
Feature Engineering vs Feature Selection vs Hyperparameter Optimization in the

Spotify Song Popularity Dataset

Alan Cueva Mora

School of Computer Science

Technological University Dublin

Dublin, Ireland

e-mail: d20125565@mytudublin.ie

Brendan Tierney

School of Computer Science

Technological University Dublin

Dublin, Ireland

e-mail: brendan.tierney@tudublin.ie

Abstract—Research in Featuring Engineering has been part of

the data pre-processing phase of machine learning projects for

many years, but we sometimes forget its importance. It can be

challenging for new people working with machine learning to

understand its importance along with various approaches to find

an optimized model. This work uses the Spotify Song Popularity

dataset to compare and evaluate Feature Engineering, Feature

Selection and Hyperparameter Optimization. The result of this

work will demonstrate that Feature Engineering has a greater

effect on model efficiency when compared to the alternative

approaches.

Keywords-feature engineering; language identification;

feature selection; hyperparameter optimization; cross-validation.

I. INTRODUCTION

Feature selection and hyperparameter optimization are
two sophisticated machine learning techniques with a strong
research background. For an early-stage data scientist, it is
very easy to think that they are the best alternatives for a
machine learning task.

Feature engineering is an important, but labour-intensive
take on machine learning [1]. Most machine learning
performance is heavily dependent on the representation of the
feature vector. As a result, much of the actual effort in
deploying machine learning algorithms goes into the design
of pre-processing pipelines, data transformations, domain and
metadata knowledge [1].

Kaggle competitions and the Knowledge Discovery and
DataMining (KDD) Cup have seen feature engineering play a
very important part in several winning submissions [2].
Additionally, the Kaggle Algorithmic Trading Challenge was
won with an ensemble of models and feature engineering. The
features engineered for these competitions were created
manually by the data scientist, utilizing their domain
knowledge.

This paper is structured as follows. Section 2 shows a brief
exploration of related work. Sections 3, 4 and 5 step through
using feature engineering, feature selection and
hyperparameter optimization of a regression machine
learning task over the Spotify Song Popularity dataset [3]. The
influence of each step over the machine learning task is
measured using a Cross-Validation (CV) [4] and the Root
Mean Square Error (RMSE) loss function. Finally, Section 6
presents the conclusions and future work.

II. RELATED RESEARCH

There are some common research topics in machine
learning literature. One of them is about comparing different
machine learning methods to solve specific tasks [5] [6] and
identify the best scenario for a method.

Another common machine learning research topic is to
compare similar techniques, as is the case of feature selection
and feature extraction [7]. The objective of both methods is to
reduce the feature space to improve data analysis. Feature
selection performs the reduction by selecting a subset of
features without transforming them, while feature extraction
reduces dimensionality by computing a transformation of the
original features to create other features that should be more
significant.

In featuring engineering research, it is common to find
comparisons between combinations of different engineered
features and methods to identify which methods generally
benefit from the same set of engineered features [8].

Considering that in every machine learning task the
objective is to reduce the error, there is no reason not to
compare completely different techniques, such as those
proposed in this work.

III. FEATURE ENGINEERING

Feature engineering involves calculating new features,
based on the values of the other features, and it is primarily a
manual, time consuming task [8].

The Spotify Song Popularity dataset [3] consists of 129
thousand rows and 17 independent variables of which three
are strings and cannot be used in the machine learning task.
For this type of data, feature engineering focuses on
generating numerical variables from these.

Every new variable was evaluated with a correlation
(spearman) test to validate its relationship with the target and
its criterion could be very weak (0.0-0.19), weak (0.2-0.39),
moderate (0.4-0.59), strong (0.6-0.79), and very strong (0.8-
1.0). Some variables could be generated in different ways, or
their values were similar to those of another variable. In these
cases, the correlation test was used to compare all variants and
the best one was used. All statistics generated for this step
were statistically significant (p-value < 0.05).

70Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

A. Numerical Release Date

This variable is the numerical representation of the
‘release_date’ variable (YYYY-MM-DD or YYYY if the data
is incomplete). The integer part is the year and the float part
is the elapsed percentage of the year:

𝑦𝑒𝑎𝑟_𝑟𝑑 = 𝑦𝑒𝑎𝑟(𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒) + (𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟(𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒)/365)

This new variable is similar to the variable ‘year’; both
variables are moderately correlated with the target variable,
but ‘year’ (r=0.5386) is a better option than ‘year_rd’
(r=0.5391). This is why this variable was discarded.

B. Number of Artists

This variable was created from the ‘artists’ variable which
is a string formatted as a Python list. Each value was
transformed to a list object, and its length is the value for this
new variable. Its test shows a very weak negative correlation
(r=-0.1968). This fits in with an observed pattern where songs
with many artists tend to be unpopular

C. Artists' Mean Popularity Value

This variable was calculated from the ‘artists’ and
‘popularity’ variables. First, a dictionary of artist’s popularity
was created. Each song's popularity is used to calculate the
artists’ mean popularity value.

There is a risk here. When evaluating a new song and one
artist is not present in the dictionary, his/her popularity is zero.
Considering the influence of this variable on the final result,
an imputation should be made to avoid overfitting. The
imputation used is the mean value of the artist's popularity. Its
test shows a strong correlation (r=0.911).

D. Name Length

The length of the ‘name’ of the song produces a weak
negative correlation (r=-0.2941). This fits with the observed
pattern where songs with long names tend to be unpopular.

E. Name Language

Worldwide, English songs are more popular than other
languages and recently thanks to Reggaeton, Spanish songs
are popular too, but this information is not available in the
dataset. One easy way to get the language is to detect the
language in the title (name) of the song.

There are some libraries available in Python to detect
language, some of them based on neural networks. For this
new variable, five libraries were taken into consideration.

● LangDetect [9] is a direct port of Google's language-
detection library from Java to Python.

● TextBlob [10] uses Google Translate API for
language detection. It requires internet connection.

● FastText [11] is a text classifier that works with
pretrained models.

● LangId [12] works with transductive learning and
transfer learning techniques.

● CLD3 [13] uses a trained neural network model.

Five language detection tasks were performed using each
library. LangDetect identified 46 languages, TextBlob 88,

FastText 120, LangId 79 and CLD3 97, so there were five new
high cardinality variables.

Some encoders were taken into consideration to evaluate
the best way to represent these new variables.

● Label Encoder encodes a categorical variable with
value between 0 and n_categories-1.

● Target Encoder [14] replaces features with a blend
of the expected value of the target given a particular
categorical value and the expected value of the target
over all the training data.

● Leave One Out Encoder [14] is similar to target
encoder, but excludes the current row's target when
calculating the mean target for a level to reduce the
effect of outliers.

● Min Hash Function [15] is inspired by the document
indexation literature, and in particular the idea of
Locality-Sensitive Hashing (LSH).

A correlation test was performed in every combination of
library-encoder to identify the best one (see Figure 1). The
results show that Text Blob with Target Encoder is the best
option.

Between the libraries for language detection, TextBlob
gives the best results. When performing a manual inspection
of the results, it was evident other libraries confused Spanish
and Italian, and this perception was supported by its statistics
where TextBlob was the best, regardless of the encoder.

Figure 1. Libraries and Encoders Correlation Comparison

Finally, a Cross-Validation [4] (k=5) shows the result of
the feature engineering process was a RMSE reduction from
17.1624, using only the original non-string features, to 8.9846
including the new variables.

IV. FEATURE SELECTION

In machine learning, feature selection entails selecting a
subset of the available features in a dataset to use for model
development. Among its advantages are generating better
models and reducing computations cost [16]. The techniques
considered in this section are Least Absolute Shrinkage and
Selection Operator (LASSO) and Sequential Forward
Selection (SFS).

