

Parallel Genetic Algorithm Model to Extract Association Rules

Ahmad M. Taleb, Anwar A. Yahya

College of Computer Science and Information Systems
Najran University

Najran, Saudi Arabia
amtaleb@nu.edu.sa

anwaralthari@gmail.com

Nasser M. Taleb

College of Business Administration
Al Ain University of Science and Technology

Al Ain, UAE
nasser.taleb@aau.ac.ae

Abstract— Over the past generation, the process of discovering

interesting association rules in data mining and knowledge

discovery has become a cornerstone of contemporary decision

support environments. While most of the existing algorithms

do indeed focus on discovering high interestingness and

accuracy relationships between items in the databases, they

tend to have limited scalability and performance. In this paper,

we discuss a Parallel Genetic Algorithm Model (PGAM) that

has been designed as a scalable and high performance

association rules engine. Experimental results demonstrate

that the model offers the potential to optimize both scalability

and performance in association rules mining.

Keywords - Data mining; FP-Growth; Multi-objective

evolutionary algorithms; scalability; performance; Parallel GA.

I. INTRODUCTION

Data mining and knowledge discovery in
databases have been popular targets for researchers
over the past 15-20 years, with papers published on a
wide variety of related topics. One of the most
important tasks in the data mining domain is the
association rule mining that aims to find the
relationships between the items that frequently appear
in the databases' transactions, and additionally, to
extract rules of the form IF Condition THEN
Predication. The IF clause is called the rule condition
that checks if the values of some attributes are true
and the THEN clause is called the rule prediction that
predicts a value for some goal attribute. In general
terms, an association rule is a relation between
attributes of the form if X then Y, Where X ∩Y = Φ.

It is known that the association rule mining is NP-hard
problem because the search space is exponential with
the number of itemset.

In 1993, the association rule problem was first introduced
by Agrawal et al. [1]. They developed the Apriori algorithm
which is the most famous algorithm to solve the association
rule problem [2]. This algorithm is based on the support
(frequency of the rule in the transactions) and confidence
(truth of the rule in the transactions) of the rule. Most of the
existing association rules algorithms built upon Apriori-
based algorithm, as the Apriori algorithm was well
understood and very famous. On the positive side, the
improvements of the Apriori algorithm were very impressive

in terms of measuring the quality of the generated rules by
using a coherent set of multiple measures such as
interestingness, comprehensibility, confidence, etc.
Unfortunately, such algorithms still make the problem more
complex and often provided limited scalability as they are
ill-suited to handle massive databases with huge number of
attributes and a lot of distinct values for each attribute.

Other approaches are based on Frequent Pattern Growth
(FP-Growth) Algorithm [13] to extract association rules. The
FP-growth is used to extract the frequent itmesets from the
databases in two steps as follows: 1) Build a compact data
structure called FP-tree using two passes over the databases
and 2) Extract frequent itemsets from the FP-tree by the
traversal through the FP tree. After detecting the frequent
itemsets, then we can use a user defined parameter called
confidence to generate the appropriate association rules.
While the FP-Growth algorithm [13] needs only two passes
over the datasets, a large amount of memory space is needed
because the algorithm generate conditional FP-trees
recursively.

For this reason, several parallel algorithms have been
proposed in the literature to handle the association rule
problem in massive data stores [18]. Scalability on these
parallel algorithms was/is indeed acceptable as the partition
of large databases and transactions often handles massive
data stores. Of course, everything comes at a price and, in the
case of parallel algorithms; runtime performance remains a
big concern. Specifically, such algorithms often provided
poor runtime performance due to the high synchronization
and communication overhead and disk I/O cost.

The current paper discusses a parallel genetic-based
algorithm to discover association rules called PGAM. The
motivation of our design is to provide a high runtime
performance and scalable engine for the association rule
mining problem. Physically, the architecture is constructed
as a federation of largely independent sibling servers, each
responsible for a segment of the original transactions.
Locally, each server stores, and processes its transactions to
extract the association rules using the genetic algorithm that
is very well suited to perform global search with less time
complexity compared to other algorithms used in data
mining problems. A parallel service layer transparently
provides global merging and communication services as
required. Specifically, the Parallel Genetic Algorithm Model
(PGAM) described in this paper is capable of efficiently
solving the association rule problems. Experimental

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

evaluation demonstrates that the combination of a shared
nothing architecture and heavily optimized local genetic
algorithm processing may indeed provide the cost effective
scalability/performance pairing that is missing in existing
association rule algorithms.

The paper is organized as follows. In Section 2, we
briefly review recent work in the area. Basic preliminary
material is then outlined in Section 3. We present the details
of the parallel model in Section 4, including the genetic
algorithm that ties the model together. In Section 5, we
discuss the shared nothing architecture and show how the
local servers are integrated into a single logical system.
Experimental results are then provided in Section 6, with
final conclusions in Section 7.

