
A New Representation of WordNet® using Graph Databases

Khaled Nagi

Dept. of Computer and Systems Engineering

Faculty of Engineering, Alexandria University

Alexandria, Egypt

khaled.nagi@alexu.edu.eg

Abstract— WordNet® is one of the most important resources

in computation linguistics. The semantically related database

of English terms is widely used in text analysis and retrieval

domains, which constitute typical features, employed by social

networks and other modern Web 2.0 applications. Under the

hood, WordNet® can be seen as a sort of read-only social

network relating its language terms. In our work, we

implement a new storage technique for WordNet® based on

graph databases. Graph databases are a major pillar of the

NoSQL movement with lots of emerging products, such as

Neo4j. In this paper, we present two Neo4j graph storage

representations for the WordNet® dictionary. We analyze

their performance and compare them to other traditional

storage models. With this contribution, we also validate the

applicability of modern graph databases in new areas beside

the typical large-scale social networks with several hundreds of

millions of nodes.

Keywords-WordNet®; semantic relationships; graph

databases; storage models; performance analysis.

I. INTRODUCTION

WordNet® [1] is a large lexical database of English
terms and is currently one of the most important resources in
computation linguistics. Several computer disciplines, such
as information retrieval, text analysis and text mining, are
used to enrich modern Web 2.0 applications; typically, social
networks, search engines, and global online marketplaces.
These disciplines usually rely on the semantic relationships
among linguistic terms. This is where WordNet® comes to
action.

A parallel development over the last decade is the
emergence of NoSQL databases. Certainly, they are no
replacement for the relational database paradigm. However,
Web 2.0 builds a rich application field for managing billions
of objects that do not have the regular and repetitive pattern
suitable for the relational model. One major type of NoSQL
databases is the graph database model. Since social
networks can be easily modeled as one large graph of
interconnected users, they can be the killer application for
graph databases.

However, little to no work has been done to investigate
the use of graph database management systems in moderate
sized databases. Of course, the database has to be
relationship-rich for the implementation to make sense. In
our work, we implement a new storage technique for
WordNet® based on Neo4j [2]; currently, a leading graph

database. WordNet® dictionary has several characteristics
that promote our proposition: it is used in several modern
Web 2.0 applications, such as social networks; it is has a
moderate size of datasets; and traversing the semantic
relationship graph is a common use case.

Since the modeling and benchmarking experiences of
these new graph databases are not as established as in the
relational database model, we implement two variations and
conduct several performance experiments to analysis their
behavior and compare them to the relational model.

The rest of the paper is organized as follows. Section II
provides a background on WordNet® and its applications as
well as a brief survey on graph database technology. Our
proposed system is presented in Section III. Section IV
contains the results of our performance evaluation and
Section V concludes the paper and presents a brief insight in
our future work.

II. BACKGROUND

A. WordNet®

The WordNet® project began in the Princeton University
Department of Psychology, and is currently housed in the
Department of Computer Science. WordNet® is a large
lexical database of English [1]. Nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept. A synset
contains a brief definition (gloss). Synsets are interlinked by
means of conceptual-semantic and lexical relations.
WordNet® labels the semantic relations. The most
frequently encoded relation among synsets is the super-
subordinate relation (also called hyperonym, hyponym or IS-
A relation). Other semantic relations include meronyms,
antonyms, and holonyms. The majority of the WordNet®’s
relations connect words from the same part of speech (POS).
Currently, WordNet® comprises 117,000 synsets and
147,000 words.

Today, WordNet® is considered to be the most important
resource available to researchers in computational
linguistics, text analysis, text retrieval and many related areas
[3]. Several projects and associations are built around
WordNet®.

