
Merging Multidimensional Data Models:
A Practical Approach for Schema and Data Instances

Michael Mireku Kwakye, Iluju Kiringa, Herna L. Viktor
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Ontario, Canada.

mmire083@uottawa.ca, {kiringa, hlviktor}@eecs.uottawa.ca

Abstract—Meta-model merging is the process of incorporating
data models into an integrated, consistent model against which
accurate queries may be processed. Within the data
warehousing domain, the integration of data marts is often
time-consuming. In this paper, we introduce an approach for
the integration of relational star schemas, which are instances
of multidimensional data models. These instance schemas
represented as data marts are integrated into a single
consolidated data warehouse. Our methodology which is based
on model management operations focuses on a formulated
merge algorithm and adopts first-order Global-and-Local-As-
View (GLAV) mapping models, to deliver a polynomial time,
near-optimal solution of a single integrated data warehouse.

Keywords-Schema Merging; Data Integration; Model
Management; Multidimensional Merge Algorithm; Data
Warehousing

I. INTRODUCTION
Schema merging and data integration are important

research areas with many practical applications. Some of the
application areas are federated database systems, Enterprise
Information Integration (EII), bioinformatics data
integration, and financial information integration. Schema
merging involves the integration of instance schema of meta-
data models using the mappings between the elements of the
instance schemas [1]. Data integration, on the other hand,
involves the consolidation of the instance data within the
framework of a merged instance schema to deliver efficient
query solutions [2]. Most procedures that involve these
concepts have focused on traditionally identifying the
independent data sources and the associated element
mapping correspondences. Recent studies have emphasized
the importance of inferring the semantic meaning of the data
source elements during integration. Some problems that are
associated with the procedural methodologies for these
concepts are the identification of prime meta-models, and the
formulation of algorithms for specific meta-models and their
schema and data instances.

The conceptual processes of data integration and schema
merging largely come from the fundamental operations of
model management [3] [4]. Some of these operations are
namely, match schemas (expressed as schema matching),
compose mappings and apply mappings (both expressed as
schema mapping discovery), and merge schemas (expressed
as schema merging) [3]. In line with multidimensional data
integration for data warehouses, a number of studies have
been investigated. Cabibbo and Torlone [5] [6] introduce and

address dimension algebra and dimension compatibility in
relation to data marts integration. Riazati et al. [7] also
propose a solution for integration of data marts where they
infer on the aggregations in the hierarchies of the dimension.
Although these studies and others attempt to address this
integration problem, they fail to investigate in detail areas
such as an elaborate merge algorithm, element conflict
management, technical merge requirements, amongst others.

In this paper, we introduce an integration procedure for
both instance schema and instance data of multidimensional
data models. Our motivation is to employ the concept of
model management to address the above-mentioned
shortcomings of merge algorithm, conflict management and
technical merge requirements for integration of data marts.
Our key contribution in this paper is the formulation of a
novel well-defined algorithm capable of delivering an
efficient integrated data warehouse. Our presentation focuses
on the proposition of star schema instances in our analyses.
We deal with different procedures starting with finding of
mapping correspondences to a more complex procedure of
merging. Our work subsumes and extends prior work on
generic models [1], to present a practical solution for
merging schema instances of multidimensional data models.

The technical contributions may be summarized as
follows. We adopt a hybrid form of schema matching, in
which we use both instance schema structure and instance
data and extension algorithms to deliver correct attribute
mapping correspondences. To this end, we employ first-
order Global-and-Local-As-View (GLAV) mapping models
in the mapping discovery procedure. We identify and resolve
specific conflicts that are exposed as a result of the
integration of data marts. We further define technical
qualitative merge correctness requirements which serve to
validate the formulation of our merge algorithm.

This paper is organized as follows. In Section II, we
discuss our integration methodology. We present the
multidimensional instance schema and data merging in
Section III. In Section IV, we address the implementation
and evaluation analysis of the merge methodology. In
Section V, we conclude, discuss the open issues, and the
areas of future work.

II. INTEGRATION METHODOLOGY
Our approach for generating a single integrated data

warehouse from independent, but related, multidimensional
star schemas extends from the above-mentioned concept of
model management.

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Logical and Conceptual Multidimensional Schema Merge

In line with this meta-data conceptual assertion, we

present an overview of our integration methodology, as
depicted in Figure 1. The figure shows a logical and
conceptual merging of the fact and dimension tables from the
Policy and Claims data marts, of an Insurance industry, to
form an enterprise data warehouse. We explain further our
motivation using Example 1 and Figure 1.

