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Abstract—We propose in this paper an interactive query
recommendation system, namely FIMIOQR. It is designed to
help OLAP (On-line Analytical Processing) users in their decision
query writing task based on both a set of selected measures and
decision queries log file. Our FIMIOQR system is designed to
discover associations from decision queries log file. For this end,
we use association rules method to extract frequent itemsets from
dimensions attributes according to user selected set of measures.
This allows end users in OLAP systems to write relevant queries
guided by an interactive recommending system and helps them
to meet their analysis objectives. In addition, we propose a tool
for the automatic implementation of FIMIOQR which provides
a visual interface to OLAP users which helps them to write their
queries step by step in an interactive way. We also carried out
some experimental tests to evaluate our system. The experimental
evaluation proves our FIMIOQR framework is efficient in term
of recommendation quality.

Index Terms—Interactive Recommendation; Data warehouse;
Decision Query; Measure; Dimension attribute; Frequent Item-
sets Mining; OLAP; Data warehouse

I. INTRODUCTION

End users in OLAP systems tend to achieve the same goal
for obtaining valuable and useful information out of data ware-
house. However, OLAP is characterized by decision queries
that are often very complex and involve a lot of aggregations.
Due to the constantly and rapidly growth of data volumes,
manipulation and analysis complexity also increases. In such
situation, OLAP users would quite benefit from assistance
for this task. This assistance may be accomplished through
recommendation process.

Recommendation is a means of meeting user’s needs more
efficiently, making interactions faster and easier and, conse-
quently, increasing user satisfaction. This assumption consti-
tutes the starting point used in this paper to present a new
recommendation approach over data warehouses.

In OLAP context, query recommendation approaches
mostly focused on recommending alternative queries with
close search intent to the original query. In this case, recom-
mended queries are existing queries. However, the recommen-
dation of only alternative existing queries may generate less
interactivity with the user and does not create new decision
queries.

Furthermore, there is a lack of a framework that assists the
users while querying data warehouse. We believe that such
a framework would be interactive during query writing and

consequently increases user implication in the exploration task.
It allows him/her to construct his/her decision query step by
step (incrementally).

Query logs usually contain a sequence of SQL queries that
show the action flows of users, their preference, their interests,
and their behaviours during the action. In this paper, we aim
to assist the user in formulating accurate queries to express
his/her analysis needs. We propose an interactive real-time
assistance process which aims to give users opportunities to
refine their queries by suggesting queries completions.

Decision queries on which we are interested in this paper are
in the form “SELECT ... FROM ... WHERE ... GROUP BY CUBE

(ROLLUP)”. Assuming that the relevance of a recommended
query is strongly correlated to the usage frequency of the
corresponding attributes within a given workload, the search
for frequent itemsets [1] appeared well adapted to highlight
this correlation and to facilitate query recommendation. Our
tool parses the transaction log file (set of queries executed
by the DBMS) and groups queries respecting the same mea-
sure(s) to build a context for mining frequent itemsets. This
context connects queries from the input workload to the query
attributes. The output frequent itemsets are sets of attributes
forming a configuration of candidate recommendations. Fi-
nally, recommendation strategy can be applied to select the
relevant attributes to effectively suggest from within this
configuration.

Besides attributes (qualitative data) in a decision query,
there is at least one numeric measure (quantitative data) that
provide the object of analysis. Thereby, after asking user
for his/her object of analysis (measure or combination of
measures), recommendations during query writing will focus
on query attributes. Queries from the transaction log constitute
a workload that is treated by an SQL query analyzer. Thus, the
SQL query analyzer extracts all the attributes. Then, we build
a “query-attributes” matrix, the rows of which represent the
workload queries, and the columns represent attributes. The
role of this matrix is to link each attribute to the workload
queries it appears in. This matrix represents the extraction
context for frequent itemsets. To compute these frequent
itemsets, we applied the Close algorithm [2].

Our approach goal is to assist OLAP user to accomplish
his/her decision query writing by suggesting him/her possible
candidate query attributes with respect to both their appearance
in different Clauses (SELECT, WHERE, GROUP BY, etc.) and
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the selected measures. Consequently, the user can construct
progressively his/her decision query by selecting attributes
among different proposed suggestions by our approach. Thus,
the new obtained query can be submitted by the user to
the data warehouse. In order to validate our recommenda-
tion approach, we have implemented the recommendation
framework called FIMIOQR (Frequent Itemsets Mining for
Interactive OLAP Query Recommendation) with Java using
the integrated development environment Netbeans [3]. The
experimental evaluation proves our framework is efficient in
term of recommendation quality.

