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Abstract— WordNet® is one of the most important resources 

in computation linguistics. The semantically related database 

of English terms is widely used in text analysis and retrieval 

domains, which constitute typical features, employed by social 

networks and other modern Web 2.0 applications. Under the 

hood, WordNet® can be seen as a sort of read-only social 

network relating its language terms. In our work, we 

implement a new storage technique for WordNet® based on 

graph databases. Graph databases are a major pillar of the 

NoSQL movement with lots of emerging products, such as 

Neo4j. In this paper, we present two Neo4j graph storage 

representations for the WordNet® dictionary. We analyze 

their performance and compare them to other traditional 

storage models. With this contribution, we also validate the 

applicability of modern graph databases in new areas beside 

the typical large-scale social networks with several hundreds of 

millions of nodes. 

Keywords-WordNet®; semantic relationships; graph 

databases; storage models; performance analysis. 

I.  INTRODUCTION 

WordNet® [1] is a large lexical database of English 
terms and is currently one of the most important resources in 
computation linguistics. Several computer disciplines, such 
as information retrieval, text analysis and text mining, are 
used to enrich modern Web 2.0 applications; typically, social 
networks, search engines, and global online marketplaces. 
These disciplines usually rely on the semantic relationships 
among linguistic terms. This is where WordNet® comes to 
action. 

A parallel development over the last decade is the 
emergence of NoSQL databases. Certainly, they are no 
replacement for the relational database paradigm. However, 
Web 2.0 builds a rich application field for managing billions 
of objects that do not have the regular and repetitive pattern 
suitable for the relational model. One major type of NoSQL 
databases is the graph database model. Since social 
networks can be easily modeled as one large graph of 
interconnected users, they can be the killer application for 
graph databases. 

However, little to no work has been done to investigate 
the use of graph database management systems in moderate 
sized databases. Of course, the database has to be 
relationship-rich for the implementation to make sense. In 
our work, we implement a new storage technique for 
WordNet® based on Neo4j [2]; currently, a leading graph 

database. WordNet® dictionary has several characteristics 
that promote our proposition: it is used in several modern 
Web 2.0 applications, such as social networks; it is has a 
moderate size of datasets; and traversing the semantic 
relationship graph is a common use case. 

Since the modeling and benchmarking experiences of 
these new graph databases are not as established as in the 
relational database model, we implement two variations and 
conduct several performance experiments to analysis their 
behavior and compare them to the relational model. 

The rest of the paper is organized as follows. Section II 
provides a background on WordNet® and its applications as 
well as a brief survey on graph database technology. Our 
proposed system is presented in Section III. Section IV 
contains the results of our performance evaluation and 
Section V concludes the paper and presents a brief insight in 
our future work. 

II. BACKGROUND 

A. WordNet® 

The WordNet® project began in the Princeton University 
Department of Psychology, and is currently housed in the 
Department of Computer Science. WordNet® is a large 
lexical database of English [1]. Nouns, verbs, adjectives and 
adverbs are grouped into sets of cognitive synonyms 
(synsets), each expressing a distinct concept. A synset 
contains a brief definition (gloss). Synsets are interlinked by 
means of conceptual-semantic and lexical relations. 
WordNet® labels the semantic relations. The most 
frequently encoded relation among synsets is the super-
subordinate relation (also called hyperonym, hyponym or IS-
A relation). Other semantic relations include meronyms, 
antonyms, and holonyms. The majority of the WordNet®’s 
relations connect words from the same part of speech (POS). 
Currently, WordNet® comprises 117,000 synsets and 
147,000 words. 

Today, WordNet® is considered to be the most important 
resource available to researchers in computational 
linguistics, text analysis, text retrieval and many related areas 
[3]. Several projects and associations are built around 
WordNet®. 