Example 1. Suppose we have 2 data marts from an
Insurance industry – Policy Transactions and Claims
Transactions – and we have to integrate these data marts
into an enterprise-wide data warehouse, as illustrated in
Figure 1. The existence of corresponding attributes will
enable the possibility of integrating the attributes of the fact
and dimension tables of these data marts. A merge algorithm
can be applied to the corresponding mappings to generate
the integrated data warehouse needed in answering queries,
as it will be posed to the independent data marts. ∎

A. Overview of Integration Methodology
We outline our methodology based on 3 main

streamlined procedures. These are finding mapping
correspondences, mapping models discovery, and the
formulation of merge algorithm. Figure 2 illustrates a
description of our methodology and framework architecture
in a workflow chain. Here, we describe the step-wise
procedures and processes, algorithm executions, and the
generated outputs, as well as, query analyses. We further
describe into detail the first 2 procedures (Finding Mapping
Correspondences and Mapping Models Discovery &
Modelling) and give also a detailed description of procedure
3 (Merge Algorithm) in Section III.

B. Finding Mapping Correspondences
In our methodology, we adopt a hybrid form of schema

matching which aim to deliver efficient schema attribute
correspondences. Our adoption of this hybrid approach uses
the logical and conceptual features of the multidimensional
schema structure in schema-based matching and the instance
data and extensions in instance-based matching, to find
attribute correspondences. We adopted schema-based
algorithms in the form of Lexical Similarity and Semantic
Names. The Lexical Similarity uses schema string names and
text, equality of names, synonyms, homonyms, and
similarity of common substrings. The Semantic Names, on
the other hand, uses schema data types, constraints, value
ranges, relationship types, amongst others to match attributes
[10]. We use Example 2 to illustrate the schema-based form
of finding mapping correspondences.

Example 2. Following up on Example 1, suppose we
want to merge the dimensions of DimPolicyHolder and
DimInsuredParty from Policy and Claims data marts,
respectively. The application of Lexical Similarity algorithm
will produce mapping correspondences, such as:

1. 𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟𝐾𝑒𝑦
≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦𝐾𝑒𝑦

2. 𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐹𝑢𝑙𝑙𝑁𝑎𝑚𝑒 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐹𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒,
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐺𝑖𝑣𝑒𝑛𝑁𝑎𝑚𝑒, 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐶𝑖𝑡𝑦𝑁𝑎𝑚𝑒

3. 𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠,
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 2. Workflow Framework of Integration Methodology

Moreover, the application of the Semantic Names algorithm
will offer an improved schema matching. This matching
eliminated InsuredParty.CityName in the 2nd matching to
deliver mapping correspondence, as in:
2. 𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐹𝑢𝑙𝑙𝑁𝑎𝑚𝑒 [𝑣𝑎𝑟𝑐ℎ𝑎𝑟(60)] ≈
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐹𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒[𝑣𝑎𝑟𝑐ℎ𝑎𝑟(30)],
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐺𝑖𝑣𝑒𝑛𝑁𝑎𝑚𝑒𝑠[𝑣𝑎𝑟𝑐ℎ𝑎𝑟(40)] ∎

The instance-based algorithms that were adopted are
Signature, Distributions, and Regular Expressions. The
Signature algorithm uses the similarity in the actual data
values contained in the schemas based on data sampling. The
Distributions algorithm, on the other hand, uses the common
values and frequent occurrences of data values based on
sampling. The Regular Expressions algorithm uses textual or
string searches based on regular string expressions or pattern
matching [10]. We use Example 3 to illustrate a generalized
form of instance-based algorithm.

Example 3. Following up on Examples 2, we
complement the results of the initial schema-based mapping
correspondences with a generalized instance-based mapping
to produce a final semantically correct mapping
correspondence for the 3rd matching, as in:

3. 𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠

This final matching was attained because of the data values
and extensions from the dimension attributes. Some of the
instance data values contained in PolicyHolder.Address are
{39 Baywood Drive, 178 Flora Ave., 79 Golden Rain St.},
where as data values contained in
InsuredParty.StreetAddress and InsuredParty.EmailAddress
are {40 Roslyn St., 68 Hastings Drive, 48 Whitehall Avenue}
and {amartens@cybserv.com, drice@vipe2k.com,
jtausig@fitexes.com}, respectively. ∎