II. RELATED WORK

Association rule mining (ARM) is an important core data
mining technique to discover patterns/rules among items in a
large database of variable-length transactions. The goal of
ARM is to identify groups of items that most often occur
together. It is widely used in market-basket transaction data
analysis, graph mining applications like substructure
discovery in chemical compounds, pattern finding in web
browsing, word occurrence analysis in text documents, and
so on. Contemporary association rule mining (ARM)
research began with the definition introduced by Agrawal et
al. [1], an important data mining technique to discover rules
among items in massive databases of large number of
transactions. Moreover, Agrawal et al. developed the Apriori
algorithm to solve the association rule mining problem. This
algorithm focuses on the frequent itemsets generation sub-
problem and subsequently the generation of the rules with
minimum confidence. Subsequently, a number of
researchers presented algorithms that are improvements to
Apriori algorithm [10], [21]. FP-growth is another famous
technique to extract the frequent itemset using minimum
support and confidence [13]. More recent work in this area
has tended to focus on the quality of the generated rule by
considering more measures (mutli-objective algorithms)
[10]. In general, scalability and performance were not
addressed in the well known Apriori and FP-growth
algorithms and their improvements.

Apart from the Apriori and FP-growth algorithms, a
significant number of publications focused on generating the
association rules using genetic algorithm [5]. Genetic
algorithm was first developed by John Holland in 1975. It is
based on the idea of survival of the fittest and the greedy
approach and performs very well global search with less
time. The GA works as follows:

1. An initial population is created. A Population is a
group of individuals (Chromosomes) and represents
a candidate solution. A Chromosome is a string of
genes.

2. Select chromosomes with higher fitness.
3. Crossover between the selected chromosomes to

produce new offspring with better higher fitness
4. Mutate the new chromosomes if needed.
5. Terminate when an optimum solution is found.

Ghosh et al. [11] proposed an algorithm to extract

frequent itemsets using genetic algorithms. Dou [7] also
developed an algorithm to find the maximal frequent
itemsets using GA and some defined parameters such as
individual identity, individual fitness, upgrade index and
upgrade genes that are used in GA. The authors in [15]
developed an algorithm for extracting the association rules
using GA and without the specification of the user-defined
minimum support and confidence. Finally, Hong [14]
developed a two-phases GA algorithms to extract the
association rules.

With respect to parallel algorithm for the ARM, a
number of algorithms were developed based on the
parallelization of the Apriori and FP-growth algorithms [3],
[12], [16], [19]. Each attempted to effectively exploit the
parallel hardware and architecture. Especially, the set of
transactions (Databases) is partitioned into a number of
subgroups and attempts to utilize the resources of the parallel
system efficiently. In other words, each partition is assigned
to an independent processor that makes the decision to
process and terminate the algorithm. A few other parallel
algorithms should be mentioned here. The Hori-Vertical
algorithm [18] is a parallel algorithm where no node will be
idle because a lot of new independent tasks that can be taken
to process. The author in [18] proposed a new database
partitioning that is based on dividing the database vertically
and horizontally into equivalent parts. Eclat[20] makes
vertical database partitioning and is another parallel
algorithm to solve the ARM. Limine et al. [4] proposed the
”Workload Management Distributed Frequent itemsets
mining” (WMDF) algorithm that is based on the horizontal
database partitioning and it makes load balancing between
system nodes. Parallelizations of the well-known sequential
algorithms are discussed with many other parallel algorithms
surveyed in [20].

III. PRELIMINARY MATERIALS

We can formally state the task of mining association rules
over market basket as follows: let I={I1, I2, …, In} be the
set of items/products and T={T1, T2, …, Tn} be the set of
transactions in the database. Each of the transaction Ti has a
unique ID and contains a subset of the items in I, called
itemset. An association rule is an implication among itemsets
of the form, X�Y, where X U Y ⊆ I and X∩Y = Ø [1][2].
An itemset can be a single item (e.g. mineral water) or a set
of items (e.g. sugar, milk, red tea). The quality of the
association rules can be measured by using two important
basic measures, support(S) and confidence(C) [17].
Support(S) of an association rule is the percentage of
transactions in the database that contain the itemset X∪Y.
Confidence (C) of an association rule is the
percentage/fraction of the number of transactions that
contain X∪Y to the total number of records that contain X.
Confidence factor of X�Y can be defined as:

Conf(X����Y) = Support (X∪∪∪∪Y)/ Support (X) (1)
Most of the association rule algorithms generate the

frequent itemsets –itemsets that are greater than a minimum
support—and then generate association rules that have

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

confidence greater than minimum confidence. However,
more metrics such as Comprehensibility and Interestingness
can be used to have more interesting association rules [10].
Comprehensibility is measured by the number of attributes
involved in IF part (condition) of the rule with respect to the
THEN (prediction) part of the rule because the rule is more
comprehensible if the conditions is less than the prediction.
Comprehensibility of an association rule (X�Y) is measured
as:

Comp (X����Y) = log(1+|Y|)+log(1+|XUY|) (2)
where |Y| and |XUY| are the number of attributes in the

consequent side and the total rule, respectively.
Interestingness measures how much interesting the rule is

[10]. The interestingness of an association rule (X�Y) is
measured as:

Inter(X����Y) = [Support (XUY)/Support(X)]x
[Support (XUY)/Support(Y)x[1 – Support(XUY)/|D|] (3)

Where |D| is the total number of records/transactions in
the database. Using several measures, the association rule
problem can be considered as a multi-objective problem.