The Global WordNet Association [4] is a free, public and
non-commercial organization that provides a platform for
discussing, sharing and connecting wordnets for all
languages in the world. The Mimida project [5], developed

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

by Maurice Gittens, is a WordNet-based mechanically-
generated multilingual semantic network for more than 20
languages based on dictionaries found on the Web.
EuroWordNet [6] is a multilingual database with wordnets
for several European languages (Dutch, Italian, Spanish,
German, French, Czech and Estonian). It is constructed
according to the main principles of Princeton’s WordNet®.
One of the main results of the European project that started
in 1996 and lasted for 3 years is to link these wordnets to
English WordNet® and to provide an Inter-Lingual-Index to
connect the different wordnets and other ontologies [7].
MultiWordNet [8], developed by Luisa Bentivogli and others
at ITC-irst, is a multilingual lexical database. In
MuliWordNet, the Italian WordNet is strictly aligned with
the Princeton WordNet®. Unfortunately, it comprises a
small subset of the Italian language with 44,000 words and
35,400 synsets. Later on several projects; such as ArchiWN
[9], attempt to integrate WordNet with domain-specific
knowledge.

RitaWN [10], developed by Daniel Howe, is an
interesting library built on WordNet®. It provides simple
access to the WordNet ontology for language-oriented artists.
RitaWN provides semantically related alternatives for a
given word and POS (e.g., returning all synonyms,
antonyms, hyponyms for the noun “cat”). The library also
provides distance metrics between ontology terms, and
assigns unique IDs for each word sense/pos.

Several projects aim at providing access to the
WordNet® native dictionary. For example, JWNL [11]
provides a low-level API to the data provided by the standard
WordNet® distribution. In its core, RitaWN uses JWNL to
access the native file-based WordNet® dictionary. Other
projects, such as WordNetScope [12], WNSQL [13], and
wordnet2sql® [14], provide a relational database storage for
WordNet®.

B. Graph Databases

NoSQL databases are older than relational databases.
Nevertheless, their renaissance came first with the
emergence of Web 2.0 during the last decade. Their main
strengths come from the need to manage extremely large
volumes of data that are collected by modern social
networks, search engines, global online marketplaces, etc.
For this type of applications, ACID (Atomicity, Consistency,
Isolation, Durability) transaction properties [15] are simply
too restrictive. More relaxed models emerged such as the
CAP (Consistency, Availability and Partition Tolerance)
theory or eventually consistent [16], which in general means
that any large scale distributed DBMS can guarantee for two
of three aspects: Consistency, Availability, and Partition
tolerance. In order to solve the conflicts of the CAP theory,
the BASE consistency model (Basically, soft state,
eventually consistent) was defined for modern applications
[16]. In contrast to ACID, BASE concentrates on availability
at the cost of consistency. BASE adopts an optimistic
approach, in which consistency is seen as a transitional
process that will be eventually reached. Together with the
publication of Google’s BigTable and Map/Reduce
frameworks [17], dozens of NoSQL databases emerged. A

good overview of existing NoSQL database management
systems can be found in [18].

Mainly, NoSQL database systems fall into four
categories:

 Key-value systems,

 Column-family systems,

 Document stores, and

 Graph databases.
Graph databases have a long academic tradition.

Traditionally, research concentrated on providing new
algorithms for storing and processing very large and
distributed graphs. These research efforts helped a lot in
forming object-oriented database management systems and
later XML databases.

Since social networks can be easily viewed as one large
graph of interconnected users, they offer graph databases the
chance for a great comeback. Since then, the whole stack of
database science was redefined for graph databases. At the
heart of any graph database lies an efficient representation of
entities and relationships between them. All graph database
models have, as their formal foundation, variations on the
basic mathematical definition of a graph, for example,
directed or undirected graphs, labeled or unlabeled edges and
nodes, hypergraphs, and hypernodes [19]. For querying and
manipulating the data in the graph, a substantial work
focused on the problem of querying graphs, the visual
presentation of results, and graphical query languages. Old
languages such as G, G++ in the 80s [20], the object-oriented
Pattern Matching Language (PaMaL) in the 90s [21],
through Glide [22] in 2002 appeared. G is based on regular
expressions that allow simple formulation of recursive
queries. PaMaL is a graphical data manipulation language
that uses patterns. Glide is a graph query language where
queries are expressed using a linear notation formed by
labels and wildcards. Glide uses a method called GraphGrep
[22] based on sub-graph matching to answer the queries.