C. Mapping Models Discovery and Modelling

Definition 1. (First-Order Mapping): Let
ℳ = (𝑆,𝑇,𝑓) represent a mapping model from Source, 𝑆
and Target, 𝑇 schemas. Let 𝒶 ∈ {𝑆 ∪ 𝑇} represent disjoint
variable element where 𝒶 denotes {𝒶1,𝒶2, … ,𝒶𝑛}. The
mapping assertion, ℳ is said to be in first-order if
𝑓: {∀𝒶 �𝑆(𝒶) → 𝑇(𝒶)�}, where 𝑓 represents the logical view
from the Source to the Target. ∎

We adopted first-order Global-and-Local-As-View
(GLAV) mapping model formalisms in the mapping
discovery procedural step. Our motivation is based on the
expressiveness of the correspondences that exist between the
attributes of the schemas [2]. This mapping model combines
mapping formalisms from both the Local-As-View (LAV)
and Global-As-View (GAV) mappings. It expresses mapping
views where the extensions of the source schemas provide
any subsets of tuples satisfying the corresponding view over
the global mediated schema. Moreover, an equivalent
number of attribute view definitions are expressed in both
the LAV and GAV queries [2]. One other unique feature is
the expression of multi-cardinality mappings between
mapping elements. This enables the expression of complex
transformation formula which is much useful in our
integration methodology [12].

Definition 2. (Equality Mapping): Let ℳ = (𝑆,𝑇, 𝑓)
represent a mapping for Source, 𝑆 and Target, 𝑇 schemas.
The assertion 𝑓: {∀𝑥∀𝑦 (𝑆(𝑥,𝑦) → ∃𝑧 𝑇(𝑥, 𝑧))} for disjoint
variable elements 𝑥,𝑦, 𝑧 is an Equality mapping such that
𝑦 = z. ∎

Definition 3. (Similarity Mapping): Let ℳ = (𝑆,𝑇, 𝑓)
represent a mapping for Source, 𝑆 and Target, 𝑇 schemas.
For disjoint element variables 𝑥,𝑦, 𝑧 the assertion
𝑓: {∀𝑥∀𝑦 (𝑆(𝑥,𝑦) → ∃𝑧 𝑇(𝑥, 𝑧))} is a Similarity mapping

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

such that 𝑔(𝑦) = 𝑧 where 𝑔 denotes or encloses a complex
transformation expression. ∎

In this second step of mapping discovery and modelling,
2 forms of mapping relationships were adopted. These are
equality and similarity mapping relationships. It should be
emphasized that these defined classifications were based on
expressive characterization of relationship cardinality, and
the attribute semantic representation, amongst others [11].
We used these forms of mapping relationships in a GLAV
mapping model, as explained in Example 4.

Example 4. Continuing on Example 1, suppose we want
to integrate the DimPolicyHolder and DimInsuredParty
dimensions from Policy and Claims data marts, respectively,
into DimInsuredPolicyHolder dimension. The Datalog
queries for the GLAV mapping model will be expressed as:

InsuredPolicyHolder (InsuredPhKey, InsuredPhID,
InsuredPhName, BirthDate, StateProvince, Region,
City, Status

PolicyHolder (PolicyHolderKey, PolicyHolderID,
PolicyHolderFullName, DateOfBirth, State, City,

):-

Status
InsuredParty (InsuredPartyKey, InsuredPartyID,

InsuredFamilyName, InsuredGivenName, BirthDate,
Province,

),

Region

In this Datalog query, the existence of corresponding
attributes in both dimensions are automatically expressed in
the merged dimension, as well as, local attributes of Status
and Region from Policy and Claims data marts, respectively,
are included in the global or merged dimension. ∎

, CityName)

III. MULTIDIMENSIONAL INSTANCE SCHEMA
AND DATA MERGING

In this section, we present the technical qualitative
requirements necessary for producing an efficient single
consolidated data warehouse. We further outline and
describe an elaborate merge algorithm (Algorithm 1) for
integrating the instance schema and data of data marts fact
and dimension tables. We finally describe the resolution of
identifiable conflicts associated with the integration of the
data marts.

A. Merge Correctness Requirements

The single consolidated data warehouse that is generated
as a result of the implementation of the merge algorithm
needs to satisfy some requirements, to ensure the correctness
of the data values from the queries that would be posed to it.
These qualitative technical requirements describe the
properties that the data warehouse schema should exhibit.

Drawing on the propositions in the requirements defined
by the authors in [1] for merging generic meta-models, we
performed a gap analysis on their propositions in relation to
generating a data warehouse. Hence, we formulate and
describe a set of correctness requirements in relation to
merging of multidimensional star schemas. These technical
requirements extend the requirements already proposed in
[1], in order to address star schemas. We outline the set of

Merge Correctness Requirements (MCR) that validates the
formulated merge algorithm needed for the generation of a
global data warehouse.