Fig. 1(a) and (b) depict a small grocery sales
database consisting of five products I = {M, R, S, T, W} and
six transactions table that illustrates the purchase of items by
customers.

(a)

 (b)

Figure 1. (a) products/items database (b) Database transactions.

Fig. 2(a) shows all frequent itemsets containing at least

three products and minimum support 50%. Fig. 2(b)
illustrates sample association rules with four metrics
(Support, Confidence, Comprehensibility and
Interestingness).

In this paper, we choose to deal with the association rule
mining as a multi-objective problem rather than one
objective problem and to adopt the multi-objective
evolutionary algorithm for mining association rules [8], [9]
with emphasize on genetic algorithms. Genetic algorithm is
an iterative procedure that is appropriate for situations such

Itemsets Support

R 100%

W, RW 83%

M, S, T, MR, RS, RT, MRW 67%

MT, SW, TW, MRT, MTW,
RSW, RTW, MRTW

50%

(a)

(b)
Figure 2. (a) Frequent Itemsets with minimum support 50% (b) Sample

association rules with three metrics

as large and complex search space and optimization
problems. In order to use the genetic algorithm, the
following points must be addressed [5]:

1. Encoding/decoding schemes of chromosomes (bit
string, real-value string, etc.)

2. Population size: how many chromosomes are in
population. Good population size is about 30-40.

3. Fitness value: the chromosomes must be ranked
according to their fitness values (e.g. support,
confidence, comprehensibility, etc. measures can be
used to calculate the fitness value of an association
rule).

4. Selection: select the chromosomes for next
generation by using one of the selection scheme
(Roulette wheel, Boltzman, Tournament , Rank,
etc.).Note that it is important to use the elitism
technique to make sure that the best chromosomes
(association rules) that were generated at some
intermediate generations will be kept as candidate
solutions.

5. Crossover: single point crossover, two point
crossover, multi-point crossover, uniform
crossover, and arithmetic crossover.

6. Mutation: This to change the new chromosome
(offspring) to prevent the algorithm from getting
stuck. For binary encoding, the algorithm changes
bits from 1 to 0 or vice versa.

IV. MINING ASSOCIATION RULES

The association rule engine described in this paper is a
fully parallelized model. That being said, it is physically
constructed as series of backend servers, each operates
independently to extract the association rules from the
database transactions that are housed in each of the nodes.
This federated approach allows us to design and build a
parallel association rule model by concentrating on the

Products/items Abbreviation

Milk M

Rice R

Sugar S

Tea T

Water W

Transaction Items/products

1 MRTW

2 RSW

3 MRTW

4 MRSW

5 MRSTW

6 RST

Association

rules

Support Confi-

dence

Comprehen-

sibility

Interest

-ingness

M�R 67% 1 2.58 0.59

MR�T 50% 0.75 3 0.51

W�RS 50% 0.75 3 0.51

R�W 83% 0.83 2.58 0.71

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

optimization of the single node servers, rather than complex
load redistribution policies. The end result is a parallel
association rule engine that can directly exploit techniques
developed for single node servers. In other words, the current
engine can run on a single node, providing good
performance that one would expect from a fully optimized
association rules mining system. We therefore begin our
discussion of the current model by looking at the partitioning
of the transactions in the database and the execution model
of the sibling (backend) servers. In Section 5, we will return
to the question of how to efficiently integrate the individual
nodes.

A. Transaction Database Partitioning

We start by looking at the partitioning of the transaction
databases (e.g. market-basket problem) across all p backend
nodes. Given that our aim is to balance the processing times
for mining association rules across all p processors, a good
partitioning mechanism is a necessity. We note that our focus
in this paper is the database (set of transactions) of the
market-basket problem with fix positions of products/items.
The set of transactions are stored as bit strings where each
string represents a transaction. Table 1 illustrates how the
database (set of transactions) looks like.

Table I. Set of transactions (database of market-basket)

 Products/Items

T
ra

n
sa

ct
io

n
s

 A B C D E F G H …

T1 0 1 1 0 1 0 0 0 …

T2 1 1 1 0 1 0 0 1 …

T3 1 0 0 0 1 0 1 0 …

…

The stripping technique is described below.

1. Sort the original transactions according to the number
of items per transaction.

2. Stripe the transactions across all processors in a round
robin fashion such that successive transactions are sent to the
next processor in the sequence. For a network with p
processors, a database of n transactions and n mod p != 0, a
subset of processors receives one additional transaction.

The main goal behind this striping technique is that it
dramatically increases the likelihood that the execution time
required to extract the association rules will be
proportionally distributed across the processors in the multi-
computer architecture.

B. Multi-objective Genetic Algorithm

Recall that each backend node operates independently to
extract the association rules from the transactions that are
housed in each of the backend nodes. Specifically, each
backend node executes independently an optimized multi-
objective genetic algorithm to extract the association rules
for its own transactions database. In our current work, we
tried to solve the multi-objective association rule problem
with the pareto based [22] genetic algorithm because it is
always difficult to find out a single solution for multi-

objective problem. Vilferdo Pareto suggested the non-
dominance approach to solve multi-objective problems. His
approach says " A solution, say a, is said to be dominated by
another solution, say b, if and only if the solution b is better
or equal with respect to all the corresponding objectives of
the solution a, and b is strictly better in at least one
objective". We start by discussing the characteristics of the
pareto genetic algorithm used in to extract the multi-
objective association rules.