First, an SFS task was executed using all features to detect
any negative performance contribution to the model. Figure 2

71Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

shows there are no clear negative contributions to the model,
but approximately 5 features seem to have a neutral
contribution to the performance.

Figure 2. Sequential Forward Selection using all features

In order to get the number of features to consider based on
evidence, a LASSO task was run using different
regularization parameter values. The recommended values are
0.1, 0.01 and 0.001 and the one that includes more variables
(regularization=0.01) reduces the number of features from 18
to 14, excluding ‘danceability’, ‘energy’, ‘liveness’ and
‘speechiness’.

Considering the number of features proposed by LASSO,
an SFS task was run using the same number, and it results
with a different subset of features. The SFS task excludes
variables ‘mode’, ‘key’, ‘explicit’ and ‘danceability’. Only
‘danceability’ was excluded by both processes.

In order to choose the best subset, three regression tasks
were run using CV (k=5). The results were RMSE=8.9846
using all non-string features, RMSE=8.9845 using the SFS
subset and RMSE=8.9984 using the LASSO subset with SFS
being the best subset.

The improvement is insignificant, so the advantage is to
reduce the computational cost and omit features that do not
contribute to the performance. It is important to mention that
no new features were excluded by any methods.

V. HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization consists of testing a set of
hyperparameters of a model and identifying the optimal
values for them. In this section, five methods were taken into
consideration. They can be divided in two groups: linear (1
and 2) and tree methods (3, 4 and 5).

1) Linear Regression (LR): creates a linear relationship
between features and target.

2) Ridge Regression (RR): is a variant of LR where the
loss function is the linear least squares.

3) Decision Tree Regressor (DTR): is the regression
version of the decision tree method.

4) Extra Tree Regressor (ETR): is similar to DTR, but
this method changes the way of splitting the nodes.

5) Random Forest Regressor (RFR): is an ensemble of
a multitude of decision trees. It uses averaging to
improve accuracy and control overfitting.

The hyperparameter optimization task was performed
using a CV grid search (K=3). Unfortunately, there are no
hyperparameters for the Linear Regression, for the Ridge
Regression there is one, the regularization strength, but this
only improves the RMSE by 0.000004, so this step focused
on the tree methods.

In the tree methods, one parameter directly influences the
results. This parameter is the max depth parameter, which
specifies how many levels of nodes the tree could have. When
this parameter is set to none, the tree will expand the nodes
until all leaves are pure or until all leaves contain less than
two samples.

Limiting the tree was clearly a good option, not only
because the train for the entire tree takes too much time, but
the results are better. After an exhaustive evaluation, the best
values of max depth were 11 for DTR and 15 for ETR and
RFR. Another parameter was the criterion which measures the
quality of a split where the only options that worked were
mean square error and mean squared error with Friedman’s
improvement score for potential splits, but the results prove
that this parameter does not affect the metrics.

In the specific case of DTR and ETR, there was an option
to add Bagging Regression (BR). The BR is an optimization
to improve the stability and accuracy of the method. The
Bagging splits the data and uses it in different decision trees
and ensembles the result. In both cases the BR was the best
option.

In order to compare the RMSE metrics with the previous
section of this work, five CV tasks (K=5) were run using the
best parameters for each method. Figure 3 shows that the RFR
model gets the best metrics.

Figure 3. Model Comparison

The result of the hyperparameter optimization and the
model comparison was a RMSE reduction from 8.98 to 7.99.
Although the grid search task is automatic, it takes a lot of
execution time, which requires monitoring because it can
easily crash when computer resources are depleted.

72Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

VI. CONCLUSIONS AND FUTURE WORK

The analysis performed over the Spotify Song Popularity
dataset involves feature engineering, feature selection,
hyperparameter optimization and model selection using CV
to validate each step.

 Feature engineering was by far the technique that
generated the best reduction of the RMSE metric. Figure 4
shows how this technique reduced the error to almost half,
while the improvements produced by Feature Selection and
Hyperparameter Optimization/Model Selection was not
significant.