Dimensionality Preservation. For each kind of dimension
table connected to any of the integrating fact tables, there is a
representation of corresponding dimension also connected to
the merged fact table.

Measure and Attribute Entity Preservation. All fact or
measure attribute values in either of the integrating fact
tables are represented in the merged fact table. Additionally,
all other attribute values in each of the dimension tables are
represented through an equality or similarity mapping.
Finally, there is an automatic inclusion for non-
corresponding attributes in the merged fact (dimension)
tables based on the condition of no attribute redundancy or
duplication.

Slowly Changing Dimension Preservation. Slowing
Changing Dimension is the occurrence where an entity in a
dimension has multiple representations based on the changes
in instance data values in some key attributes. For such
dimensional entity occurences, the merged dimension should
offer an inclusion of all the instance representations from
each integrating dimension. Hence, we enforce an automatic
inclusion of attributes that contribute to the dimensional
change in the merge dimension.

Attribute Property Value Preservation. The merged
attribute should preserve the value properties of the
integrating attributes, whether the mapping correspondence
is an equality or similarity mapping. Equality mapping
should be trivially satisfied by the UNION property for all
equal attributes. For a similarity mapping, the transformation
expression should have the properties to be able to satisfy the
attribute property value of each integrating dimension
attribute.

Definition 4. (Surrogate Key): Let 𝒟𝑖 represent a
dimension table for a multidimensional model, ℬ such that
𝒟𝑖 ∈ {𝒟1,𝒟2, … ,𝒟𝑛} for 𝑖 ≤ 𝑛. Let ℰ represent each entity
of a dimension, 𝒟𝑖 such that ℰ ∈ 𝒟𝑖 . The identifier, 𝒦 is
said to be a Surrogate Key for ℰ such that 𝒦𝑚 ≡ ℰ𝑚 ∎

Tuple Containment Preservation. The single consolidated
data warehouse should offer the containment of all unique
tuples as they are valuable in returning correct answers to
queries posed. This ensures the preservation of all Surrogate
Keys needed in identifying each dimensional entity.

B. Merge Algorithm
The merge algorithm (Algorithm 1) is formulated and

designed to generate the single consolidated data warehouse
from different related data marts, modelled as star schemas
instances. The algorithm primarily performs 2 levels of
integration. Firstly, the integration of the instance schema
structure which comprises the attribute relationships and
properties for the fact and dimension tables. These
procedures are described in Steps (1) to (9).

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Algorithm 1: Multidimensional Instance Schema and Data Merging
Input:
(a) A set of star schema data marts, A and B
(b) A set of first-order GLAV mapping model; 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵, consisting of 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 and 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵
(c) An optional designation of a data mart, A or B, as the 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡;
Output:
(a) A single consolidated star schema instance data warehouse free of duplicate and redundant schema and instance data.
(b) A metadata consisting of data definition of the integrating data marts and the single consolidated data warehouse.
Procedure:
Initialization
(1) Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑁𝑈𝐿𝐿

Generate Merged Table
(2) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do

(a) If 𝑐𝑜𝑟𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = 𝑁𝑈𝐿𝐿 then
i. Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑁𝑈𝐿𝐿

(b) Else
i. Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ∈ {𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐴, 𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐵}

(3) Repeat Step (2) for each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 using 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵, add {𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒}
(4) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒, {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒}}

Merged Table Attribute Relationships
(5) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do

(a) Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ← 𝑁𝑈𝐿𝐿
(b) If 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = “Equality” then

i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 ∈ 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡}
(c) Else If 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = “Similarity” then

i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵
(6) For each 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐴, 𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐵} do

(a) If 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∉ {𝑚𝑒𝑟𝑔𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} then
i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑢𝑏𝑡𝑒

(b) Return 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}
(7) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do

(a) Repeat Step (3) for each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐴, 𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐵}
(b) Repeat Step (4) for each 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐴, 𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐵}
(c) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}

Merged Table Attribute Properties
(8) For each 𝑚𝑒𝑟𝑔𝑒𝑑𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 do

(a) Let 𝑚𝑒𝑟𝑔𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑇𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵
(9) Repeat Step (6) for each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 using 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵

Dimension Tables Data Population
(10) For each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 do

(a) If (𝑘𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 OR 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐸𝑛𝑡𝑖𝑡𝑦𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) = 𝑇𝑅𝑈𝐸 then
i. Let 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ← 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦 ∈ 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡

(b) Else
i. Let 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ← (𝑛𝑒𝑤𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦 ≡ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦) ∈ 𝑛𝑜𝑛𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡

Fact Table Data Population
(11) For each 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 do

(a) Load fact records using 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∈ {𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦, 𝑛𝑒𝑤𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦}
(12) Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒, {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒}}
(13) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

Steps (1) to (4) initialize and generate the integrated fact and
dimension tables. Steps (5) to (7) describe the generation of
attributes for the integrated tables. Finally, Steps (8) and (9)
describe the derivation of attribute property values of the
merged fact and dimension tables.