The Global WordNet Association [4] is a free, public and 
non-commercial organization that provides a platform for 
discussing, sharing and connecting wordnets for all 
languages in the world. The Mimida project [5], developed 
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by Maurice Gittens, is a WordNet-based mechanically-
generated multilingual semantic network for more than 20 
languages based on dictionaries found on the Web. 
EuroWordNet [6] is a multilingual database with wordnets 
for several European languages (Dutch, Italian, Spanish, 
German, French, Czech and Estonian). It is constructed 
according to the main principles of Princeton’s WordNet®. 
One of the main results of the European project that started 
in 1996 and lasted for 3 years is to link these wordnets to 
English WordNet® and to provide an Inter-Lingual-Index to 
connect the different wordnets and other ontologies [7]. 
MultiWordNet [8], developed by Luisa Bentivogli and others 
at ITC-irst, is a multilingual lexical database. In 
MuliWordNet, the Italian WordNet is strictly aligned with 
the Princeton WordNet®. Unfortunately, it comprises a 
small subset of the Italian language with 44,000 words and 
35,400 synsets. Later on several projects; such as ArchiWN 
[9], attempt to integrate WordNet with domain-specific 
knowledge. 

RitaWN [10], developed by Daniel Howe, is an 
interesting library built on WordNet®. It provides simple 
access to the WordNet ontology for language-oriented artists. 
RitaWN provides semantically related alternatives for a 
given word and POS (e.g., returning all synonyms, 
antonyms, hyponyms for the noun “cat”). The library also 
provides distance metrics between ontology terms, and 
assigns unique IDs for each word sense/pos. 

Several projects aim at providing access to the 
WordNet® native dictionary. For example, JWNL [11] 
provides a low-level API to the data provided by the standard 
WordNet® distribution. In its core, RitaWN uses JWNL to 
access the native file-based WordNet® dictionary. Other 
projects, such as WordNetScope [12], WNSQL [13], and 
wordnet2sql® [14], provide a relational database storage for 
WordNet®. 

B. Graph Databases 

NoSQL databases are older than relational databases. 
Nevertheless, their renaissance came first with the 
emergence of Web 2.0 during the last decade. Their main 
strengths come from the need to manage extremely large 
volumes of data that are collected by modern social 
networks, search engines, global online marketplaces, etc. 
For this type of applications, ACID (Atomicity, Consistency, 
Isolation, Durability) transaction properties [15] are simply 
too restrictive. More relaxed models emerged such as the 
CAP (Consistency, Availability and Partition Tolerance) 
theory or eventually consistent [16], which in general means 
that any large scale distributed DBMS can guarantee for two 
of three aspects: Consistency, Availability, and Partition 
tolerance. In order to solve the conflicts of the CAP theory, 
the BASE consistency model (Basically, soft state, 
eventually consistent) was defined for modern applications 
[16]. In contrast to ACID, BASE concentrates on availability 
at the cost of consistency. BASE adopts an optimistic 
approach, in which consistency is seen as a transitional 
process that will be eventually reached. Together with the 
publication of Google’s BigTable and Map/Reduce 
frameworks [17], dozens of NoSQL databases emerged. A 

good overview of existing NoSQL database management 
systems can be found in [18]. 

Mainly, NoSQL database systems fall into four 
categories:  

 Key-value systems, 

 Column-family systems, 

 Document stores, and 

 Graph databases. 
Graph databases have a long academic tradition. 

Traditionally, research concentrated on providing new 
algorithms for storing and processing very large and 
distributed graphs. These research efforts helped a lot in 
forming object-oriented database management systems and 
later XML databases. 

Since social networks can be easily viewed as one large 
graph of interconnected users, they offer graph databases the 
chance for a great comeback. Since then, the whole stack of 
database science was redefined for graph databases. At the 
heart of any graph database lies an efficient representation of 
entities and relationships between them. All graph database 
models have, as their formal foundation, variations on the 
basic mathematical definition of a graph, for example, 
directed or undirected graphs, labeled or unlabeled edges and 
nodes, hypergraphs, and hypernodes [19]. For querying and 
manipulating the data in the graph, a substantial work 
focused on the problem of querying graphs, the visual 
presentation of results, and graphical query languages. Old 
languages such as G, G++ in the 80s [20], the object-oriented 
Pattern Matching Language (PaMaL) in the 90s [21], 
through Glide [22] in 2002 appeared. G is based on regular 
expressions that allow simple formulation of recursive 
queries. PaMaL is a graphical data manipulation language 
that uses patterns. Glide is a graph query language where 
queries are expressed using a linear notation formed by 
labels and wildcards. Glide uses a method called GraphGrep 
[22] based on sub-graph matching to answer the queries. 

