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Abstract—To meet the performance requirements of enterprise
application for both, transactional application as well as analyt-
ical scenarios, data storage of in-memory databases are split
into two parts: One optimized for reading and a write-optimized
differential buffer. The read-optimized main storage together
with the differential buffer for inserts provide the current state of
the database. In regular intervals the differential buffer is merged
with the main database to maintain compression and query
performance. This merge process runs asynchronous to minimize
the impact on query performance. However, simple duplication
of the data structures prior to the merge process lead to a main
memory consumption of at least twice the size of the database. In
this paper we propose a differential merge update based on single
columns. In typical enterprise application data environments this
leads to a significant reduction of memory consumption as this
type of applications tend to store transactional data in very large
single tables. The Single Column Merge has been implemented in
HYRISE and proved in a test scenario based on real enterprise
data.

Index Terms—In-Memory Database; Column Store; Merge
Process;

I. INTRODUCTION

Enterprise data management systems currently in use are
typically being optimized either for transactional data process-
ing (OLTP) or analytical data processing (OLAP). In order to
combine both requirements for mixed workload scenarios the
introduction of a write optimized differential buffer together
with a read-optimized main storage has been proposed in [4],
[8], [14]. The main advantage of this design is that the com-
pression of the read storage does not need to be re-compressed
every time a data modification operation is executed as all
changes are stored in a differential buffer. However, the main
storage and the differential buffer have to be merged at some
point of time to maintain the performance in read intensive
scenarios, mainly for two reasons:

• Merging the differential buffer into the main relation
decreases the memory consumption since better compres-
sion techniques can be applied.

• Additionally, merging the buffer allows better read query
performance due to an order-preserving value dictionary
of the main store.

• Furthermore, the bit compression of valueID’s allows
better bandwidth utilization which leads to improved read

performance since in-memory databases suffer from the
bandwidth limitations of todays hardware.

The key requirement for the merge process is to have as
little impact as possible on the performance of the database.
Therefore it has to run asynchronously to other operations
such as query execution. The cost of this process is mainly
determined by the performance impact on the other operations
and main memory consumption. This paper focuses on the
optimization of the memory consumption.

A. Enterprise Application characteristics

We applied the concept of a differential buffer to column-
oriented, in-memory databases, as we could show that these
databases perform especially well in Enterprise Application
scenarios. By analyzing customer applications and customer
data we derived typical enterprise application characteristics as
shown in [9], [10]. The most important findings based on the
customer system analysis and their implications on database
design are:

• Enterprise applications typically present data by building
a context for a view, modification to the data only happen
rarely. Hence column-oriented, in-memory databases that
are optimized for reading as proposed in [8], [12] perform
especially well in enterprise application scenarios. In fact,
over 80% of the workload in an OLTP environment are
read operations.

• Tables for transactional data typically consist of 100-300
columns and only a narrow set of attributes is accessed
in typical queries. Column-oriented databases benefit
significantly from this characteristic as entire columns,
rather than entire rows, can be read in sequence.

• Enterprise data is sparse data with a well known value
domain and a relatively low number of distinct values.
Therefore data of enterprise applications qualifies very
well for data compression as these techniques exploit
redundancy within data and knowledge about the data
domain for optimal results. Abadi et al. have shown in
[1] that compression applies particularly well to columnar
storages. Since all data within a column a) has the same
data type and b) typically has similar semantics and thus
low information entropy, i.e. there are few distinct values
in many cases.
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Fig. 1. Column-oriented storage paradigm

• Enterprise applications typically reveal a mix of OLAP
and OLTP characteristics [10]. To support both, the data
storage of in-memory databases are split into two parts,
one optimized for reading and one for writing.

• Data growth in enterprise systems has not shown the same
growth rate as for example social networks. Despite the
fact of a growing number of captured events in enterprise
environments all events are based on actual events related
to the business which have an inherent processing limit
by the size of the company.

Given that findings on enterprise application our approach
to build an application-specific data management is focused
on in-memory data processing with data compression and
column-wise data representation in order to utilize todays
hardware as best as possible.

B. Structure of the paper

The remainder of the paper is structured as the following:
First we introduce HYRISE, our prototypical column-oriented,
in-memory database prototype used to empirically validate our
findings. The next section gives an overview of the traditional
merge process of main storage and differential buffer. In
Section IV, we propose a modified merge algorithm, the Single
Column Merge, that reduces additional memory consumption
during the merge process. Section V gives an overview of
related work while Section VI concludes this work.