The first task in the genetic algorithm is to define what
the chromosomes represent (e.g. association rules, frequent
itemsets and how (e.g. encoding/decoding). Since we
decided to use the Pareto based genetic algorithm in ARM,
then the chromosomes will be representing the possible
association rules. Two famous approaches (Pittsburg or
Michigan) can be used to encode the chromosomes [6].
Pittsburg is very suitable for classification rule mining, while
Michigan is more suitable for association rule mining and
encodes each part (antecedent and consequent) of the rule
separately. More interestingly, Ghosh et al. [10] developed a
better scheme for encoding/decoding the rules to/from binary
chromosomes. According to Gosh [10], each item or product
in the association rule is represented in two bits. If these two
bits are 00 the product/item (No need to store the
product/item value because the positions of values are fixed)
value according to its position appears in the antecedent and
if it is 11 then the value of the product appears in the
consequent. The other two combinations, 01 and 10 indicate
that the absence of the product's value in the rule. In our
work, a chromosome represents a possible rule and is
represented in binary format as follow: Given six products
(ABCDEF), the rule AC � BE will look like 00 11 00 01 11
00. Note that we need k extra bits, where k is the number of
items in the database. Note that chromosome data represents
a possible association rule that consists whether or not a
product/item exists in the association rule (no need to store
the actual value of product/item because the positions of
products are fixed).

The fitness value for each chromosome is calculated by
using a set of three complementary metrics, (1) Confidence
(2) Comprehensibility and (3) Interestingness, to filter out
the interesting rules. More specifically, an objective fitness
function combines these metrics to calculate the fitness value
of the chromosomes (possible rules) as the arithmetic
weighted average confidence, comprehensibility and
interestingness. The fitness function f(x) is defined as follow:

f(x)= (W1 * Confidence + W2 * Comprehensibility +
W3*Interestingness) /W1+W2+W3 (4)

Where W1, W2, W3 are user defined weights each of the
metric and W1+W2+W3 = 100. The weights of the metrics,
used to calculate the fitness value, are defined by the user
defined parameters (W1, W2 and W3). In other words, the
user defined parameters are chosen according to the user’s
interestingness for each one of the metrics.

As mentioned in equations 1 and 3 that the support of the
antecedent part, consequent part and the rule are essential in
order to calculate the rule's metrics, as well as, the rule's
fitness value. For this reason, we adopted the FP-tree
structure [13] to compress a larger database and to avoid the

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

extensively scanning of the raw data set on disk multiple
times, as might be done with a naive implementation. If two
transactions share a common prefix, then the shared parts
will be merged as long as the count is updated properly.
There is a better chance that more prefix strings can be
shared because the FP-Tree is created by ordering the items
by their decreasing support. In our work, the FP
called SupTree that consists of set of nodes, each of which is
defined as N(value, counter, parentNode, childNode).
node contains an item value, counter, pointer to the
node and pointers to its children.

The FP-tree is constructed in two passes over the data
set. In the first pass, scan the data-set and find the support for
each item and then sort the items in decreasing order based
on their support. In the second pass, Algorithm 1 illustrates
the construction of the in-memory tree (SupTree).

The FP-tree (SupTree) usually has a smaller size than the
uncompressed data because typically many transactions
share items and prefixes and it can fit in the main memory.
Moreover, the order of the items by decreasing support
minimizes the size of the FP-tree. However, if every
transaction has a unique set of values, then the size
tree is at least as the original database and even higher
because of the need to store the pointers between the nodes
and the counters.

Algorithm 1 (SupTree construction)
Input: Set of Transaction Table with fix positions of values
Output: FP-Tree Structure called SupTree
1: An array A of size n, where n is the total number of items
in the dataset, is created to store the items in decreasing
order with their support. E.g. A[0].item contains the item
with the highest support (A[0].support).
2: Create the root of the SupTree and label it as null.
3: For each transaction in the database [t|T]
value and T is the remaining list,
 3.1: Call Insert_Tree ([t|T], SupTree)
4: Function Insert_Tree([t|T], SupTree)

4.1: If SupTree.root has a child N and N.value =
t.value Then

 4.1.1: increment the counter of N by 1,and
update Aelse

 4.1.2: create a new node N(value, counter,
parentNode,

childNode) and do the following:
N.Value = t.value, N.counter = 1;

N.parentNode = SupTree.root.childNode;
update array A (the parent node of N is
linked to SupTree)

 4.2: If T is not empty
 4.2.1: Call Insert_Tree(T, N)

For example, Table 2 shows a sample data

transactions and 6 items are exist. First, items in the
transactions are sorted in decreasing order by their support.
For our example, the order is (f; a; c; b; d; e)

extensively scanning of the raw data set on disk multiple
s might be done with a naive implementation. If two

transactions share a common prefix, then the shared parts
will be merged as long as the count is updated properly.
There is a better chance that more prefix strings can be

eated by ordering the items
by their decreasing support. In our work, the FP-Tree is
called SupTree that consists of set of nodes, each of which is