However, modern graph databases prefer providing 
traversal methods instead of declarative languages due to its 
simplicity and ease use within modern languages such as 

Java. Taking Neo4j as example, when a Traverser is 
created, it is parameterized with two evaluators and the 
relationship types to traverse, with the direction to traverse 
each type. The evaluators are used for determining for each 
node in the set of candidate nodes if it should be returned or 
not, and if the traversal should be pruned (stopped) at this 

point. The nodes that are traversed by a Traverser are 
each visited exactly once, meaning that the returned iterator 
of nodes will never contain duplicate nodes [2]. 

Several systems such as Neo4j [2], InfoGrid [23], and 
many other products are available for research and 
commercial use today. Typical uses of these new graph 
database management systems include social networks, GIS, 
and XML applications. However, they did not find 
application in moderate sized text analysis applications or 
relationship mining. 
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III. PROPOSED IMPLEMENTATION 

Fig. 1 provides an overview of the proposed 
implementation. RitaWN [10] provides synonyms, 
antonyms, hypernyms, hyponyms, holonyms, meronyms, 
coordinates, similars, nominalizations, verb-groups, derived-
terms glossaries, descriptions, support for pattern matching, 
soundex, anagrams, etc. In Fig. 1, RitaWN is represented by 
an arbitrary client in this domain which sends semantic 
inquiries and receives the results as a list of related terms. In 
the actual RitaWN, the library wraps Jawbone/JWNL [11] 
functionality for Java processing; which, in turn, accesses the 
native WordNet® dictionary. 

In order to separate the storage layer from the logic, we 

extract a RiWordNetIF Java interface. The interface 
defines methods to return semantically related words. The 
methods are categorized into 4 groups: 

 Attribute inquiries: these methods return single 

attribute values for a given word, such as String 

getBestPos(String w) and boolean 

isNoun(String w). 

 Semantic relationships inquiries: in this set, methods 
return all semantically related words for a given 

word and POS, such as String[] 

getHolonyms(String w, String pos) 

and String[] getHypernyms(String w, 

String pos). In our system, we define eight such 
methods. 

 Relationship tree inquiries: in this set of methods, 
the library returns the whole path from the first 
synset for a given word and POS to the root word. 
Typical root words in WordNet® are “Entity” or 
“Object”. In our implementation, we have 
String[] getHyponymTree(String w, 

String pos) and String[] 

getHypernymTree(String w, String 

pos); which basically trace back 

getHyponym(String w, String pos) and 
getHypernym(String w, String pos) 

respectively to the root word. 

 Common parent inquiries: methods of this group 
find a common semantic path between two words in 
a POS subnet by traversing the WordNet® synset 

graph. For example, the method String[] 

getCommonParent(String w1, String 

pos, String w2) finds the following path dog : 
canis familiaris : domestic dog  domestic animal : 
domesticated animal  animate being : beast : 
animal for the nouns “dog” and “animal”. Traversal 
is done based on a Depth First Search algorithm with 
a slight adaptation to stop traversing whenever one 

of the synsets of the sink term w2 is reached. 

 
Figure 1.  Architecture of the proposed system. 

A. Storage Layer 

In the storage layer, we provide four different 
representations for the WordNet® dictionary as described in 
the following subsections. 

1) File-based Storage 
In its original implementation, RiTa.WordNet uses the 

JWNL [11] library to directly browse the native dictionary 
provided by a standard WordNet® installation. As will be 
shown later, this implementation has the worst performance. 
We use it for validation purposes for the other three 
implementations. 

2) Relational Database Storage 
We use a database model similar to the one used in [14]. 

Fig. 2 illustrates a UML class diagram for the relevant 

classes. The words entity has a wordid as a primary key, 

the lemma definition and the different POSs are coded as 
string with the best POS as the first character of the string. 