II. OVERVIEW OF HYRISE

A. HYRISE architecture

The following section describes the architecture of the
HYRISE prototype, including the storage manager and query
executor.
The storage manager maintains the physically stored data in
main memory and provides access methods for accessing data
while organizing data along columns with applied dictionary
compression. Consequently, all relations are fully decomposed
while a surrogate identifier allows the reconstruction of tuples
of the column partitions. Figure 1 shows the vertical frag-
mentation of a table as used in HYRISE and depicts that
attribute focused read operation can exploit sequential memory
access while tuple reconstruction requires random access to
each column. By choosing to optimize this database prototype
for an online mixed workload (OLXP) as described in [10]

the reconstruction of complete relation in a timely manner
gets equally important as data modifications and scans over
large sets of data.

In case of HYRISE the row or surrogate identifier is implicit
and can be extracted from the position of a value in a column.
Therefore, fast access due to offsetting is made possible which
can also be leveraged in positional joins algorithms. Unlike
other lightweight compression techniques the implemented
dictionary encoding enables this positional access since it
facilitates the change of variable-length fields into fixed-length
data types on each column.

In order to speed up read access by as late as possi-
ble decompression of the actual value the dictionary of the
encoding in HYRISE is sorted leading to order-preserving
values in the actual column. Considering this, predicates can
be applied on the attribute vector and ranges can be looked
up without decompressing every single value. Besides, the
sortation enables fast binary search on the dictionary.

Furthermore, the storage bit-compresses the values pointing
from the dictionary to the attribute vector by using only the
amount of bits necessary to represent the cardinality of distinct
values of each column. Especially in enterprise applications
the attributes are characterized by a limited domain. Hence,
bit compressing value identifiers is very effective and improves
the compression factor even more. Besides the additional
compression bit compressed value identifiers support better
bandwidth utilization in late materialized query executions.

While this extended dictionary compression technique of-
fers both good compression ratio and optimized read access
modifications of data are almost impossible due to fact that the
data would have to be re-compressed every time modification
operation would be executed. For example, if a new value
would change the sort order of the existing dictionary or the
cardinality of distinct values changes in a way that the already
used bits are not sufficient the complete attribute vector has
to be modified. Consequently, all modifications are handled
by a dedicated differential buffer for each table to postpone
re-compression cost to later point of time to distribute the
re-compression cost over all data modifications stored in the
buffer. This re-compression is done by merging differential
buffer and main storage. The buffer implements a vertical
partitioning as well but leaves out both the order-preserving
and value bit-compressing optimizations in order to allow fast
appends to the table. This architecture is based on the fact that
decomposition of relations in main memory with the lookup or
extension of the dictionary is way faster than writing the log
to disk that has to happen in in-memory databases to assure
durability.

Given the fact of a dedicated buffer to handle all data
changes, updates have to be implemented as an insert followed
by an invalidation of the to be updated record. The invalidation
is maintained by a two bit vectors, which keep track of updates
and deletes in the compressed storage and the corresponding
differential buffer. The storage manager is in charge of keeping
data consistent what in this case means the main storage and
delta storage have to be kept in sync and corresponding merge
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Fig. 2. Example of a main storage

processes have to run asynchronously to avoid conflicts with
running queries during the merge process.

The query executor is responsible for executing a given
query plan, including loading the necessary meta data and
materializing results with regards of late materialization strate-
gies that are a result of the column-wise data representation
with applied dictionary encoding. The current state of the
system provides no direct access using a query language like
SQL but focuses on the implementation of the plan operators.
It implements the necessary relational algebra operators and
leaves the query plan design up to the user of the prototype.
Hence the query plans used are written by hand and than
executed by the execution engine while assuming that this
written query plans are optimal and no further optimization
takes place.
For the purpose of this study, some features of a conventional
database such as multi-threading, transactions, or recovery are
not implemented to avoid the related overhead. We omit these
features because we believe they are orthogonal to the question
of how to compact data using a merge process in an in-memory
column store. For the same reason the process of loading data
from a storage system at startup time is not taken into account.

B. HYRISE data structures

In the following we illustrate the data structures for main
storage and differential buffer. Figure 2 shows an illustration
of a main storage. The data structures for one column are
illustrated in detail. The table AttributeVector shows the vector
holding the values for each record of a particular attribute. The
values are dictionary compressed; therefore the stored ValueIds
are references to the table Dictionary containing the actual
values. The Valid?BitVector indicates whether this record is
still valid or has been invalidated by an update or delete in
the differential buffer.