N(value, counter, parentNode, childNode). A
node contains an item value, counter, pointer to the parent

tree is constructed in two passes over the data-
set and find the support for

each item and then sort the items in decreasing order based
pass, Algorithm 1 illustrates

memory tree (SupTree).
tree (SupTree) usually has a smaller size than the

uncompressed data because typically many transactions
share items and prefixes and it can fit in the main memory.

over, the order of the items by decreasing support
tree. However, if every

transaction has a unique set of values, then the size of the
tree is at least as the original database and even higher

pointers between the nodes

with fix positions of values

Tree Structure called SupTree
1: An array A of size n, where n is the total number of items

dataset, is created to store the items in decreasing
order with their support. E.g. A[0].item contains the item

2: Create the root of the SupTree and label it as null.
3: For each transaction in the database [t|T] wher the is first

3.1: Call Insert_Tree ([t|T], SupTree)
Function Insert_Tree([t|T], SupTree)

SupTree.root has a child N and N.value =

4.1.1: increment the counter of N by 1,and

4.1.2: create a new node N(value, counter,

childNode) and do the following:
N.Value = t.value, N.counter = 1;
N.parentNode = SupTree.root.childNode;

(the parent node of N is

4.2.1: Call Insert_Tree(T, N)

For example, Table 2 shows a sample data-set where 18
transactions and 6 items are exist. First, items in the
transactions are sorted in decreasing order by their support.

a; c; b; d; e) as shown in

Table 3. Fig. 3 illustrates the FP
corresponding to the data of Table 2.

Table II. Sample data-set (18 transactions with 6 items)

TID Items TID

T1 B, C, D,
F

T7

T2 A,D ,F,
E

T8

T3 A, B, C,
F

T9

T4 A, C T10

T5 B, F T11

T6 B, C, D T12

Table III. Support for each item

F A C

13 11 10

Figure 3. FP-Tree (SupTree)

In our paper, the FP-tree and the in

will be used to calculate the support of any combinations of
items/values without scanning the raw data set multiple
times. Recall that each chromosome represents a possi
rule and the position of values/items are fixed so that they
are not mentioned within the chromosomes. Algorithm 2
shows how the FP-Tree (SupTree) and array (A) are used in
very efficient way to calculate the support for any
combination of items/values
combination of items will be ordered by using the same
order of items in array A. We use a top
the support of the combination. The idea in Algorithm A is
to eliminate all sub-trees that will not contribute in
support of the combination (search only sub
contain the combination of items). For example, given a
combination ABC, the algorithm will search only sub
rooted at F and A first, then C then B and discard other sub
trees.

After representing the chromosomes and the fitness
values, various genetic operators (selection, crossover,
mutation, etc.) can be applied to them. Equations 1, 2, 3 and
4 with the FP-tree structure can be used in order to rank the
chromosomes according to their fi

illustrates the FP-tree (SupTree)
corresponding to the data of Table 2.

set (18 transactions with 6 items)

Items TID Items

B, D T13 A, B,C, F

A, C, F T14 A, B, C,
D, F

F T15 A, B, C,
D, E

E, F T16 A,F

A, B, C, F T17 A,D,F

C, F T18 A,F

Table III. Support for each item

 B D E

10 9 7 3

Tree (SupTree) after reading the transactions

tree and the in-memory array (A)
will be used to calculate the support of any combinations of
items/values without scanning the raw data set multiple
times. Recall that each chromosome represents a possible
rule and the position of values/items are fixed so that they
are not mentioned within the chromosomes. Algorithm 2

Tree (SupTree) and array (A) are used in
very efficient way to calculate the support for any
combination of items/values/attributes. In short, the
combination of items will be ordered by using the same
order of items in array A. We use a top-down process to find
the support of the combination. The idea in Algorithm A is

trees that will not contribute in the
support of the combination (search only sub-trees that may
contain the combination of items). For example, given a
combination ABC, the algorithm will search only sub-trees
rooted at F and A first, then C then B and discard other sub-

esenting the chromosomes and the fitness
values, various genetic operators (selection, crossover,
mutation, etc.) can be applied to them. Equations 1, 2, 3 and

tree structure can be used in order to rank the
chromosomes according to their fitness values. After

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

ranking the chromosomes, selection operator is used to
select the best chromosomes to be in the next population.
There are many selection techniques, but, in our paper the
chromosomes are selected, for next generation, by the
roulette wheel selection scheme. In case of ARM, we need
to store the best rules found from the database. However, if
we follow the standard genetic operators (selection,
crossover, mutation) only, then the final population may not
contain better rules that were generated at some
intermediates generations. For this reason, we use the
elitism technique to replicate the chromosomes ranked as 1
into the next population. If better chromosomes are
generated by the standard genetic algorithm operations
(selection, crossover and mutation), then replace the
dominated chromosomes by the new generated one.