The remainder of this paper is structured as follows. Section
II presents related works regarding query recommendation. In
Section III, we present our query recommendation approach.
In Section IV, we present an example to motivate our ap-
proach. Implementation features are described in Section V
with some preliminary experimental results. Finally, conclu-
sions are given in Section VI, together with a summary of our
expected future work.

II. RELATED WORKS

Recently, recommendation systems have obtained the atten-
tion of research society in both database and data warehouse
fields. In fact, items to recommend are queries. We find in
literature two kinds of recommendations (1) alternative entire
queries proposition and (2) assistance to query construction
through query completions.

In the database field, based on results of each query,
Stefanidis et al. recommend additional results called “You
May Also Like” or YMAL results which might be of user’s
potential interests [4]. YMAL appraoch exploits the history
of previously submitted queries to the database system, e.g.
by using query logs. Recommendations that are generated can
be either query-based YMAL results (similar to content-based
recommendations), either user-based YMAL results (similar
to collaborative recommendations).

Another approach for recommending queries in the database
field creates automatically join query recommendations based
on input and output specifications [5]. This approach analyses
query log and extracts joins from previous submitted queries
that are used to generate recommendations for the current user.
After presenting the conceptual framework and its instantiation
in [6], Chatzopoulou et al. came up with a system named
QueRIE for personalized query recommendations (full SQL
queries). To generate recommendations, QueRIE first con-
structs the summary for each user, then generates a “predicted”
summary for the users and finally generates recommendation
queries based on “predicted” summary. Finally, based on the
analysis of query log, Khoussainova et al. introduced the Snip-
suggest framework. Snipsuggest assists users in composing
complex queries by recommending a set of additions to a
specific clause in a partially stated SQL query [7].

In OLAP context, the first approach to be considered is
based on providing query recommendations to the user by
means of User Preference Analysis (RUPA) [8], [9]. In RUPA
approach, OLAP analyses are represented using a graph-based

model. In fact, both of user profile and current query are
expressed by means of trees. Then, a Tree Matching Algorithm
is applied to compare the two trees.

More recently, Golfarelli et al. propose an approach where
preferences are used to annotate the query. They defined
an algebra that allows formulating preferences on attributes,
measures and hierarchies [10]. The used technique consists
in personalizing a query by dealing with a sub-query of the
current query. In this case, the recommended query is the sub-
query which returns a non empty preferred result.

In this section, we reviewed the current approaches for
query recommendation for databases and data warehouses. It
seems that neither solution by now assist decision query con-
struction. We have to come up with better, more meaningful
solution to recommend query completions to the user instead
of whole queries. We present a comparative table (table I)
confronting the panoply of the proposed approaches. We define
some criteria that we consider relevant to study exactly the
recommendation approach.
Recommendation type: the recommendation system may be
content-based or collaborative. Within the content-based con-
text, it consists in considering the user individually with
respect to his/her requirements. In the social or collaborative
context, it consists in considering the context of other users
who may have similar preoccupations.
Recommendation input data: this criterion presents recommen-
dation source which can be a user profile, a query history (log
file) or an external source(ontologies, web pages...).
Recommendation Time: this criterion presents time of recom-
mendation: before querying, while querying or after querying.
Recommendation features: this criterion presents the recom-
mendation object which can be a set of entire queries or a set
of query fragments.
Research field: this criterion presents the domain of application
of the recommendation approach. It can be database field (DB)
or data warehouse field (DW).

To the best of our knowledge, only whole queries can be
provided to users in OLAP recommendation context. However,
we are more interested in the instant-response query recom-
mendation. In fact, our work comes close to works that pro-
pose approaches of user query refinement in database field [7].
Even these works present some similarities with our approach
(recommendation of query fragments), the challenges that need
to be addressed and the techniques are very different to the
ones we propose. In fact, we recommend decision queries
based on a set of measures fixed by the user. Therefore, we
use the Close algorithm based on minimal support which must
be fixed also by the user.

III. INTERACTIVE QUERY RECOMMENDATION

It is important for query recommendations to identify the
current user’s purpose in order to make an accurate recom-
mendation. However, previous queries may include too many
features that could not provide the central themes of the
analysis, while the current query has little information. To
overcome this drawback, our framework introduces a new
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SURVEY OF QUERY RECOMMENDATION APPROACHES
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Recommendation Type Content-based × × ×
Collaborative × × × ×

Recommendation Time (% querying) Before ×
While × ×
After × × × ×

Recommendation Input Data User profile × ×
Log file × × × × ×

External source ×
Recommendation Features Queries × × × ×

Query fragments × ×
Research Field DB × × ×

DW × × ×

approach that asks the user for the analysis object (measure
or combination of measures) and recommends attributes based
on this analysis object. To extract the previous queries, the
system can use the query log to summarize the querying
behaviour from past users. Our recommendation framework
(Figure 1) works on the OLAP system using decision queries.
Every user’s query is also recorded in the log with the user
ID to store its queries. Our recommendation approach relies
on current inputting query attributes and past user’s queries
which are stored in query log to generate a set of attributes
recommendations to the user.