New entries are stored in a write optimized differential
storage as shown in Figure 3. The example shows 4 newly
added entries in the AttributeVector. Similar to the main
storage, the differential buffer has a Dictionary. The main
difference between both storages is the implementation of the
dictionary as discussed in the section above. All dictionaries
used by the main storage need to be sorted in order to
allow binary search and are bit-compressed. In contrast, the
dictionaries in the differential buffer are unsorted and not bit-
compressed to allow fast appends.
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Fig. 3. Example of a differential buffer

III. THE MERGE PROCESS

A. Description of the merge process

The merge process and its complexity is described in detail
in [8]; we give a brief overview here. The process can be
separated into three phases - prepare merge, attribute merge
and commit merge.

The prepare merge phase locks the differential buffer and
main storage and creates a new empty differential buffer
storage for all new inserts, updates, and deletes which occur
during the merge process. Additionally the current valid vector
of the old buffer and main storage at merge time are copied
to be used throughout the merge process, as these may be
changed by concurrent updates or deletes applied during the
merge while affecting records involved in this process. In the
attribute merge phase the following steps are executed for
each attribute: the first step is merging the dictionaries of
the differential buffer and main storage. Next, the value ids
of main storage and write buffer are copied to a new main
storage - thereby changes in the dictionary have to be applied
to the new value ids; invalidated values of the original main
storage are not copied and can be transferred to a history log.
To ensure persistency, the merge result is written to secondary
storage.

The commit merge phase starts by acquiring a write lock
of the table. This ensures that all running queries are finished
prior to the switch to the new main storage including the
updated value IDs. Then, the valid vector copied in the first
phase is compared to the actual vector to mark potentially
invalidated rows - they are eventually deleted in the next merge
process. As last step the new main storage replaces the original
differential buffer and main storage and the latter ones are
unloaded from memory.

Figure 4 shows the result of the merge process based on
the differential buffer and main storage shown in figures 2
and 3. New AttributeVector now holds all value records of
the original main storage, as well as the differential buffer.
Note that the new dictionary includes all values from the main
and differential buffer and is resorted to allow binary search
and late materializing range queries. Therefore the ValueId
of single value records has changed compared to the original
entry in the main storage and differential buffer.

B. Memory consumption of the merge process

As discussed in [8] prior to the commit merge phase the
complete new main storage is kept inside main memory.
Hence, at this point double the size of the original main storage
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Fig. 4. Example of a delta storage

plus differential buffer is required in main memory to execute
the proposed merge process. In the subsequent section we
propose a modification of the algorithm to decrease the overall
additional memory consumption.

IV. SINGLE COLUMN MERGE

In this section we describe a modified merge process called
Single Column Merge with the objective of reducing the size
of memory consumption throughout the merge process. By
merging single columns independently from the delta into the
main storage the algorithm reduces the additional memory
consumption to the size in memory of the largest column. In
order to use this technique the insert only strategy has to be
used otherwise records would be physically deleted what could
lead to inconsistent surrogate identifiers if merged columns
are applied independently. So far deleted records are kept
as invalid in the storage system but could be removed by a
dedicated garbage collection run.

A. Description of the Single Column Merge

In the merge process described in section III-A the merge
result for single columns is calculated independently in the
respective attribute merge phases. The merge result is kept
in main memory until all attributes are merged to ensure an
instant switch to the new main storage in the commit merge
phase. The basic idea of Single Column Merge is to switch to
an updated main storage after every attribute has been merged
while maintaining a consistent view on the data.

Partial hiding of merge results: Switching already merged
columns leads to a problem: Some attributes are already
merged while others are not. Those finished attributes typically
have a longer attribute vector since new rows could have
been inserted into the differential buffer. And as this buffer
is not updated throughout the merge process value entries
for newly created rows are duplicated in the update main
storage and original differential buffer. To resolve this issue
all newly created rows are marked as invalid until all columns
are merged as shown in Figure 5.

Remapping old value IDs: After one attribute is merged,
its state differs from the rest of the index that has yet to be
merged. Some values potentially have new value IDs if the
merge process has changed the value IDs. Incoming queries
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Fig. 5. During the merge: abstract view on the main storage with a single
merged attribute
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Fig. 6. Example of a remapped lookup for values 1 and 4

might still rely on old value IDs, e.g. in case they have been
cached by queries started prior to the merge process. To avoid
locking of the table for each attribute a mapping table from the
old value IDs to the new ones is provided throughout the merge
process until all attributes are merged into the main store. This
mapping table from old to new values is created in the attribute
merge phase of the merge process described in section III-A
when merging the dictionaries of differential buffer and main
store. Figure 6 shows an example for a remapped lookup of
the cached old value IDs 1 and 4.

Modifications of the traditional merge process: To imple-
ment the Single Column Merge as described we have to make
the following changes to the merge process as described in
section III-A:

• prepare merge
– The valid vector of the main store has to be enlarged

by the number of rows that are currently in the
differential buffer. This is required to hide the newly
created merge results in the main storage until all
attributes are merged.

