasets in HDFS 
or Hive tables is a better approach than sending results back 
to the client, which could lead to local memory problems. 
After finishing a job, the user can preview (or download) the 
results by exploring the data in HDFS or querying the 
corresponding Hive tables.   
 

 
Figure 8.  Data processing overview 

Figure 8 shows the tools that are used for data processing with 
Spark (SAP and Oracle DB are external components that are 
used in the company). 
 

V. BENCHMARKS 
In order to show and compare the performance of the new 

Hadoop system, first benchmarks were carried out. For a 
better comparability, the queries were executed on the old 
and afterwards on the new system. 

A. Comparison of the data size 
The graph below shows the various amounts of data 

required to store the “HistStep” table, which contains the 
operations performed on the lots during production. The data 
has the following characteristics: 

• approx. 275 mio. rows 
• 17 columns (String, VarChar[1-20]) 

In Oracle database, this table required about 34.9 GB of disk 
space, plus optional (for performance reasons) index 
information of around 29.9 GB. So, the table thus required a 
total of 64.8 GB. In contrast, the ORC-based Hive table only 
requires about 5.2 GB in HDFS (partitioned, but without 
bloom filters and without replication). Using bloom filters 
would increase the storage space by a small amount, but these 
are not needed for current performance. So, the Hive tables 
reduced the disk space requirements by factor 6.7 (without 
Oracle table index) or even by factor 12.5 (with Oracle table 
index) (see Figure 9). 

 
Figure 9.  Storage requirements for table "HistStep" 

The comparison of space needed to save the results of the 
product quality tests shows similar results. Saving this data 
takes around 13 TB in the Oracle database while Hive table 
only needs about 1.6 TB of HDFS storage without replication 
(see Figure 10). 

 
Figure 10.  Storage requirements for table "STDF_Data" 
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We have also received first performance benchmarks 
from our project partner. The results show the runtimes of lot-
based queries, executed on the “HistStep” table, showed in 
the first benchmark. On small queries, where only a few lots 
are selected, Oracle is much faster than Hive. But even with 
queries for a few hundred lots, Hive takes less time to select, 
process and return the data. Since lot-based analyses must 
include thousands of lots, the result on the far right of the 
diagram is the most interesting for the company. The 
difference in performance can be clearly seen in Figure 11. 

 
Figure 11.  Query Runtime for table "HistStep" 

While Oracle scales rather linearly, Hive’s runtime 
increases only minimally. In this scenario, Hive also offers a 
major performance advantage over the previous system. 

VI. CONCLUSION 
This project examined the applicability of a Hadoop-

based platform for the storage and processing of company-
relevant data. Alternative ways to import, store and process 
different types of data were demonstrated on practical 
examples. Depending on the problem, the Apache Hadoop 
framework offers various components to implement the 
different tasks. In this project, a Hadoop-based cluster was 
successfully introduced to a company’s existing data 
platform to store and analyze data over a longer time. Helpful 
tools are especially the basic Hadoop components like the 

HDFS, the SQL interface Apache Hive, the NoSQL database 
HBase, as well as the processing engine Apache Spark. This 
project confirms by means of an industrial project that 
Hadoop can be used to build such a data-driven platform. 
Hadoop comes with special storage formats and engines that 
can be used for efficient storage and high-performance 
analyses.  
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