However, modern graph databases prefer providing
traversal methods instead of declarative languages due to its
simplicity and ease use within modern languages such as

Java. Taking Neo4j as example, when a Traverser is
created, it is parameterized with two evaluators and the
relationship types to traverse, with the direction to traverse
each type. The evaluators are used for determining for each
node in the set of candidate nodes if it should be returned or
not, and if the traversal should be pruned (stopped) at this

point. The nodes that are traversed by a Traverser are
each visited exactly once, meaning that the returned iterator
of nodes will never contain duplicate nodes [2].

Several systems such as Neo4j [2], InfoGrid [23], and
many other products are available for research and
commercial use today. Typical uses of these new graph
database management systems include social networks, GIS,
and XML applications. However, they did not find
application in moderate sized text analysis applications or
relationship mining.

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

III. PROPOSED IMPLEMENTATION

Fig. 1 provides an overview of the proposed
implementation. RitaWN [10] provides synonyms,
antonyms, hypernyms, hyponyms, holonyms, meronyms,
coordinates, similars, nominalizations, verb-groups, derived-
terms glossaries, descriptions, support for pattern matching,
soundex, anagrams, etc. In Fig. 1, RitaWN is represented by
an arbitrary client in this domain which sends semantic
inquiries and receives the results as a list of related terms. In
the actual RitaWN, the library wraps Jawbone/JWNL [11]
functionality for Java processing; which, in turn, accesses the
native WordNet® dictionary.

In order to separate the storage layer from the logic, we

extract a RiWordNetIF Java interface. The interface
defines methods to return semantically related words. The
methods are categorized into 4 groups:

 Attribute inquiries: these methods return single

attribute values for a given word, such as String

getBestPos(String w) and boolean

isNoun(String w).

 Semantic relationships inquiries: in this set, methods
return all semantically related words for a given

word and POS, such as String[]

getHolonyms(String w, String pos)

and String[] getHypernyms(String w,

String pos). In our system, we define eight such
methods.

 Relationship tree inquiries: in this set of methods,
the library returns the whole path from the first
synset for a given word and POS to the root word.
Typical root words in WordNet® are “Entity” or
“Object”. In our implementation, we have
String[] getHyponymTree(String w,

String pos) and String[]

getHypernymTree(String w, String

pos); which basically trace back

getHyponym(String w, String pos) and
getHypernym(String w, String pos)

respectively to the root word.

 Common parent inquiries: methods of this group
find a common semantic path between two words in
a POS subnet by traversing the WordNet® synset

graph. For example, the method String[]

getCommonParent(String w1, String

pos, String w2) finds the following path dog :
canis familiaris : domestic dog  domestic animal :
domesticated animal  animate being : beast :
animal for the nouns “dog” and “animal”. Traversal
is done based on a Depth First Search algorithm with
a slight adaptation to stop traversing whenever one

of the synsets of the sink term w2 is reached.

Figure 1. Architecture of the proposed system.

A. Storage Layer

In the storage layer, we provide four different
representations for the WordNet® dictionary as described in
the following subsections.

1) File-based Storage
In its original implementation, RiTa.WordNet uses the

JWNL [11] library to directly browse the native dictionary
provided by a standard WordNet® installation. As will be
shown later, this implementation has the worst performance.
We use it for validation purposes for the other three
implementations.

2) Relational Database Storage
We use a database model similar to the one used in [14].

Fig. 2 illustrates a UML class diagram for the relevant

classes. The words entity has a wordid as a primary key,

the lemma definition and the different POSs are coded as
string with the best POS as the first character of the string.