Figure 4. Sections Improvement Comparison

For this dataset, it can be concluded that a well performed
feature engineering task has a greater impact on the model
performance than more sophisticated machine learning
techniques. Even when each step takes approximately the
same time and resources, its value is not the same.

This experiment focused on using one particular dataset.
Future work will look to expand to include more datasets from
a variety of domains. This will be done to evaluate the effect
of these tasks and to see if similar outcomes can be achieved.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation

learning: A review and new perspectives,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,

pp. 1798–1828, 2013.

[2] W. Zhou, T. D. Roy, and I. Skrypnyk, "The KDD Cup 2019

Report," SIGKDD Explor. Newsl. 22, Jun 2020, pp. 8-17, doi:

10.1145/3400051.3400056

[3] Kaggle.com, Spotify Popularity Prediction. Retrieved: Aug,

2021. [Online]. Available from:

https://www.kaggle.com/c/spotify-popularity-prediction/

2021.03.22

[4] D. Berrar, “Cross-Validation,” Encyclopedia of Bioinformatics

and Computational Biology, Vol 1, pp. 542–545, Elsevier,

2019, doi: 10.1016/B978-0-12-809633-8.20349-X

[5] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A

comparison of machine learning techniques for phishing

detection,” Proceedings of the anti-phishing working groups

2nd annual eCrime researchers summit on - eCrime ’07, 2007,

pp 60-69, doi: 10.1145/1299015.1299021.

[6] S. Pouriyeh et al., “A comprehensive investigation and

comparison of Machine learning Techniques in the domain of

heart disease,” 2017 IEEE Symposium on Computers and

Communications (ISCC), Jul 2017, pp. 204-207, doi:

10.1109/iscc.2017.8024530.

[7] S. Khalid, T. Khalil, and S. Nasreen, "A survey of feature

selection and feature extraction techniques in machine

learning," 2014 Science and Information Conference, 2014, pp.

372-378, doi: 10.1109/SAI.2014.6918213.

[8] J. Heaton, "An empirical analysis of feature engineering for

predictive modeling", SoutheastCon 2016, 2016, pp. 1-6, doi:

10.1109/SECON.2016.7506650

[9] Pypi.org. langdetect. Retrieved: Aug, 2021. [Online]. Available

from: https://pypi.org/project/langdetect/

[10] Readthedocs.io. TextBlob: Simplified Text Processing

documentation. Retrieved: Aug, 2021. [Online]. Available

from: https://textblob.readthedocs.io/en/dev/ 2020

[11] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of

Tricks for Efficient Text Classification Retrieved: Aug, 2021.

[Online]. Available from: https://arxiv.org/abs/1607.01759

2016

[12] M. Lui and T. Baldwin. “Cross-domain Feature Selection for

Language Identification” Proceedings of the Fifth International

Joint Conference on Natural Language Processing, pp. 553-

561, Nov. 2011. Available from

http://www.aclweb.org/anthology/I11-1062

[13] Pypi.org. pycld3. Retrieved: Aug, 2021. [Online]. Available

from: https://pypi.org/project/pycld3/

[14] W. D. McGinnis, C. Siu, A. S, and H. Huang. “Category

Encoders: a scikit-learn-contrib package of transformers for

encoding categorical data” The Journal of Open Source

Software, vol 3, pp. 501, Jan. 2018, doi: 10.21105/joss.00501

[15] P. Cerda and G. Varoquaux. Encoding high-cardinality string

categorical variables. Retrieved: Aug, 2021. [Online].

Available from: https://arxiv.org/abs/1907.01860 2020

[16] P. Cunningham, B. Kathirgamanathan, and S. J. Delany.

Feature Selection Tutorial with Python Examples. Retrieved:

Aug, 2021. [Online]. Available from:

https://arxiv.org/abs/2106.06437 2021

73Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