Algorithm 2 Support Calculation

Input: FP-Tree (SupTree) and array A and a list of items W
Output: Support of W
1: Order the items of W to be in the same order of items in
array A.
2: Call function Find-Support(SupTree, W)
3: Function Find-Support (SupTree, W)

3.1: set Pos = A[W[0]].postion; Pos is the position

of W[0] in Array A (e.g. W[0] = A and Pos = 1)

 3.2 For i = 0 and i<= Pos do
 For each child T in SupTree.children()

 If (T.value() == A[i])
 If(A[i] == W[0])

 If(W.size() == 1)

then

 return

T.counter;

 Else W=W[1…n]

 call function Find-

Support(T, W)

 endif

 Else
 Call function

Find-Support (T, W)
Endif

 endfor endfor

Due to the large number of items/products in the market-

basket problem, thereby multi-point crossover operator is
needed. In short, random positions (crossover points) in the
strings (chromosomes) will be chosen and all bits before the
first point will be copied from the first parent and all bits
after that point and before the next point will be copied from
the second parent, and so on until all crossover points are
covered. After the crossover is performed, mutation takes
place to prevent falling of all solutions in population into a
local optimum of the problem. For binary encoding, the
mutation procedure changes few randomly chosen bits from
1 to 0 and vice versa. The mutation usually occurs with a
very low probability.

V. PARALLEL GENETIC ALGORITHM MODEL

(PGAM)

The model in this paper has been designed as a parallel

model to extract association rules. The data is partitioned and
distributed to all nodes that are operated independently. The
database partition is considered as a preprocessing step. In
terms of the parallel model, it can be described at a high
level as follows. The frontend node serves as an access point
for all user defined parameters (mutation probabilities,
number of association rules required). Parameters reception
and management is performed at this point. The frontend
distributes the required parameters to all backend nodes,
collect final results from all backend servers, and prepare the
final result as per the user requirements. In turn, the backend
nodes are fully responsible for extracting the association
rules form their local data. In addition, each node houses a
Parallel Service Interface (PSI) component that allows it to
identify its neighborhoods and when and how have to
communicate with them. Fig. 4 illustrates the primary
components, including the linkage between the sibling
servers that are designed according to the ring topology.

With respect to the PSI, we choose to use the open source
OpenMPI communication libraries because MPI minimizes
the complexity of data transmission and communication
within the parallel server. Therefore, utilizing the MPI
libraries, the server can be constructed as a single MPI-based
application. Specifically, the parallel server consists of a set
of nodes (e.g. frontend and backend) that are executed
simultaneously and subsequently communicate to each other.
Standard precise and reliable operations (send, receive,
gather, scatter, broadcast) can then be executed.

As mentioned above, the original set of transactions
(datasets) is partitioned and distributed to each one of the
backend nodes in round robin fashion. Once the original data
(available in the frontend node) is distributed and received
by the backend servers, the frontend node broadcasts the user
parameters (number of association rules required, number of
attributes in the antecedent, number of generations, etc.) and
any pre-defined values (crossover and mutation probabilities,
size of population, etc.) to all backend nodes. Because of the
distribution technique of the original data and replication of
the parameters on each of the backend nodes, our parallel
mode is said to be load balanced parallel model for mining
association rules. At this stage, we are ready to extract the
association rules. For this, of course, we require the genetic
algorithm along with the FP-Tree services described in
Section 4. Algorithm 3 provides a high level description of
mining association rules on the backend server instances. In
short, identical parameters are sent to each node, where the
local server uses these parameters to extract association rules
on its local set of transactions. After the execution of all
functions and before sending the local results to the frontend,
a Parallel Fitness Calculation is performed across the parallel
machine. The PSI provides this functionality. Specifically,
each node P send the final population R to all other nodes
(ring topology) in order to calculate the fitness values of the
chromosomes with respect to all transactions found in the

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

original dataset. For example, if P is the current node and N
backend nodes exist, then send R to (P+1)%N, (P+2)%N, …
, (P+N-1)%N. At the end of this step, each node contains a
local population with respect to the local data but the fitness
values of the local chromosomes are according to all
transactions found in all nodes. Finally, the local population
results are returned to the frontend buffers where necessary
processing takes place such as merging and ranking of all
chromosomes and then return the appropriate association
rules as per the user parameters.

 Algorithm 3 Backend Association Rules Engine

Input: A set of parameters received from the frontend and
the local set of transactions.
Output: Population with a set of possible association rules
sent to the frontend node.
1: Receive the user’s parameters (uP) and any required pre-
defined parameters from the front end (vP)
2: Load the local transaction and create the FP-Tree
(SupTree) and array A by calling Algorithm 1.
3: Generate N chromosomes randomly; each chromosome
represents a possible rule
4: Decode the chromosomes to get the values of the
different items.
5: Using Algorithm 2, find the support of the antecedent
side, consequent side and the rule.
6: Using equation 1, 2 and 3, find the confidence,
comprehensibility and interestingness
7: Rank the chromosomes by calculating their fitness values
(use equation 4).
8: Copy the chromosomes ranked as 1 into a separate
population, if better chromosomes are generated from the

following steps then remove the dominated chromosomes
from this population.
9: Using the roulette wheel scheme along with the fitness
values, select the chromosomes for next generation and
replace the chromosomes of old population.
10: Perform multi-point crossover and mutation on these
new chromosomes.
11: if the required number of generations is not completed,
then go to Step 4

12: Do a Parallel Fitness Calculation by sending the final
stored population (R) to all other backend nodes in the
parallel model (using ring topology design as shown in Fig.
4).
13. Return result R to the frontend (collect R with MPI
Allgather()).