Similarly, the synsets entity holds all WordNet® synsets,

their POS, and definition. The primary key is synsetid.
The many-to-many relationship between words and synsets

is modeled by the senses entity. It contains the foreign

keys wordid and synsetid. Synsets are related to

each other via the semlinks entity. Synset1id points to

the from direction and Synset2id to the to direction.

The types of semantic links are defined by linkid which is

a foreign key to the linktype entity. All types of links are

listed in the linktype entity. We choose Apache Derby
[24] as the database management system to hold this data
model. Apache Derby is part of the Apache Group. It gained
a good reputation and a high spread for applications
requiring embedded relational DBMS. It is distributed as a
java jar file to be added to the classpath of the application. It
also comes as a stand-alone version.

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 2. UML class diagram for the relational database.

3) Graph Database Storage
In our proposed work, we model the WordNet® as a

graph database. An object diagram is illustrated in Fig. 3. We

have two types of nodes: words (illustrated as ellipses) and

synsets (illustrated as hexagons). The attributes of a word

are a lemma and the different POSs, which are coded as a
string with the best POS as the first character of the string.

The synset has a property definition. There exists a

bi-directional relation Rel_sense between words and

synsets. The attribute pos of the relation indicates the

POS associated with the sense. Synsets are interconnected

by directed relations. These relationships

Rel_SemanticLink carry the type of the link in the

attribute type. For example, in Fig. 3, word w1 has one sense

as a noun with link to sysnset sa and two senses as verbs

for synsets sc and sd. Synset sa has two hyponyms

sb and se by following the relationships

Rel_SemanticLink with type “hyponym”. w4 has one

sense sb as a noun. w2 and w3 – as nouns - share the same

synset se. w5 has only one sense as a verb which is sc.

So, if getHoponyms(“w1”, “n”) is called, the result

will be w2, w3, and w4.

4) Graph Database Storage with Extra Directly Derived

Relationships
In the RiTa.WordNet application scenario, we expect lots

of inquiries about semantically related words (e.g.,
hyponyms, synonyms, meronyms, etc.). Synsets are mainly
the means to return the semantically related words. At the
same time, the application is typically read-only and
represents a good example for a wide range of read-only (or
low-update/high-read) applications. The graph database is
only updated with the release of a new WordNet®
dictionary. This motivates us to augment the design
mentioned in the previous section with the derived semantic
relationships between words and not only synsets. The idea
is similar to materialized views known in relational
databases. the result of semantic relationship inquiries (e.g.,

getHyponyms(), getSynonyms(),

getMeronyms(), etc.) is generated by traversing only one
relationship for each result word. We intuitively expect a
quicker response time at the cost of a high storage volume
since the connectivity of the graph is highly increased.

In terms of implementation, these relationships are
identified through the relationship type. Fig. 4 illustrates the
derived relationships for the example in Fig. 3. Only the

relationship of type Rel_Hyponym for noun POS of word

w1; namely, w2, w3, and w4 is drawn. For more complex
inquiries of category “relationship tree” and “common
parent”, a combination of original and derived relationships
are used in the traversal.

Figure 3. Object diagram for the proposed WordNet® graph database storage.

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 4. Object diagram with the extra derived relationships.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of our proposed
system, we provide four implementations for the Java

interface RiWordNetIF mentioned in Section III. The
implementations are file-based storage, relational DBMS
using Apache Derby, the graph database using Neo4j, and a
second implementation using the directly derived
relationships also using Neo4j.

It is important to notice that the purpose of this
evaluation is to give a general impression on the
performance impact and not to give concrete benchmarking
figures. For sure, the optimization of all DBMS
implementations; such as using indices or even exchanging
the DBMS itself versus using future versions of Neo4j might
lead to different results. We would be satisfied when our
proposed solution provides slightly better results than
relational DBMS. It is also clear that in-memory databases
and large caching mechanisms will outperform all
implementations. But we rule them out assuming memory
size restrictions.