Fig. 1. Interactive query recommendation framework

A. Decision query

In data warehouse context, extracted queries are decision
analysis oriented. Based on a star schema model, decision
queries can be expressed on relational algebra as below:

q = πA,MσP (F ./ D1 ./ D2 ./ ... ./ Dd)

where P is a conjunction of simple predicates on the
attributes of dimension tables, A is a set of attributes of
dimension tables Di(attributes of Group by clause) and M

is a set of measures, each measure is defined by applying an
aggregation operator on the measure of fact table.

A major distinctive feature of data warehouse query is its
aggregation of measures by one or more dimensions as one of
the key operations; e.g., computing and ranking the total sales
by each country (or by each year). Other popular operations
include comparing two measures (e.g., sales and budget) ag-
gregated by the same dimensions. Thus, the queries themselves
return results computed over the measure attributes. Each of
the numeric measures depends on a set of dimensions, which
provide the context for the measure. The dimensions together
are assumed to uniquely determine the measure [11].

In our previous study [12], we have shown the potential of
recommending OLAP queries through a data mining based-
approach using Apriori method. Our first approach deals with
the recommendation without taking into account the measures.
It is why, in this paper, we focus on first the selected measures
by the user after what we recommend to him/her a set of
correlated attributes.

In this paper, a key assumption in our recommendation
approach is that the measure attributes have an extreme im-
portance in analytic queries. It represents the analysis object.

B. Query recommendation process

There are three steps in our approach. First, data preparation
and pattern discovery phases. Second, extracting frequent
itemsets by Close algorithm and then we focus on the details
of our recommendation engine.

1) Preparing and Preprocessing data: The starting and
critical point for successful recommendation based on usage
data is data preprocessing. It is an offline component of
our recommendation approach. It can be divided into three
separate stages. The first stage is that of preprocessing and
data preparation, it consists in queries extraction and attributes
extraction. The second is the measures lattice construction and
the final stage is the binary matrix construction. Each of these
components is discussed below.
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a) Query extraction: Each data warehouse system keeps
logs whenever users input queries. The information displayed
and generated depends on the attributes that a user adopts.
Attribute information can be provided to help users consider
business information from different angles. Therefore, we try
to discover how users make use of attributes when querying
a data warehouse. Such information can be provided to other
users for reference to reduce their efforts when using busi-
ness intelligence systems. Our recommendation mechanism
provides such information based on existing query logs. In
order to create the attribute-based query, we needed to pre-
process the queries included in the query logs and decompose
them. This process consists of two steps, namely query gen-
eralization and query parsing. In the first step, the queries are
generalized based on a set of rules, in order to be analysed and
matched more efficiently. Then, they are parsed in preparation
for filling the binary matrix. In fact, a workload can be
easily obtained from the DBMS transaction logs. The queries
workload models decision-oriented queries involving common
OLAP operations, such as cube, roll-up and drill down.

b) Measures lattice construction: We group queries us-
ing the same measure(s). We represent different possible com-
binations of these measures in the form of a lattice structure as
shown in Figure 3. Each node in the measures lattice structure
represents a combination of measures. The number of levels
in a lattice is equal to the number of measures. The size of
the lattice (i.e., the total number of nodes where each node
represents a set of frequent itemsets) grows exponentially
with the number of attributes that are considered. However,
generally, in a data warehouse we have few measures. Let N
be the number of nodes in a lattice, then N = (2A−1) where
A represents the number of measures.

c) Building the extraction context for the frequent closed
itemsets: For every node (mesaure(s) workload), we build a
matrix, the rows of which represent the workload queries, and
the columns represent the set of all the attributes identified in
the previous step. In each node, the ”query-attributes” matrix
links each query to the attributes within it. Attribute presence
in a query is symbolized by 1, and absence by 0.