Secondly, the algorithm performs integration of the
instance data contained in the star schema data marts. This
involves the population of these instance data from the data
marts fact and dimension tables into the merged tables in the
data warehouse. Steps (10) to (13) describe these procedures
of data population.

We further summarize the merge algorithm in fulfilment
of the technical Merge Correctness Requirements (MCRs)
outlined in Section III.A.

a) Step (2) satisfies Dimensionality Preservation:
Each fact and dimension table is iterated to form the Merged
Fact Table.

b) Steps (3), (4), (5) satisfy Measure and Attribute
Entity Preservation: All the attributes contained in the Fact
or Dimension Tables are represented in the Merged Table
(Fact or Dimension) through equality or similarity mapping.

c) Steps (6) and (7) satisfy Attribute Property Value
Preservation: Value properties of attributes are represented
for each of the Fact or Dimension Tables.

d) Step (8) satisfies Slowly Changing Dimension
Preservation and Tuple Containment Preservation: Entity

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

representations from the different data marts are included in
the merged dimensions.

e) Steps (9), (10) satisfy Tuple Containment
Preservation: Tuple data values from each of the data marts
are populated in the merged data warehouse.

C. Conflicts Identification and Resolution
The integration of meta-data models are generally coupled
with different forms of conflicts in either the instance
schema structures or instance data. These conflicts are
resolved through different propositions from the algorithm
and based on the semantic representation of the meta-data
models and their instance schemas. In our integration
approach, we identify and propose resolution measures for
these conflicts that are encountered during merging.

Identifier Conflicts. These conflicts arise as a result of the
same identifier for different real-world entities in the merged
dimension. These categories of conflicts are practically
exposed as a result of the possibility of different entities from
the integrating data marts having the same surrogate key
identifier in their individual dimensions. A resolution
measure for these conflicts is explained in Example 5.

Example 5. Suppose we aim to merge the employee
dimensions into a single merged dimension, using
DimPolicyEmployee and DimInsuredPolicyEmployee from
Policy and Claims data marts, respectively. In such an
integration procedure, it happens that Employee P from
DimPolicyEmployee and Employee Q from
DimInsuredPolicyEmployee have the same identifiers of a
surrogate key. There is the need to resolve such a conflict,
in the algorithm, by preserving the surrogate key identifier
in the preferred data mart and re-assign a new surrogate
key identifier for the non-preferred data mart(s). ∎

Entity Representation Conflicts. These conflicts arise as a
result of the multiple representations of the same real-world
entity in the merged dimension by the different identifiers.
This occurrence is traced to different representations of
surrogate key identifiers from different dimensions for the
same real-world entity in the merged dimension. Following
on Example 1, a proposed resolution measure, outlined in the
merged algorithm, will be to perform a de-duplication of the
conflicting entities, by preserving the entity from the
preferred data mart as the sole representation of the real-
world entity in the merged dimension.

Attribute Property Type Conflicts. These forms of
conflicts occur as a result of the existence of different
attribute property values from the integrating attributes into
a merged attribute. Using Example 5, a merged attribute for
HireStatus and EmployeeStatus from DimPolicyEmployee,
DimInsuredPolicyEmployee, respectively, will hold a data
type value of, say varchar(1), being the UNION of
integrating attribute data types for char(1) and bit data types
from HireStatus and EmployeeStatus, respectively. We
resolve these conflicts by using the attribute data types as
defined in the mapping model.

IV. IMPLEMENTATION AND EVALUATION
In this section, we discuss the implementation and

evaluation work based on the integration methodology and
formulated merge algorithm. We present our
implementation framework and the procedures we followed,
and we discuss and analyze the evaluation results.

A. Implementation
We implemented our methodology using 2 different data

warehouses, for the Insurance business and Transportation
services. The Insurance data consisted of 2 initial data
marts. These were Policy and Claims data marts. The Policy
and the Claims data marts contained 7 and 10 dimension
table schemas, respectively. The Policy fact table schema
contained instance data of 3070 tuples of data, whilst the
Claims fact contained 1144 tuples of data. The Transport
data set contained 3 data marts. These were Frequent Flyer,
Hotel Stays, and Car Rental data marts. Their fact tables
contained 7257, 2449, 2449 tuples of data for Frequent
Flyer, Hotel Stays, and Car Rental, respectively. The data
marts resided in a Microsoft SQL Server DBMS. Each
entity representation in the dimensions was identified by a
unique surrogate key and with a clustered indexing as
created on the primary key.