We develop a simple performance evaluation toolkit
around these four implementations. A workload generator
sends inquiries to all back-ends. The inquiries are grouped
into four categories, as mentioned in Section III. The
workload generator submits the inquiries in parallel to the
application with each inquiry executing in a separate thread.

The input for the inquiry is chosen at random from an
input file containing WordNet® words and their associated

best POS. In case of getCommonParent(), another input
file is used, which contains tuples of somehow related words,
together with their common POS (e.g., “tiger”, “cat”, and
“noun”). The tuples are chosen carefully to yield paths of
different lengths.

The performance of the system is monitored using a
performance monitor unit that records the response time of
each inquiry and the number of inquiries performed by each
thread in a regular time interval.

A. Input Parameters and Performance Metrics

The number of concurrent inquiry threads is increased
from 1 to 50. Each experiment executes on each backend for
5 minutes in order to eliminate any transient effects. The
experiments are conducted for each type of inquiries
separately.

In all our experiments, we monitor the system response
time in terms of micro-seconds per operation from the
moment of submitting the inquiry till receiving the result.

We also monitor the system throughput in terms of
inquires per hour for each thread.

B. System Configuration

In our experiments, we use an Intel CORE™ i7 vPro
2.7GHz processor, 8 GB RAM and a Solid State Drive
(SSD). The operating system is Windows 7 64-bits. We use
JDK 1.6.0, Neo4j version 1.6 for the graph database engine,
embedded Derby™ version 10.7.1.1 for the SQL backend,
JWNL library version 1.4 [11] for file system based storage.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

C. Experiment Results

The performance evaluation considers all four types of
inquiries:

 Attribute,

 Semantic relationships,

 Relationship trees, and

 Common parent
for the four back-end implementations.

We drop plotting the results of the native file system-
based implementation from our graphs, although it is the
only available implementation previous to this work. The
reason behind this is that the results are far worse than the
other implementations. The difference in most case is more
than one order of magnitude.

1) Attribute Inquiries
In this set of experiments, the inquiries sent by the

workload generator comprise attribute inquiries only. Both
response time, illustrated in Fig. 5, and throughput,
illustrated in Fig. 6, degrade gracefully with the increase in
number of threads while having good absolute values.
Remarkably, the simple Neo4j implementation (without the
extra directly derived relationships) has a 20% better
response time than the other two implementations, while the
full blown Neo4j implementation has a 40% decrease in
system throughput. The reason for that is the attribute
inquiries are mainly affected by the node (or tuple in case of
relational databases) retrieval and caching. No relationship
traversal is done and hence the Neo4j only suffers from its
large database size especially with the augmented directly
derived relationships (see Section IV.D). In summary, this
set of experiments demonstrates that the caching
mechanisms of graph databases are in general as good as the
relational databases and that simple operations without graph
traversals are not underprivileged in this environment.

Figure 5. Response time for attribute inquiries.

Figure 6. Throughput for attribute inquiries.

2) Semantic Relationship Inquiries
In this set of experiments, the explicit storage of semantic

relationships shows its benefit. The results are retrieved by
traversing one relationship only, in contrast to 3 for the
simple implementation and several joins in the relational
database implementation. The response time, as illustrated in
Fig. 7 is enhanced by approx. 50% for all number of threads
when compared to SQL Derby and 30% by adding these
directly derived relationships to a simple Neo4j
implementation. However, all three back-ends behave
identically when it comes to throughput as illustrated in Fig.
8. The absolute values are far below those of the simple
attribute inquiries described in the previous section which is
expected due to the complexity of these inquiries as
compared to attribute inquiries. In case of response time, it is
almost 10 times higher than the previous set of experiments.
The same applies to the throughput, which is lower by a
factor of 10 as well.

Figure 7. Response time for semantic relationship inquiries.