VI. EXPERIMENTAL RESULTS

In terms of the environment, parallel evaluation was
conducted on an 8-node (16 processors), Gigabit Ethernet
Linux cluster, with each 2.6 GhZ ProLiant board housing 2
GB of memory. For the test database, we used the Synthetic
transactional database generated by IBM Quest Market-
Basket Data Generator to synthesize a transaction database.
Specifically, we used 1000 unique items to create 10 Million
records, each of which has average transaction length of 10.
Default values of the genetic parameters are: Population Size
= 40, crossover probability = 0.8, mutation probability =
0.02, the values of user-defined weights are chosen to be
equal W1=0.33, W2=0.33 and W3=0.33 [11]. In the future,

User API

Parameters

User API

Parameters

End User End User

Disk (set of
transactions) External Interface

Parameters Reception
User Authentication and sessions

Frontend
Server

Data Distribution
Parameters Distribution

Results Collection

Backend Servers

Parallel Service Interface (PSI)

Node n:
Local

Association

Rule Engine

Node

1:Local
Association

Rule Engine

Node
2:Local

Association
Rule Engine

Node
3:Local

Association

Rule Engine

0
0
0

PSI PSI
PSI PSI

Figure 4: The core architecture of the parallel Association rule engine.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

the default values along with the user defined parameters
will be changed to evaluate their affects to our algorithm.

We begin by looking at the performance of the proposed
parallel genetic algorithm to extract association rules
described in this paper. We have directly compared our
model with some of the previous parallel association rules
algorithms (Elcat, WMDF, HorVertical) using different
number of sibling servers (1, 2, 4 and 8 nodes) in the system
and minimum support of 0.5%, if needed. Note that the
current server has only 8 nodes but our algorithm is designed
to work on any parallel server regardless the number of
nodes. Fig. 5 shows that the performance of our Parallel
Genetic Algorithm Model (PGAM) to extract Association
rules does indeed outperform previous parallel association
rules algorithms. With respect to our algorithm, the running
time consider the time to build and maintain the FP-Tree,
communication time, receive results in the front end node
and prepare the final list of association rules. This result is
due to many reasons. First, our model is based on the
Evolutionary Generic Algorithm that is very suitable to such
problem (Association rules). Second, finding the support is
going to be very fast by adopting the concept of FP-Tree.
Third, the encoding/decoding schemes of chromosomes
allow us to find the association rules directly without the idea
of frequent itemsets. Fourth, the data portioning ensures the
load balanced and that all nodes are contributing equally in
extracting the association rules. Finally, our approach scans
the database only once while the Eclat algorithm scans the
database three times and the WMDF algorithm scans the
database a lot of Times. Note that HoriVertical scans the
database only once but it is not based on evolutionary
algorithm.

In production environments, it is quite likely that
association rule algorithms will be accessing databases (set
of transactions) that are larger than the ones that can be
conveniently tested in academic settings. As a result, it is
important to provide some understanding of performance as
set of transactions (databases) grow. Our scalability
assessment begins with a look at performance patterns as the
number of transactions increases from 10 million to 40
million records. In this experiment, we use 8 nodes to extract
the association rules as the number of transactions vary. Fig.
6 shows the execution time as a function of number of
transactions (database size). As can be seen in the figure, the
running time is increased by a factor of 1.3 as the number of
records in the database increases by a factor of two. The
result is expected because the size of the FP-Tree would be
almost the same as the number of transactions increases.
Consequently, our Parallel Genetic Algorithm Model to
extract association rules is very scalable in that an increase in
the number of transactions is associated with nearly the same
execution time. Note that other algorithms (Elcat, WMDF,
HorVertical) focus on the parallel runtime performance to
extract association rules therefore we did not compare our
algorithm in terms of scalability with their algorithms.

Due to the current capacity of the nodes’ memories and
processors, we could not make experiments with larger data
sets. But in theory the algorithm is designed to support large
and big real-world data sets. In the future, we will upgrade

the capacity of memory and processor in each one of the
nodes to perform experiments with larger datasets.

Figure 5. performance of our model (PGAM) versus other parallel

algorithms

Figure 6. Running time as a function of the number of records

The parallel speedup graph illustrated in Fig. 7 depicts a

speedup of approximately 7 (about 88% of optimal). The
difference between observed speedup and optimal speedup is
due to the Parallel Fitness Calculation used to calculate the
fitness values of all chromosomes found in the parallel
nodes.

