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Abstract—Research in Featuring Engineering has been part of 

the data pre-processing phase of machine learning projects for 

many years, but we sometimes forget its importance. It can be 

challenging for new people working with machine learning to 

understand its importance along with various approaches to find 

an optimized model. This work uses the Spotify Song Popularity 

dataset to compare and evaluate Feature Engineering, Feature 

Selection and Hyperparameter Optimization. The result of this 

work will demonstrate that Feature Engineering has a greater 

effect on model efficiency when compared to the alternative 

approaches. 
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I. INTRODUCTION 

Feature selection and hyperparameter optimization are 
two sophisticated machine learning techniques with a strong 
research background. For an early-stage data scientist, it is 
very easy to think that they are the best alternatives for a 
machine learning task. 

Feature engineering is an important, but labour-intensive 
take on machine learning [1]. Most machine learning 
performance is heavily dependent on the representation of the 
feature vector. As a result, much of the actual effort in 
deploying machine learning algorithms goes into the design 
of pre-processing pipelines, data transformations, domain and 
metadata knowledge [1]. 

Kaggle competitions and the Knowledge Discovery and 
DataMining (KDD) Cup have seen feature engineering play a 
very important part in several winning submissions [2]. 
Additionally, the Kaggle Algorithmic Trading Challenge was 
won with an ensemble of models and feature engineering. The 
features engineered for these competitions were created 
manually by the data scientist, utilizing their domain 
knowledge. 

This paper is structured as follows. Section 2 shows a brief 
exploration of related work. Sections 3, 4 and 5 step through 
using feature engineering, feature selection and 
hyperparameter optimization of a regression machine 
learning task over the Spotify Song Popularity dataset [3]. The 
influence of each step over the machine learning task is 
measured using a Cross-Validation (CV) [4] and the Root 
Mean Square Error (RMSE) loss function. Finally, Section 6 
presents the conclusions and future work. 

II. RELATED RESEARCH 

There are some common research topics in machine 
learning literature. One of them is about comparing different 
machine learning methods to solve specific tasks [5] [6] and 
identify the best scenario for a method. 

Another common machine learning research topic is to 
compare similar techniques, as is the case of feature selection 
and feature extraction [7]. The objective of both methods is to 
reduce the feature space to improve data analysis. Feature 
selection performs the reduction by selecting a subset of 
features without transforming them, while feature extraction 
reduces dimensionality by computing a transformation of the 
original features to create other features that should be more 
significant. 

In featuring engineering research, it is common to find 
comparisons between combinations of different engineered 
features and methods to identify which methods generally 
benefit from the same set of engineered features [8]. 

Considering that in every machine learning task the 
objective is to reduce the error, there is no reason not to 
compare completely different techniques, such as those 
proposed in this work. 

III. FEATURE ENGINEERING 

Feature engineering involves calculating new features, 
based on the values of the other features, and it is primarily a 
manual, time consuming task [8]. 

The Spotify Song Popularity dataset [3] consists of 129 
thousand rows and 17 independent variables of which three 
are strings and cannot be used in the machine learning task. 
For this type of data, feature engineering focuses on 
generating numerical variables from these. 

Every new variable was evaluated with a correlation 
(spearman) test to validate its relationship with the target and 
its criterion could be very weak (0.0-0.19), weak (0.2-0.39), 
moderate (0.4-0.59), strong (0.6-0.79), and very strong (0.8-
1.0). Some variables could be generated in different ways, or 
their values were similar to those of another variable. In these 
cases, the correlation test was used to compare all variants and 
the best one was used. All statistics generated for this step 
were statistically significant (p-value < 0.05). 
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A. Numerical Release Date 

This variable is the numerical representation of the 
‘release_date’ variable (YYYY-MM-DD or YYYY if the data 
is incomplete). The integer part is the year and the float part 
is the elapsed percentage of the year: 
 

𝑦𝑒𝑎𝑟_𝑟𝑑 = 𝑦𝑒𝑎𝑟(𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒) + (𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟(𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒)/365)  
 

This new variable is similar to the variable ‘year’; both 
variables are moderately correlated with the target variable, 
but ‘year’ (r=0.5386) is a better option than ‘year_rd’ 
(r=0.5391). This is why this variable was discarded. 