Similarly, the synsets entity holds all WordNet® synsets, 

their POS, and definition. The primary key is synsetid. 
The many-to-many relationship between words and synsets 

is modeled by the senses entity. It contains the foreign 

keys wordid and synsetid. Synsets are related to 

each other via the semlinks entity. Synset1id points to 

the from direction and Synset2id to the to direction. 

The types of semantic links are defined by linkid which is 

a foreign key to the linktype entity. All types of links are 

listed in the linktype entity. We choose Apache Derby 
[24] as the database management system to hold this data 
model. Apache Derby is part of the Apache Group. It gained 
a good reputation and a high spread for applications 
requiring embedded relational DBMS. It is distributed as a 
java jar file to be added to the classpath of the application. It 
also comes as a stand-alone version. 
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Figure 2.  UML class diagram for the relational database. 

3) Graph Database Storage 
In our proposed work, we model the WordNet® as a 

graph database. An object diagram is illustrated in Fig. 3. We 

have two types of nodes: words (illustrated as ellipses) and 

synsets (illustrated as hexagons). The attributes of a word 

are a lemma and the different POSs, which are coded as a 
string with the best POS as the first character of the string. 

The synset has a property definition. There exists a 

bi-directional relation Rel_sense between words and 

synsets. The attribute pos of the relation indicates the 

POS associated with the sense. Synsets are interconnected 

by directed relations. These relationships 

Rel_SemanticLink carry the type of the link in the 

attribute type. For example, in Fig. 3, word w1 has one sense 

as a noun with link to sysnset sa and two senses as verbs 

for synsets sc and sd. Synset sa has two hyponyms 

sb and se by following the relationships 

Rel_SemanticLink with type “hyponym”. w4 has one 

sense sb as a noun. w2 and w3 – as nouns - share the same 

synset se. w5 has only one sense as a verb which is sc. 

So, if getHoponyms(“w1”, “n”) is called, the result 

will be w2, w3, and w4. 

4) Graph Database Storage with Extra Directly Derived 

Relationships 
In the RiTa.WordNet application scenario, we expect lots 

of inquiries about semantically related words (e.g., 
hyponyms, synonyms, meronyms, etc.). Synsets are mainly 
the means to return the semantically related words. At the 
same time, the application is typically read-only and 
represents a good example for a wide range of read-only (or 
low-update/high-read) applications. The graph database is 
only updated with the release of a new WordNet® 
dictionary. This motivates us to augment the design 
mentioned in the previous section with the derived semantic 
relationships between words and not only synsets. The idea 
is similar to materialized views known in relational 
databases. the result of semantic relationship inquiries (e.g., 

getHyponyms(), getSynonyms(), 

getMeronyms(), etc.) is generated by traversing only one 
relationship for each result word. We intuitively expect a 
quicker response time at the cost of a high storage volume 
since the connectivity of the graph is highly increased.  

In terms of implementation, these relationships are 
identified through the relationship type. Fig. 4 illustrates the 
derived relationships for the example in Fig. 3. Only the 

relationship of type Rel_Hyponym for noun POS of word 

w1; namely, w2, w3, and w4 is drawn. For more complex 
inquiries of category “relationship tree” and “common 
parent”, a combination of original and derived relationships 
are used in the traversal. 

 

Figure 3.  Object diagram for the proposed WordNet® graph database storage. 
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Figure 4.  Object diagram with the extra derived relationships. 

IV. PERFORMANCE EVALUATION 

In order to evaluate the performance of our proposed 
system, we provide four implementations for the Java 

interface RiWordNetIF mentioned in Section III. The 
implementations are file-based storage, relational DBMS 
using Apache Derby, the graph database using Neo4j, and a 
second implementation using the directly derived 
relationships also using Neo4j. 