2) Frequent Closed Itemsets Mining: The Close algorithm
scans in breadth first a lattice of closed itemsets in order to ex-
tract the frequent closed itemsets and their support. Its input is
an extraction context.We selected the Close Algorithm because
its output is the set of the frequent closed intemsets (closed
regarding the Galois connection [2]), which is a generator for
all the frequent itemsets and their support. In most cases,
the number of frequent closed itemsets is much lower than
the total number of frequent itemsets obtained by classical
algorithms such as Apriori in our previous work [12]. In our
context, using Close enables us to obtain a smaller (though
still significant) configuration of candidate recommendations.
For each query within the workload, we extract attributes in
all the clauses prefixed by the name of the clause. Intuitivelty,
a closed itemset is a maximal set of items (attributes) that are
common to a set of transactions (queries).

A closed itemset is a maximal set of items (attributes) that

are common to a set of transactions (queries). A maximal set
of items is an independent set of items that is not a subset of
any other independent set. In fact, an itemset is said frequent
when its support is greater or equal to a threshold parameter
named minsup (minimal support).

Eventually, the application of Close algorithm on the ex-
traction context outputs the set of frequent itemsets (and their
support) for a minimal support fixed by the user. We consider
this set as our configuration of candidate recommendations.

3) Recommendation phase: The recommendation engine is
the on line component of our recommendation system based on
frequent itemsets mining. Our system restricts its processing
to the measure combination selected by the user. Furthermore,
when a user selects a node representing a measure combina-
tion, the underlying system can exploit the list of possible
frequent itemsets that involve these measures to recommend
appropriate attributes to the user. Then, the user may choose
to further accept the proposed suggestions by selecting one
or more of the frequent items that appear on the list. The
role of the data mining process becomes, simply, to find the
frequent itemsets that are of interest to the user and that satisfy
a minimum support value if the user provides such minimums.

IV. ILLUSTRATIVE EXAMPLE

To illustrate our approach, we use as an example FoodMart
data warehouse [13] which contains sales data of a super-
market chain that is specialized in food products. Sales are
represented as a fact table namely Sales and the contexts of
analysis are represented as dimension tables namely Product,
Promotion, Time, Store and Customer.

Fig. 2. Excerpt of FoodMart data warehouse

Based on this data warehouse and a related workload
containing 100 queries, we show in this section how our
FIMIOQR system works.

A. Preprocessing task

It is an offline task containing 3 steps.
a) Step 1: Lattice construction: On Foodmart data ware-

house, we have 7 measures namely Store sales, Store cost,
Unit sales, Amount, Warehouse sales, Warehouse cost and
Store invoice. In this example, we are interested on sales cube
(Figure 2, therefore, we use only three measures: Store sales,
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Store cost and Unit sales. We represent different combina-
tions of these measures in the above lattice in Figure 3.

Store Sales Store Cost Unit Sales

Store Sales Store Cost Store Sales Unit Sales Store Cost Unit Sales

Store Sales Store Cost Unit Sales

Fig. 3. Measures lattice

b) Step 2: Analysis context building: For every measure
or a combination of measures in lattice nodes, we build the
respective binary matrix, the rows of which represent the
workload queries, and the columns represent the set of all
the attributes identified in the previous step.

c) Step 3: Close algorithm application: The input of
the Close algorithm consists in the binary matrix gener-
ated in step 2 and the output consists in closed frequent
itemsets to each measure or a combination of measures.
For instance, for the combination of measures Store sales,
Store cost and Unit sales, the output is: {product class id,

store name, store manager, product name, product id}, {customer id, member card,

grocery sqft, city, the date},...

B. Interactive query writing task

In this task, the user is assisted by our system. The basic
principle that underlies our recommendation engine is the
completions of user current query. In fact, after measures
selection by the user, FIMIOQR will suggest to him/her
dimension attributes while his/her query writing. Assume
a user has selected Store sales, Store cost and Unit sales
measures. Therefore, our system will use the frequent itemsets
of the corresponding lattice node. Assume a user enters
the attribute brand name, our system will search the closed
frequent itemsets corresponding to the selected measures and
containing this attribute. FIMIOQR will recommend to the
user the other correlated attributes as possible completions.
Our approach provides non-intrusive recommendations to the
user for query composing. Thus, the user has always the
choice to accept or not these suggestions. If the user accepts
an attribute suggestion, FIMIOQR will search again closed
frequent itemsets containing this attribute and so forth.

V. IMPLEMENTATION AND EXPERIMENTATION

In order to validate our approach, we implemented the
recommendation framework called FIMIOQR (Frequent Item-
sets Mining for Interactive OLAP Query Recommandation)
using ‘JAVA’ on Netbeans environment on top of SQL Server
2005 DBMS [3]. We have applied it on a test workload of
100 queries related to FoodMart data warehouse used in our
example.