Figure 8. Throughput for semantic relationship inquiries.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

3) Relationship Tree Inquiries
The operations of this set of experiments are more

complex than the previous ones. This explains the drop in
absolute values of the response time and throughput,
illustrated in Fig. 9 and Fig. 10, respectively when compared
to the previous experiment. This time the degradation factor
is only 4. Yet, the system behavior remains the same. The
response time of Neo4j with the directly derived
relationships is half that’s of the SQL implementation. Even
without the extra relationships, the response time Neo4j is
25-30% better than the relational model. Here, again, the
throughput, illustrated in Fig. 10, for all three
implementations is the same. The equality of the throughput
performance index of Derby and the Neo4j implementation,
despite the short response time of the later, is an indication
that the internal pipeline capabilities of Neo4j is not as good
as that of the relational model.

Figure 9. Response time for relationship tree inquiries.

Figure 10. Throughput for relationship tree inquiries.

4) Common Parent Inquiries
The inquiries for this set of experiments are the most

complicated among all experiments. Yet, this is a very
common use case in social networks. For example, in XING
[25], the user can always see all paths of relationships
leading from the user to any arbitrary user in the network. No
wonder here that Neo4j implementations outperform the
SQL Derby implementation (and the file system
implementation which seems to be not able to handle all the
running threads) in requesting depth first searches of the
semantic network of WordNet®. Again, Fig. 11 illustrates
the extreme superiority of graph database, especially with the
addition of the extra relationships. The response time is also
enhanced by 45% and 30% with and without directly derived
relationships, respectively. The throughput, illustrated in

Fig. 12, holds its trend across all experiments of being almost
the same for the three implementations (and omitting the file
system implementation of course, whose values cannot be
plotted with the same scale next to their counterparts).

Figure 11. Response time for common parent inquiries.

Figure 12. Throughput for common parent inquiries.

D. Storage Requirements

Performance in terms of good response time comes with
its price. Fig. 13 illustrates the storage requirements for all
four implementations. The SQL Derby and the normal
Neo4j implementation occupy slightly more than double the
original size of the WordNet® file-based dictionary. The
redundant relationships account for more than 350 MB,
making the size of the graph database 12 times larger than
the file-based dictionary taken as a reference point. The
good side of this particular application scenario is the
absolute size of the back-ends is affordable by any desktop
application.

Figure 13. Storage for each backend implementation.

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

V. CONCLUSION AND FUTURE WORK

In this paper, we presented two Neo4j graph storage
representations for the WordNet® dictionary. We use
Ri.WordNet as a typical client application that submits
semantic inquiries discovering the relationships between
English terms. We divide the inquiries into 4 categories
depending on the complexity of their operations. Our
performance analysis demonstrates that graph databases
yield much better results than traditional relational databases
in terms of response time even under extreme workloads thus
speaking for their promised scalability. We also show that
storing directly derived relationships can improve the
performance by factors of 2. This redundancy has its price in
terms of storage requirements, which is acceptable due to the
moderate size of the database with 117,000 synsets and
147,000 terms and the read-only nature of this small scale
social network.

One important contribution of this work is that it opens
the door for new application areas for NoSQL databases (in
this case the Neo4j graph database), namely smaller read-
intensive database applications, in contrast to typical
applications of the NoSQL in large scale Web 2.0 such as
social networks.

Yet, this is only the beginning. In the future, we plan on
benchmarking other graph database providers, such as
InfoGrid [23]. We also plan on migrating several research
done on relationship mining to work on graph database back-
ends. If the benchmarking experiments show promising
results, this will open the door for the application of graph
databases in OLAP applications.

REFERENCES

[1] Fellbaum, C.: WordNet and wordnets. In: Brown, Keith et al.
(eds.) Encyclopedia of Language and Linguistics, Second
Edition, pp. 665--670. Elsevier, Oxford , 2005.