It is important to notice that the purpose of this 
evaluation is to give a general impression on the 
performance impact and not to give concrete benchmarking 
figures. For sure, the optimization of all DBMS 
implementations; such as using indices or even exchanging 
the DBMS itself versus using future versions of Neo4j might 
lead to different results. We would be satisfied when our 
proposed solution provides slightly better results than 
relational DBMS. It is also clear that in-memory databases 
and large caching mechanisms will outperform all 
implementations.  But we rule them out assuming memory 
size restrictions. 

We develop a simple performance evaluation toolkit 
around these four implementations. A workload generator 
sends inquiries to all back-ends. The inquiries are grouped 
into four categories, as mentioned in Section III. The 
workload generator submits the inquiries in parallel to the 
application with each inquiry executing in a separate thread. 

The input for the inquiry is chosen at random from an 
input file containing WordNet® words and their associated 

best POS. In case of getCommonParent(), another input 
file is used, which contains tuples of somehow related words, 
together with their common POS (e.g., “tiger”, “cat”, and 
“noun”). The tuples are chosen carefully to yield paths of 
different lengths. 

The performance of the system is monitored using a 
performance monitor unit that records the response time of 
each inquiry and the number of inquiries performed by each 
thread in a regular time interval. 

A. Input Parameters and Performance Metrics 

The number of concurrent inquiry threads is increased 
from 1 to 50. Each experiment executes on each backend for 
5 minutes in order to eliminate any transient effects. The 
experiments are conducted for each type of inquiries 
separately. 

In all our experiments, we monitor the system response 
time in terms of micro-seconds per operation from the 
moment of submitting the inquiry till receiving the result. 

We also monitor the system throughput in terms of 
inquires per hour for each thread. 

B. System Configuration 

In our experiments, we use an Intel CORE™ i7 vPro 
2.7GHz processor, 8 GB RAM and a Solid State Drive 
(SSD). The operating system is Windows 7 64-bits. We use 
JDK 1.6.0, Neo4j version 1.6 for the graph database engine, 
embedded Derby™ version 10.7.1.1 for the SQL backend, 
JWNL library version 1.4 [11] for file system based storage. 
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C. Experiment Results 

The performance evaluation considers all four types of 
inquiries: 

 Attribute, 

 Semantic relationships, 

 Relationship trees, and 

 Common parent  
for the four back-end implementations. 

We drop plotting the results of the native file system-
based implementation from our graphs, although it is the 
only available implementation previous to this work. The 
reason behind this is that the results are far worse than the 
other implementations. The difference in most case is more 
than one order of magnitude. 

1) Attribute Inquiries  
In this set of experiments, the inquiries sent by the 

workload generator comprise attribute inquiries only. Both 
response time, illustrated in Fig. 5, and throughput, 
illustrated in Fig. 6, degrade gracefully with the increase in 
number of threads while having good absolute values. 
Remarkably, the simple Neo4j implementation (without the 
extra directly derived relationships) has a 20% better 
response time than the other two implementations, while the 
full blown Neo4j implementation has a 40% decrease in 
system throughput. The reason for that is the attribute 
inquiries are mainly affected by the node (or tuple in case of 
relational databases) retrieval and caching. No relationship 
traversal is done and hence the Neo4j only suffers from its 
large database size especially with the augmented directly 
derived relationships (see Section IV.D). In summary, this 
set of experiments demonstrates that the caching 
mechanisms of graph databases are in general as good as the 
relational databases and that simple operations without graph 
traversals are not underprivileged in this environment. 

 

 
Figure 5.  Response time for attribute inquiries. 

 
Figure 6.  Throughput for attribute inquiries. 

2) Semantic Relationship Inquiries 
In this set of experiments, the explicit storage of semantic 

relationships shows its benefit. The results are retrieved by 
traversing one relationship only, in contrast to 3 for the 
simple implementation and several joins in the relational 
database implementation. The response time, as illustrated in 
Fig. 7 is enhanced by approx. 50% for all number of threads 
when compared to SQL Derby and 30% by adding these 
directly derived relationships to a simple Neo4j 
implementation. However, all three back-ends behave 
identically when it comes to throughput as illustrated in Fig. 
8. The absolute values are far below those of the simple 
attribute inquiries described in the previous section which is 
expected due to the complexity of these inquiries as 
compared to attribute inquiries. In case of response time, it is 
almost 10 times higher than the previous set of experiments. 
The same applies to the throughput, which is lower by a 
factor of 10 as well. 