To evaluate the performance of our system, several aspects
of FIMIOQR can be used for answering these questions:

• Is FIMOQR able to effectively recommend relevant at-
tributes? (recommendation quality).

• Is the log size influence on recommendation time?
• Is the Close algorithm effective at maintaining recom-

mendation quality, while changing the minimal support?
However, evaluating the quality of query recommendation

is difficult, since there is usually no ground truth of
recommendations and different annotators will have different
judgements over the recommendation results. However, two
metrics, precision and recall, are commonly used to measure
the quality of a recommendation [14]. A recommendation
system may suggest interesting or uninteresting objects. The
recall measure indicates the effectiveness of a method for
locating interesting objects, while the precision measure
represents the extent to which the instances recommended by
a method really are interesting to users. The formulas are as
follows:

recall =
number of correctly recommended objects

number of interesting objects

precision =
number of correctly recommended objects

number of recommended objects

Whereas, in our study, the number of interesting objects is
fixed since it is equal to the number of attributes used in a
data warehouse. In our example in section IV, we have 95
attributes. Therefore, the range or scope of recommendations
is limited; consequently, the recall metric is not applicable in
our study. We can only use the precision metric to evaluate
the quality of the proposed recommendations.

In our approach, the number of correctly recommended
objects presents the number of accepted recommendations
(attributes). The relevance of each attribute to the input query
was judged by members of our laboratory (students and
professors). They analysed the recommended itemsets and
determined the items that are of interest to the input query.
In fact, the recommendation precision (RP) is calculated as
follows:

RP =
number of accepted recommended attributes

number of recommended attributes

Our first experiment evaluates the accuracy of the proposed
approach to make the recommendations. Figure 4 shows the
performance recommendation time according to the size of
query log.
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Fig. 4. Accuracy Analysis

As can be seen from Figure 4, it is obvious that the trend
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of execution time is upwards with the log size. The execution
time is acceptable with the size of 50 queries in query log.

The Figure 5 (a) shows that the precision slightly increases
with the log size. This figure demonstrates that most current
queriess can obtain a successful recommendation by our
approach with precision between 0.14 and 0.58 from the query
log.

In addition, our recommendation framework has been exe-
cuted for various values of the Close minsup (minimal support)
parameter. In practice, this parameter helps us limiting the
number of candidates to generate by selecting only those that
are the most frequently used by the workload. Figure 5 (b)
shows the precision of recommendation according to the value
of minimal support. As can be seen from Figure 5 (a), it is
obvious that the trend of recommendation precision is upwards
with minsup parameter until 60% where it decreases.
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Fig. 5. (a) Recommendation precision for different values of minsup; (b)
Average precision

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel approach for inter-
active real time decision query recommendation. Our method
allows to ease the user’s burden of the query formulation based
on decision query logs, namely FIMIOQR. The contribution
of our paper consists in providing a tool to help users interact
with data warehouse while formulating their queries. This tool
is based on Close algorithm in order to extract frequent closed
itemsets.

Unlike most previous works, the method we propose at-
tempts to recommend dimension attributes rather than whole
queries. Throughout the paper we tended to justify that mining
log files can give us a concise set of information about the
usage of the system and enables us efficient handling of that
information. In the context of query recommendations, when
a user submits a query, the system should be able to assist
him/her in this task.

Our approach can be easily extended to collaborative recom-
mendation by identifying user preferences in order to exploit
query logs of all users and to recommend to the current
user dimension attributes of similar users. Moreover, a data
warehouse often contains vast amounts of information that is

difficult for a new user to comprehend. What attributes should
be used initially for a new user without any data warehouse
experience? It is necessary to employ a recommendation
mechanism to assist such users by suggesting him/her for
example attributes based on the logs of other experienced
users.

In terms of future work, there is much to be done. First
and foremost, we intend on looking for most accepted rec-
ommendations by the user in order to rank them through
skyline queries and to recommend them first to the user in
his/her future sessions. Therefore, the recommendation engine
matches past queries to an improved ranking, leading to
recommendations of higher quality.

In addition, a data warehouse user follows a logical reason-
ing in a querying process. Data in an analysis session is often
correlated. Therefore, we must think about generalizing our
approach against user sessions.

Finally, a real data set should be used for the simulation.
We assume that the query logs follow a normal distribution.
However, the generated data has drawbacks that impact on
the effectiveness of recommendations. Future work could be
extended to make more solid recommendations by working
with some organizations to obtain real data so that the analysis
would be closer to real-world situations.
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