– The newly created valid record entries are initialized
with false to deactivate those rows.

• attribute merge: For each attribute the following changes
have to be made:
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– Keep the mapping tables from old to new value
IDs in memory. These tables have to be provided to
functions in the query executor that might be called
while a merge is running to have a consistent view
on the data.

– Switch the attribute data structure of the old main
storage to the merge result right after merging the
attribute.

• commit merge
– activate the newly merged rows by setting the valid

vector entries to true.
– Unload mapping tables from old to new value IDs

after the lock on the table is acquired.

B. Evaluation of memory consumption

Applying Single Column Merge eliminates the need to addi-
tionally hold the newly created main storage of the size of the
original main storage and differential buffer in main memory.
As only one attribute is merged at a time the additional amount
of main memory needed for the merge process is the size
of the attribute data structure currently merged plus the size
of the mapping tables from old value IDs to new value IDs
for the dictionaries as described in section IV-A. Assuming
that the main storage is significantly larger in size than the
differential buffer, the overall additional memory consumption
for the merge process is driven by the size of the largest data
structure of all attributes.

To test how large the savings in additional memory con-
sumption are, we compared the traditional merge process
described in section III-A and the Single Column Merge using
live customer data. The two major tables in the database
consist of 28 million rows with 310 columns and 11 million
rows with 111 columns. The main memory usage during the
test is shown in Figure 7. The graph shows the additional
memory consumption during a merge process for both merge
strategies. The column that consumes the most memory can
be seen in both test series. The main memory usage during the
Single Column Merge clearly peaks at around the size of the
largest column, as opposed to the steadily increasing memory
usage during the traditional merge.

V. RELATED WORK

Vertical partitioned databases as HYRISE have been re-
searched from the very first conferences on database systems
[2], [11], [11], [15] while focusing on read-intensive envi-
ronments. Pure vertical partitioning into a “column-store” has
been a recent topic of interest in the literature. Copeland and
Khoshafian [5] introduced the concept of a Decomposition
Storage Model (DSM) as a complete vertical, attribute-wise
partitioned schema, which has been the foundation for multiple
commercial and non-commercial column store implementa-
tions such as MonetDB/X100 [4], C-Store [14] or Sybase
IQ [7]. All of those examples has shown ability to outperform
conventional databases in read-mostly analytic-style scenarios
with low selectivity. However, unlike HYRISE, most of the
column-store implementations are pure disk based approaches

Fig. 7. Main memory usage during traditional merge process and single
column merge

and focus to improve the overall performance by reducing the
number of disk seeks by decomposing relations. Consequently,
data modifications must be propagated to multiple files on
disk, which leads to the fact that this implementation variant
is inappropriate for workloads combining transactional- and
analytical-style queries, because updates and inserts are spread
across different disk locations.

As in HYRISE, data compression can limit the applicability
to scenarios with frequent updates leading to dedicated delta
structures to improve the performance of inserts, updates and
deletes. The authors of [4] and [13] describe a concept
of treating vertical fragments as immutable objects, using
a separate list for deleted tuples and uncompressed delta
columns for appended data while using a combination of
both for updates. In contrast, HYRISE maintains all data
modification of a table in one differential buffer and keeps
track of invalidation with a valid bit-vector. However, none
of before mentioned work describes in detail how the merge
process works.

In contrast to this disk based research, HYRISE builds up on
in-memory data processing, which has been influenced in the
last decade by the work around MonetDB [3]. The widening
gap between the growth rate of CPU speed and memory access
speed leads to the usage of compression techniques requiring
higher effort for de-compression. Besides the direct effect
of storage savings, less physical data has to be transferred
from main memory traded for higher CPU costs at the de-
compression of the data as described for instance in [16] or
[6]. All works on compression on databases systems focus on
the data amount reductions and at the same time on query
optimizations.

VI. CONCLUSION

Optimized for main memory consumption, the Single Col-
umn Merge removes the need to keep a complete copy of
the table during the merge process. Instead the main memory
consumption can be reduced to a copy of each attribute. The
maximum table size increases from half of the total available
main memory to the total available main memory minus the

200

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



largest columns size. As the merge process is a background
task for an operational system queries can still process the
data, and lookup information in both the attribute vector and
the value dictionary. This concurrency is a requirement for
reengineering the merge process in an online mixed workload
environment. The Single Column Merge solves concurrency
issues by storing an additional mapping table for each column.
Every value dictionary lookup during the merge has to access
the mapping table first, before it can access the value dictio-
nary. Consequently, this remapping results in one additional
random memory access for every value ID lookup but only in
case the merge process has not been finished.
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