B. Number of Artists 

This variable was created from the ‘artists’ variable which 
is a string formatted as a Python list. Each value was 
transformed to a list object, and its length is the value for this 
new variable. Its test shows a very weak negative correlation 
(r=-0.1968). This fits in with an observed pattern where songs 
with many artists tend to be unpopular 

C. Artists' Mean Popularity Value 

This variable was calculated from the ‘artists’ and 
‘popularity’ variables. First, a dictionary of artist’s popularity 
was created. Each song's popularity is used to calculate the 
artists’ mean popularity value. 

There is a risk here. When evaluating a new song and one 
artist is not present in the dictionary, his/her popularity is zero. 
Considering the influence of this variable on the final result, 
an imputation should be made to avoid overfitting. The 
imputation used is the mean value of the artist's popularity. Its 
test shows a strong correlation (r=0.911). 

D. Name Length 

The length of the ‘name’ of the song produces a weak 
negative correlation (r=-0.2941). This fits with the observed 
pattern where songs with long names tend to be unpopular. 

E. Name Language 

Worldwide, English songs are more popular than other 
languages and recently thanks to Reggaeton, Spanish songs 
are popular too, but this information is not available in the 
dataset. One easy way to get the language is to detect the 
language in the title (name) of the song. 

There are some libraries available in Python to detect 
language, some of them based on neural networks. For this 
new variable, five libraries were taken into consideration. 

● LangDetect [9] is a direct port of Google's language-
detection library from Java to Python. 

● TextBlob [10] uses Google Translate API for 
language detection. It requires internet connection. 

● FastText [11] is a text classifier that works with 
pretrained models. 

● LangId [12] works with transductive learning and 
transfer learning techniques. 

● CLD3 [13] uses a trained neural network model. 

Five language detection tasks were performed using each 
library. LangDetect identified 46 languages, TextBlob 88, 

FastText 120, LangId 79 and CLD3 97, so there were five new 
high cardinality variables. 

Some encoders were taken into consideration to evaluate 
the best way to represent these new variables. 

● Label Encoder encodes a categorical variable with 
value between 0 and n_categories-1. 

● Target Encoder [14] replaces features with a blend 
of the expected value of the target given a particular 
categorical value and the expected value of the target 
over all the training data. 

● Leave One Out Encoder [14] is similar to target 
encoder, but excludes the current row's target when 
calculating the mean target for a level to reduce the 
effect of outliers. 

● Min Hash Function [15] is inspired by the document 
indexation literature, and in particular the idea of 
Locality-Sensitive Hashing (LSH). 

A correlation test was performed in every combination of 
library-encoder to identify the best one (see Figure 1). The 
results show that Text Blob with Target Encoder is the best 
option. 

Between the libraries for language detection, TextBlob 
gives the best results. When performing a manual inspection 
of the results, it was evident other libraries confused Spanish 
and Italian, and this perception was supported by its statistics 
where TextBlob was the best, regardless of the encoder. 

 
Figure 1.  Libraries and Encoders Correlation Comparison 

 

Finally, a Cross-Validation [4] (k=5) shows the result of 
the feature engineering process was a RMSE reduction from 
17.1624, using only the original non-string features, to 8.9846 
including the new variables. 

IV. FEATURE SELECTION 

In machine learning, feature selection entails selecting a 
subset of the available features in a dataset to use for model 
development. Among its advantages are generating better 
models and reducing computations cost [16]. The techniques 
considered in this section are Least Absolute Shrinkage and 
Selection Operator (LASSO) and Sequential Forward 
Selection (SFS). 

First, an SFS task was executed using all features to detect 
any negative performance contribution to the model. Figure 2 
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shows there are no clear negative contributions to the model, 
but approximately 5 features seem to have a neutral 
contribution to the performance. 

 
Figure 2. Sequential Forward Selection using all features 

 

In order to get the number of features to consider based on 
evidence, a LASSO task was run using different 
regularization parameter values. The recommended values are 
0.1, 0.01 and 0.001 and the one that includes more variables 
(regularization=0.01) reduces the number of features from 18 
to 14, excluding ‘danceability’, ‘energy’, ‘liveness’ and 
‘speechiness’. 