Figure 7. Parallel Speedup

0

200

400

600

1 2 4 8

T
im

e
 i

n
 S

e
co

n
d

s

Number of Nodes

WMDF Elcat HoriVertical PGAM

0

20

40

60

80

10M 20M 40M

T
im

e
 i

n
 S

e
co

n
d

s

Number of Records

Running Time (8 Nodes)

0

2

4

6

8

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Node Count

Parallel Speedup

Optimal Actual

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

VII. CONCLUSION

A great deal of association rules and frequent
itemsets research has been published over the past 15-20
years. For the most part, however, researchers tend to focus
on Apriori and FP-Growth algorithms and data structures
for single node servers. Given the size of the underlying
market-basket databases, coupled with the availability of
modestly priced hardware and the advantages of genetic
algorithm -- it was proved to perform global search with less
time complexity and also very well suited for NP-hard
problem such as ARM--, there exists great opportunity for
the exploitation of cluster-based data mining servers by
using GA. In this paper, we have discussed a Parallel
Genetic Algorithm Model (PGAM) for association rules.
Constructed as a federation of heavily optimized sibling
servers, the current model demonstrates the potential to
provide both high performance and scalability.
Experimental evaluation in both multi-node scenarios
suggests that the current model does indeed have the
potential to achieve this objective.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules Between Sets of Items in Large Databases,” in Proc. of
ACM SIGMOID Conf., pp. 207-216, 1993.

[2] R. Agrawal and R. Srikant, “Fast Algorithm for Mining
Association Rules,” in Proc. of the 20th VLDB Conf., pp. 487-499,
1994.

[3] R. Agrawal and J. Shafer, “Parallel Mining of Association
Rules,” In IEEE Transactions on Knowledge and Data
Engineering, vol. 8, no. 6, pp. 962-969, 1996.

[4] L. Aouad, N. Le-Khac, and T. Kechadi, “Distributed frequent
itemsets mining in heterogeneous platforms,” Engineering,
Computer and Architecture, Volume 1 (2007).

[5] S. Das and B. Saha, “Data Quality Mining using Genetic
Algorithm,” International Journal of Computer Science and
Security, (IJCSS) Volume 3, Issue 2, pp. 105-112.

[6] S. Dehuri, A. Jagadev, A. Ghosh, and R. Mall, “Multi-objective
Genetic Algorithm for Association Rule Mining Using a
Homogeneous Dedicated Cluster of Workstations,” American
Journal of Applied Sciences 3 (11): 2086-2095, 2006 ISSN 1546-
9239, 2006.

[7] W. Dou, J. Hu, K. Hirasawa, and G. Wu, “Quick Response
Data Mining Model Using Genetic Algorithm,” SICE Annual
Conference, 2008, pp. 1214-1219.

[8] M. Fonesca and J. Fleming, “Multi-objective Optimization and
Multiple Constraint Handling with Evolutionary Algorithms,” Part
I: A Unified Formulation. IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans, 28(1), pp. 26-37,
1998.

[9] A. Freitas, “Survey of Evolutionary Algorithms for Data
Mining and Knowledge Discovery,” Advances in evolutionary
computing: theory and applications, pp 819 – 845, 2003.

[10] A. Ghosh and B. Nath, “Multi−objective rule mining using
genetic algorithms,” Information Sciences 163, pp 123-133, 2004.

[11] S. Ghosh., S. Biswas., D. Sarkar., and P. Sarkar, “Mining
Frequent Itemsets Using Genetic Algorithm,” International Journal
of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4,
October 2010

[12] E. Han, G. Karypis, and V. Kumar, “Scalable Parallel Data
Mining for Association Rules,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1997,
pp. 277-288.

[13] J. Han, J. Pei, and Y. Yin, “Mining Frequent patterns without
candidate generation,” 2000, In Proc. Of ACM-SIGMOD Int.
Conf. on Management of Data, pp. 1- 12.

[14] T. Hong, J. Huang., W. Lin, and M. Chiang, ”GA-Based Item
Partition for Data Mining,” 2011 IEEE, pp. 2238-2242.

[15] A. Islam, T. Chung, “An Improved Frequent Pattern Tree
Based Association Rule Mining Technique,” Information Science
and Applications (ICISA), 2011 International Conference on 2011.

[16] A. Javed and A. Khokhar, “Frequent Pattern Mining on
Message Passing Multiprocessor Systems,” In Distributed and
Parallel Databases, vol. 16, no. 3, pp. 321-334, 2004.

[17] S. Kotsiantis and D. Kanellopoulos, “Association Rules
Mining: A Recent Overview,” GETS International Transactions on
Computer Science and Engineering, Vol.32(1), 2006, pp.71-82.

[18] H. Marghny and H. Refaat, “Hori-Vertical Distributed
Frequent Itemsets Mining Algorithm on Heterogeneous Distributed
Shared Memory System,” IJCSNS International Journal of
Computer Science and Network Security,VOL.10 No.11 , pp. 56–
62 , November 2010.

[19] O. Zaïane, M. El-Hajj, and P. Lu, “Fast Parallel Association
Rule Mining without Candidacy Generation,” In Proceedings of
the IEEE International Conference on Data Mining, 2001, pp. 665-
668.

[20] M. Zaki, S. Parthasarath, and L. Wei, “A localized algorithm
for parallel association mining,” In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures, 1997,
pp. 321–330.

[21] Q. Zhao and S. Bhowmick, “Association Rule Mining: A
Survey,” Technical Report, CAIS, Nanyang Technological
University, Singapore, No. 2003116 , 2003.

[22] E. Zitzler, K. Deb, and L. Thiel, “An evolutionary Algorithm
for Multi-objective Optimization,” The Strength Pareto Approach,
1998.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