The schema matching and mapping models discovery
procedural steps were implemented using IBM Infosphere
Data Architect [9] [10]. This tool incorporated the schemas
of the data mart source repositories, together with their
contained instance data. The schema matching step was
implemented using the set of algorithms incorporated in the
application software. The algorithms were configured by
sequentially manipulating the order of execution,
configuration of rejection threshold, sampling size and
sampling rate. The manipulations of these configurations for
finding mapping correspondences were based on an iterative
procedure of inspection. With regards to the mapping
models discovery and modelling step, the adoption of
GLAV mappings enabled the inclusion of all attributes for
each mapping formulation of fact and dimension table
attributes. Moreover, complex transformation expressions
were derived for multi-cardinality mappings. An output file
in a Comma Separated Values (.csv) format was later
generated, which contained the mapping definitions based
on the tables, their attributes, and the attribute property
values from each of the data marts. The merge algorithm
was implemented using C# .Net programming.

B. Evaluation
Our evaluation analyses were primarily based on the

single consolidated data warehouse from the formulated
merge algorithm, in Section III.B, as against the
independent data marts. We compared both the outputs of
the query processing on the data marts and the generated
data warehouse. We first ran a formulated query on one or
more data marts, and afterwards ran the same query on the
generated data warehouse. With this ordering, we are able to
effectively compare the results from the data marts and the
single consolidated data warehouse.

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Evaluation Criteria and Analysis. We evaluate the
outcome of the experiments conducted based on a set of
criteria based on the guidelines proposed by Pedersen et al.
[8]. We performed a gap analysis on their study and then
adapted the correctness of data values, dimensionality
hierarchy, and rate of query processing as criteria.

The metrics that we used in evaluating these criteria for
query processing were recall, precision, and accuracy. These
were proposed by Junker et al. [13] to evaluate the
performance of database query processing and information
retrieval. Recall is computed by the number of tuples
retrieved from a data mart divided by the number of tuples
that should have been retrieved from the generated data
warehouse from each original data mart. Precision is
computed by the number of tuples retrieved from a data
mart divided by the number of tuples that were retrieved
from the single consolidated data warehouse, per the data
mart. Accuracy is determined by the degree of validity or
exactness of the data values generated from a query posed to
the data warehouse in comparison to the data values
retrieved from a data mart.

All formulated queries that were posed to the data
warehouse were based on fact and dimension attributes from
all the data marts. For recall, an evaluation of 100% was
trivially attained and verified. The verification was based on
the assertion that the merge algorithm fulfilled the MCRs of
measure and attribute entity preservation and tuple
containment preservation.

Precision evaluation was very important, as it measured
the proportion of relevant and non-relevant tuples that were
retrieved based on a formulated query. This gives us insight
into the composition of our merged data warehouse, in
terms of the level of integration of related data from
multiple sources. Deducing from the precision values, a
higher rate was attained for all formulated queries that were
posed against the data warehouse. For cases of dimensions
that were only related to some specific data marts, a
formulated query against the fact and these dimension tables
yielded a very high precision rate. This was as a result of the
retrieval of few non-relevant tuples. An example query was,
“What insurance claimant employment type receives the
most claims processed for the current Calendar Season”?
Conversely, for queries on dimensions that related to all
data marts, an average precision rate was observed where a
considerable number of non-relevant tuples were retrieved
in reference to a particular data mart. An example query
was, “What type of Policy Coverage is most popular? What
are the trends since the 2nd Calendar Quarter.”

Figures 3 and 4 show the precision evaluation for
Insurance and Transportation data warehouses, respectively.
In Figure 3, an average rate of 86% was achieved for the
queries posed to dimensions only related to the Claims data
mart. The precision rate increases significantly with an
increase in the tuples in these dimensions, as more relevant
tuples are generated. This is evident in queries 1 to 7. In
terms of corresponding dimensions for all data marts,

processed queries generated an average rate of 51% and
49% for Claims and Policy data marts, respectively, as
highlighted in queries 8 to 12. In Figure 4, an average
precision rate of 72%, 74%, and 83% were attained for
Hotel Stays, Car Rental, and Frequent Flyer data marts,
respectively, for the set of formulated queries posed. In
summary, we were able to provide the user with details
regarding the proportion of the data in the merged data
warehouse that originate from a specific source. This holds
important practical value, for data warehouse practitioners,
who want to be able to have statistics regarding the
composition of the merged data.