[2] Neo4j. The World’s Leading Graph Database,
http://www.neo4j.org [retrieved: November, 2012].

[3] Voorhees, E.: Using WordNet for Text Retrieval. In:
Fellbaum, C. (ed.) WordNet An Electronic Lexical Database,
0-262-06197-X. MIT Press, 1998.

[4] The Global WordNet Association,
http://www.globalwordnet.org [retrieved: November, 2012].

[5] Mimida: A mechanically generated Multilingual Semantic
Network,
http://gittens.nl/gittens/topics/SemanticNetworks.html
[retrieved: November, 2012].

[6] Vossen, P.: EuroWordNet: a multilingual database for
information retrieval. In: Proceedings of the DELOS
workshop on Cross-language Information Retrieval. Zürich ,
1997.

[7] Vossen, P., Peters, W., and Gonzalo, J.: Towards a Universal
Index of Meaning. In: Proceedings of the ACL-99 Siglex
workshop, Maryland, 1999.

[8] Pianta, E., Bentivogli, L., and Girardi, C.: MultiWordNet:
developing an aligned multilingual database. In: Proceedings
of the First International Conference on Global WordNet,
Mysore, India, 2002.

[9] Bentivogli, L., Bocco, A., and Pianta, E.: ArchiWordNet:
Integrating WordNet with Domain-Specific Knowledge. In:
Proceedings of the Second Global WordNet Conference, pp.
39—46, Brno, Czech Republic, 2004.

[10] RiTa.WordNet: a WordNet library for Java/Processing,
http://www.rednoise.org/rita/wordnet/documentation
[retrieved: November, 2012].

[11] Java WordNet Library,
http://sourceforge.net/projects/jwordnet [retrieved: November,
2012].

[12] WordNetScope, http://wnscope.sourceforge.net [retrieved:
November, 2012].

[13] WordNetSQL, http://wnsql.sourceforge.net [retrieved:
November, 2012].

[14] wordnet2sql, http://www.semantilog.org/wn2sql.html
[retrieved: November, 2012].

[15] Gray, J. and Reuter, A.: Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1983.

[16] Brewer, E.: Towards Robust Distributed Systems. In: ACM
Symposium on Principles of Distributed Computing, Keynote
speech, 2000.

[17] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach,
D.A., Burrows, M., Chandra, T., and Fikes, A., Bigtable: A
distributed storage system for structured data. In: the Seventh
Symposium on Operating System Design and
Implementation. Seattle, 2006.

[18] Edlich, S., Friedland, A., Hampe, J., and Brauer, B: NoSQL:
Introduction to the World of non-relational Web 2.0
Databases (In German) NoSQL: Einstieg in die Welt
nichrelationaler Web 2.0 Datenbanken. Hanser Verlag, 2010.

[19] Angles, R. and Gutierrez, C.: Survey of Graph Database
Models. In: ACM Computing Surveys, Vol. 40. No. 1 Article
1, 2008.

[20] Cruz, I.F., Mendelzon, A.O., and Wood, P.T.: A graphical
query language supporting recursion. In: Proceedings of the
Association for Computing Machinery Special Interest Group
on Management of Data, pp. 323—330. ACM Press, 1987.

[21] Gemis, M. and Paredaens, J.: An object-oriented pattern
matching language. In: Proceedings of the First JSSST
International Symposium on Object Technologies for
Advanced Software, pp. 339–355. Springer-Verlag, 1993.

[22] Giugno, R. and Shasha, D.: GraphGrep: A fast and universal
method for querying graphs. In: Proceedings of the IEEE
International Conference in Pattern recognition, 2002.

[23] InfoGrid: The Web Graph Database, http://infogrid.org/trac
[retrieved: November, 2012].

[24] Apache Derby, http://db.apache.org/derby [retrieved:
November, 2012].

[25] XING das professionelle Netzwerk, http://www.xing.com
[retrieved: November, 2012].

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