Considering the number of features proposed by LASSO, 
an SFS task was run using the same number, and it results 
with a different subset of features. The SFS task excludes 
variables ‘mode’, ‘key’, ‘explicit’ and ‘danceability’. Only 
‘danceability’ was excluded by both processes. 

In order to choose the best subset, three regression tasks 
were run using CV (k=5). The results were RMSE=8.9846 
using all non-string features, RMSE=8.9845 using the SFS 
subset and RMSE=8.9984 using the LASSO subset with SFS 
being the best subset. 

The improvement is insignificant, so the advantage is to 
reduce the computational cost and omit features that do not 
contribute to the performance. It is important to mention that 
no new features were excluded by any methods. 

V. HYPERPARAMETER OPTIMIZATION 

Hyperparameter optimization consists of testing a set of 
hyperparameters of a model and identifying the optimal 
values for them. In this section, five methods were taken into 
consideration. They can be divided in two groups: linear (1 
and 2) and tree methods (3, 4 and 5). 

1) Linear Regression (LR): creates a linear relationship 
between features and target. 

2) Ridge Regression (RR): is a variant of LR where the 
loss function is the linear least squares. 

3) Decision Tree Regressor (DTR): is the regression 
version of the decision tree method. 

4) Extra Tree Regressor (ETR): is similar to DTR, but 
this method changes the way of splitting the nodes. 

5) Random Forest Regressor (RFR): is an ensemble of 
a multitude of decision trees. It uses averaging to 
improve accuracy and control overfitting. 

The hyperparameter optimization task was performed 
using a CV grid search  (K=3). Unfortunately, there are no 
hyperparameters for the Linear Regression, for the Ridge 
Regression there is one, the regularization strength, but this 
only improves the RMSE by 0.000004, so this step focused 
on the tree methods. 

In the tree methods, one parameter directly influences the 
results. This parameter is the max depth parameter, which 
specifies how many levels of nodes the tree could have. When 
this parameter is set to none, the tree will expand the nodes 
until all leaves are pure or until all leaves contain less than 
two samples. 

Limiting the tree was clearly a good option, not only 
because the train for the entire tree takes too much time, but 
the results are better. After an exhaustive evaluation, the best 
values of max depth were 11 for DTR and 15 for ETR and 
RFR. Another parameter was the criterion which measures the 
quality of a split where the only options that worked were 
mean square error and mean squared error with Friedman’s 
improvement score for potential splits, but the results prove 
that this parameter does not affect the metrics. 

In the specific case of DTR and ETR, there was an option 
to add Bagging Regression (BR). The BR is an optimization 
to improve the stability and accuracy of the method. The 
Bagging splits the data and uses it in different decision trees 
and ensembles the result. In both cases the BR was the best 
option. 

In order to compare the RMSE metrics with the previous 
section of this work, five CV tasks (K=5) were run using the 
best parameters for each method. Figure 3 shows that the RFR 
model gets the best metrics. 

 
Figure 3. Model Comparison 

 

The result of the hyperparameter optimization and the 
model comparison was a RMSE reduction from 8.98 to 7.99. 
Although the grid search task is automatic, it takes a lot of 
execution time, which requires monitoring because it can 
easily crash when computer resources are depleted. 
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VI. CONCLUSIONS AND FUTURE WORK 

The analysis performed over the Spotify Song Popularity 
dataset involves feature engineering, feature selection, 
hyperparameter optimization and model selection using CV 
to validate each step. 

 Feature engineering was by far the technique that 
generated the best reduction of the RMSE metric. Figure 4 
shows how this technique reduced the error to almost half, 
while the improvements produced by Feature Selection and 
Hyperparameter Optimization/Model Selection was not 
significant. 

 
Figure 4. Sections Improvement Comparison 

 

For this dataset, it can be concluded that a well performed 
feature engineering task has a greater impact on the model 
performance than more sophisticated machine learning 
techniques. Even when each step takes approximately the 
same time and resources, its value is not the same. 

This experiment focused on using one particular dataset. 
Future work will look to expand to include more datasets from 
a variety of domains. This will be done to evaluate the effect 
of these tasks and to see if similar outcomes can be achieved.  
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