 

 
Figure 7.  Response time for semantic relationship inquiries. 

 
Figure 8.  Throughput for semantic relationship inquiries. 
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3) Relationship Tree Inquiries 
The operations of this set of experiments are more 

complex than the previous ones. This explains the drop in 
absolute values of the response time and throughput, 
illustrated in Fig. 9 and Fig. 10, respectively when compared 
to the previous experiment. This time the degradation factor 
is only 4. Yet, the system behavior remains the same. The 
response time of Neo4j with the directly derived 
relationships is half that’s of the SQL implementation. Even 
without the extra relationships, the response time Neo4j is 
25-30% better than the relational model. Here, again, the 
throughput, illustrated in Fig. 10, for all three 
implementations is the same. The equality of the throughput 
performance index of Derby and the Neo4j implementation, 
despite the short response time of the later, is an indication 
that the internal pipeline capabilities of Neo4j is not as good 
as that of the relational model. 

 
Figure 9.  Response time for relationship tree inquiries. 

 
Figure 10.  Throughput for relationship tree inquiries. 

4) Common Parent Inquiries 
The inquiries for this set of experiments are the most 

complicated among all experiments. Yet, this is a very 
common use case in social networks. For example, in XING 
[25], the user can always see all paths of relationships 
leading from the user to any arbitrary user in the network. No 
wonder here that Neo4j implementations outperform the 
SQL Derby implementation (and the file system 
implementation which seems to be not able to handle all the 
running threads) in requesting depth first searches of the 
semantic network of WordNet®. Again, Fig. 11 illustrates 
the extreme superiority of graph database, especially with the 
addition of the extra relationships. The response time is also 
enhanced by 45% and 30% with and without directly derived 
relationships, respectively. The throughput, illustrated in 

Fig. 12, holds its trend across all experiments of being almost 
the same for the three implementations (and omitting the file 
system implementation of course, whose values cannot be 
plotted with the same scale next to their counterparts). 

 
Figure 11.  Response time for common parent inquiries. 

 
Figure 12.  Throughput for common parent inquiries. 

D. Storage Requirements 

Performance in terms of good response time comes with 
its price. Fig. 13 illustrates the storage requirements for all 
four implementations. The SQL Derby and the normal 
Neo4j implementation occupy slightly more than double the 
original size of the WordNet® file-based dictionary. The 
redundant relationships account for more than 350 MB, 
making the size of the graph database 12 times larger than 
the file-based dictionary taken as a reference point. The 
good side of this particular application scenario is the 
absolute size of the back-ends is affordable by any desktop 
application. 

 
Figure 13.  Storage for each backend implementation. 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we presented two Neo4j graph storage 
representations for the WordNet® dictionary. We use 
Ri.WordNet as a typical client application that submits 
semantic inquiries discovering the relationships between 
English terms. We divide the inquiries into 4 categories 
depending on the complexity of their operations. Our 
performance analysis demonstrates that graph databases 
yield much better results than traditional relational databases 
in terms of response time even under extreme workloads thus 
speaking for their promised scalability. We also show that 
storing directly derived relationships can improve the 
performance by factors of 2. This redundancy has its price in 
terms of storage requirements, which is acceptable due to the 
moderate size of the database with 117,000 synsets and 
147,000 terms and the read-only nature of this small scale 
social network. 

One important contribution of this work is that it opens 
the door for new application areas for NoSQL databases (in 
this case the Neo4j graph database), namely smaller read-
intensive database applications, in contrast to typical 
applications of the NoSQL in large scale Web 2.0 such as 
social networks. 

Yet, this is only the beginning. In the future, we plan on 
benchmarking other graph database providers, such as 
InfoGrid [23]. We also plan on migrating several research 
done on relationship mining to work on graph database back-
ends. If the benchmarking experiments show promising 
results, this will open the door for the application of graph 
databases in OLAP applications. 
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