In terms of accuracy, we achieved a 100% return rate of
valid and exact data values from the data warehouse in
comparison to each individual data mart. This was affirmed
based on the merge algorithm fulfilling MCRs of Tuple
Containment Preservation and Measure and Attribute Entity
Preservation. Additionally, the adoption of GLAV mapping
model enabled the processing of exact and sound queries on
the data warehouse.

We also analyzed the rate of query processing to ensure
that queries posed to the data warehouse are of optimal rate.
With an integration of instance data from the data marts, a
considerable volume of expected data cannot be
overemphasized in the data warehouse. We recorded the
query response time for an average of 20 query executions
for each of the data sets. These queries were processed on a
single 3.20 GHz processor with a 4 GB of RAM.

Figure 3. Precision for Insurance Data Set

Figure 4. Precision for Transportation Data Set

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. SUMMARY OF AVERAGE QUERY RESPONSE TIME
AND VARIANCES

Data Set
Average Query Response Time and Variances

Data Mart /
Data Warehouse

Avg. Query
Response
(ms)

Variance From
Integrated Data
Warehouse (ms)

Transportation Car Rental 26.70 63.95

Transportation Hotel Stays 27.10 63.55

Transportation Frequent Flyer 70.95 19.70

Transportation DataWarehouse 90.65 0.00

Insurance Policy 29.65 19.60

Insurance Claim 13.75 35.50

Insurance DataWarehouse 49.25 0.00

Figure 5. Query Processing Rate for Insurance Data Set

We further computed the variance of the average query rate
per data mart as it quantitatively differs from its
consolidated data warehouse. Our evaluation showed that
queries generally ran at almost the same rate or slightly
higher than when posed against the data mart sources.

The query execution durations for the data marts and data
warehouses for the Insurance data set are shown in Figure 5.
It can be deduced from these data values that the query rate
for the data warehouses were appreciable taking note of the
compared values generated from the data marts. In some
cases, such as queries 7 and 8, the rates were a bit higher
due to higher level of aggregation and increased number
dimension attributes involved in data values retrieved. We
present a summary of the variances in the average query
response time for the data marts in comparison to the
respective data warehouse. Table 1 shows the query
response (in milliseconds) for the Insurance and
Transportation data sets.

V. CONCLUSION

This paper presents a methodology for the merging of
multidimensional data models using star schemas instances.
We formulated a merge algorithm for integrating disparate
data marts into a single consolidated star schema data
warehouse. We further identified and outlined the resolution
of likely conflicts that may be encountered when merging

data marts. Moreover, we outlined the satisfaction of some
technical merge correctness requirements for integrating data
marts into a data warehouse.

Analyses of our evaluation showed that the rates of
recall, precision and accuracy of the data values retrieved
from the generated data warehouse are high and noticeable.
Our approach, thus, provides data warehouse researchers and
practitioners with procedures, criteria, and exact measures as
to how successful an integration process is achieved.

A number of future research directions remain. The
potential enrichment of the mapping language by modelling
the functional dependencies between the attributes of the fact
and dimension tables is an interesting future direction.
Additionally, incorporation of data mart level integrity
constraints into the data warehouse needs to be investigated
further. We also envisage the extension of the methodology
to handle snowflake and fact constellation multidimensional
schema models.

ACKNOWLEDGEMENT
This work was supported by grants from the Natural

Sciences and Engineering Research Council (NSERC)
Strategic Network on Business Intelligence (BI).

REFERENCES
[1] R. A. POTTINGER and P. A. BERNSTEIN, “Merging

Models Based on Given Correspondences,” VLDB 2003:
826-873 & Microsoft Research 2000: MSR-TR-2000-53.

[2] M. LENZERINI: Data Integration, “A Theoretical
Perspective,” PODS 2002:233-246.

[3] P. A. BERNSTEIN and S. MELNIK, “Model Management
2.0: Manipulating Richer Mappings,” SIGMOD 2007:1-12.

[4] S. MELNIK, “Generic Model Management: Concepts and
Algorithms,” Springer LNCS 2967. (2004).

[5] L. CABIBBO and R. TORLONE, “Integrating Heterogeneous
Multidimensional Databases,” SSDBM 2005:205-214.

[6] L. CABIBBO and R. TORLONE, “Dimension Compatibility
for Data Mart Integration,” SEBD 2004:6-17.

[7] D. RIAZATI, J. A. THOM and X. ZHANG, “Inferring
Aggregation Hierarchies for Integration of Data Marts,”
DEXA 2010:96-110.

[8] T. B. PEDERSEN, C. S. JENSEN and C. E. DYRESON, “A
Foundation for Capturing and Querying Complex
Multidimensional Data,” Elsevier Sci. 26(5):383-423 (2001).

[9] R. FAGIN, L. M. HAAS, M. A. HERNÁNDEZ, R. J.
MILLER, L. POPA and Y. VELEGRAKIS, “Clio: Schema
Mapping Creation and Data Exchange,” Conceptual
Modelling: Foundations and Applications 2009:198-236.

[10] IBM: IBM Infosphere Data Architect 7.5.3.0 – Finding
Relationships.http://publib.boulder.ibm.com/infocenter/idm/v
2r1/index.jsp?topic=/com.ibm.datatools.metadata.mapping.ui.
doc/topics/iiymdadconfiguring.html (Accessed–Dec. 8, 2012).

[11] B. TEN CATE and P. G. KOLAITIS, “Structural
Characterizations of Schema-Mapping Languages,” ICDT
2009:63-72.

[12] D. KENSCHE, C. QUIX, X. LI, Y. LI and M. JARKE,
“Generic Schema Mappings for Composition and Query
Answering,” Data Knowl. Eng. (DKE). 68(7):599-621 (2009).

[13] M. JUNKER, A. DENGEL and R. HOCH, “On the
Evaluation of Document Analysis Components by Recall,
Precision, and Accuracy,” ICDAR 1999:713-716.

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

	I. INTRODUCTION
	II. INTEGRATION METHODOLOGY
	A. Overview of Integration Methodology
	B. Finding Mapping Correspondences
	C. Mapping Models Discovery and Modelling

	III. MULTIDIMENSIONAL INSTANCE SCHEMA AND DATA MERGING
	A. Merge Correctness Requirements
	B. Merge Algorithm
	a) Step (2) satisfies Dimensionality Preservation: Each fact and dimension table is iterated to form the Merged Fact Table.
	b) Steps (3), (4), (5) satisfy Measure and Attribute Entity Preservation: All the attributes contained in the Fact or Dimension Tables are represented in the Merged Table (Fact or Dimension) through equality or similarity mapping.
	c) Steps (6) and (7) satisfy Attribute Property Value Preservation: Value properties of attributes are represented for each of the Fact or Dimension Tables.
	d) Step (8) satisfies Slowly Changing Dimension Preservation and Tuple Containment Preservation: Entity representations from the different data marts are included in the merged dimensions.
	e) Steps (9), (10) satisfy Tuple Containment Preservation: Tuple data values from each of the data marts are populated in the merged data warehouse.

	C. Conflicts Identification and Resolution

	IV. IMPLEMENTATION AND EVALUATION
	A. Implementation
	We implemented our methodology using 2 different data warehouses, for the Insurance business and Transportation services. The Insurance data consisted of 2 initial data marts. These were Policy and Claims data marts. The Policy and the Claims data marts contained 7 and 10 dimension table schemas, respectively. The Policy fact table schema
	contained instance data of 3070 tuples of data, whilst the Claims fact contained 1144 tuples of data. The Transport data set contained 3 data marts. These were Frequent Flyer, Hotel Stays, and Car Rental data marts. Their fact tables contained 7257, 2449, 2449 tuples of data for Frequent Flyer, Hotel Stays, and Car Rental, respectively. The data marts resided in a Microsoft SQL Server DBMS. Each entity representation in the dimensions was identified by a unique surrogate key and with a clustered indexing as created on the primary key.
	The schema matching and mapping models discovery procedural steps were implemented using IBM Infosphere Data Architect [9] [10]. This tool incorporated the schemas of the data mart source repositories, together with their contained instance data. The schema matching step was implemented using the set of algorithms incorporated in the application software. The algorithms were configured by sequentially manipulating the order of execution, configuration of rejection threshold, sampling size and sampling rate. The manipulations of these configurations for finding mapping correspondences were based on an iterative procedure of inspection. With regards to the mapping models discovery and modelling step, the adoption of GLAV mappings enabled the inclusion of all attributes for each mapping formulation of fact and dimension table attributes. Moreover, complex transformation expressions were derived for multi-cardinality mappings. An output file in a Comma Separated Values (.csv) format was later generated, which contained the mapping definitions based on the tables, their attributes, and the attribute property values from each of the data marts. The merge algorithm was implemented using C# .Net programming.

	B. Evaluation

	/
	V. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

