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Abstract—Within “traditional” database systems (row store),
the values of a tuple are usually stored in a physically connected
manner. In a column store by contrast, all values of each single
column are stored one after another. This orthogonal storage
organization has the advantage that only data from columns
which are of relevance to a query have to be loaded during
query processing. Due to the storage organization of a row
store, all columns of a tuple are loaded, despite the fact that
only a small portion of them are of interest to processing.
The orthogonal organization has some serious implications on
query processing: While in a traditional row store, complex
predicates can be evaluated at once, this is not possible in
a column store. To evaluate complex conditions on multiple
columns, an additional data structure is required, the so-called
Position List. At first glance these Position Lists can easily be
implemented as an dynamic array. But there are a number of
situations where this is not the first choice in terms of memory
consumption and time behavior. This paper will discuss some
implementation alternatives based on (compressed) bitvectors.
A number of tests will be reported and the runtime behavior
and memory consumption of the different implementations will
be presented. Finally, some recommendation will be made as to
the situations in which the different implementation variants
for Position Lists will be suited best. Their suitability depends
strongly on the selectivity of a query or predicate.

Keywords–Column stores; PositionList implementation vari-
ants; bitvector; compression; run length encoding; performance
measure

I. INTRODUCTION

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache
is a small and fast memory which resides between main
memory and the CPU. In case the CPU requests data from
the main memory, it is first checked, whether these data are
already contained in the cache. In this case, the item is sent
directly from the cache to the CPU, without accessing the
much slower main memory. If the item is not yet in the
cache, it is first copied from the main memory to the cache
and then sent to the CPU. However, not only the requested
data item, but a whole cache line, which is between 8 and
128 bytes long, is copied into the cache. This prefetching of

data has the advantage of requests to subsequent items are
being much faster, because they already reside within the
cache.

Depending on the concrete architecture of the CPU, the
speed gain when accessing a data set in the first-level cache
is up to two orders of magnitude compared to regular main
memory access [1]. This means that when a requested data
item is already in the first-level cache, the access time is
much faster compared to the situation, when the data item
must be loaded from the main memory (this situation is
called a cache miss). The use of special data structures which
increase cache locality (the preferrred access of data items
already residing in the cache) is called cache-conscious
programming.

Column stores take advantage of this prefetching behavior,
because values of individual columns are physically con-
nected. Therefore, they often already reside in the cache
when requested, as the execution of complex queries is
processed column by column rather than tuple by tuple. This
difference between a “traditional” row store and a column
store is illustrated in Figure 1. In the upper part of the figure,
a relation, consisting of six tuples, each with five columns,
is shown. The lower part of the figure shows the physical
layout of this relation on disk or in the main memory. On
the left side, the row store layout, is represented. The row
store stores all values of one tuple in a physically connected
manner. In contrast to this a column store contains all values
of each single column one after another.

This also means that the decision whether a tuple fulfills
a complex condition on more than one column is generally
delayed until the last column is processed. Consequently,
additional data structures are required to administrate the
status of a tuple in a query. These data structures are referred
to as Position Lists. A Position List stores information about
matching tuples. The information is stored in the form of a
Tuple IDentifier (TID). The TID is nothing more than the
position of a value in a column. Execution of a complex
query generates a Position List with entries of the qualified
tuples for every simple predicate.
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ID  Name     Firstname date-of-birth  sex 

31  Waits     Tom       1949-12-07     M

45  Benigni   Roberto   1952-10-27     M

65  Jarmusch  Jim       1953-01-22     M

77  Ryder     Winona    1971-10-29     F

81  Rowlands  Gena      1930-06-19     F

82  Perez     Rosa      1964-09-06     F
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Figure 1. Comparison of the layouts of a row store and a column store (from [2])

Complex predicates on multiple columns can be evaluated
in two different ways. First, as shown in Figure 2, the pred-
icates can be evaluated separately, and in a subsequent step,
the resulting Position Lists can be merged. The advantage
of this variant is, that the evaluation of the predicates can
be done in parallel. A drawback of this solution is, that all
column values must be evaluated.
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Figure 2. Isolated evaluation of predicates on their corresponding Position
Lists and subsequent merging of the resulting Position Lists (from [2])

In contrast to this, the evaluation of the query can also
be done sequentially as shown in Figure 3. In this case,
a Position List, representing the result of a previously
evaluated predicate, is an additional input parameter for the
evaluation of the second predicate. Not all column values
have to be evaluated, but only those for which an entry in

the first Position List exists. The drawback of this solution
is the strict sequential program flow and a slightly more
complex execution which may probably cause more cache
misses compared to the parallel version.

Which of the variants is better suited depends on the
boundary conditions of the query.
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Figure 3. Iterative evaluation of predicates, using Position Lists as
additional parameters

In previous work, we developed the Column Store Toolkit
(CSTK) [2] and also used this toolkit as a starting point for
further research in the field of optimizing SQL queries, based
on a column store architecture [3].

The main objective of this paper is to present an in-depth
analysis of different implementation variants of Position
Lists and to demonstrate their advantages and disadvantages
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in different situations in terms of runtime behavior and
memory consumption.

The paper is structured as follows: In the next section, we
will discuss some specific details of Position Lists. Then, the
most important components of the CSTK will be introduced.
After that, a number of experiments with respect to runtime
behavior and memory consumption will be performed in
the main part. Finally, results will be summarized, and an
outlook will be given on future research activities.

II. RELATED WORK

Various publications compare the performance of column
stores with that of row stores for different workloads [4], [5],
[6]. In contrast to this, [7] examines different execution plan
variants for column stores, while [8] considers the impact
of compression. Following the work in [7], we examine
different implementation variants for the underlying data
structures and algorithms of the operations used in the
execution plan of a query.

III. POSITION LISTS

From a logical point of view, a Position List is nothing
else than an array or list with elements of the data type
unsigned integer (UINT) as far as structure is concerned.
However, it has a special semantics. The Position List stores
TIDs. A Position List is the result of a query via predicate(s)
on a Column, where the actual values are of no interest,
whereas the information about the qualified data sets is
desired. Position Lists store the TIDs in ascending order
without duplicates. With other words, a Position List stores
the information for each tuple no matter whether if it belongs
to a result (so far) or not.

A. Operations on Position Lists

The fundamental logical operations on Position Lists are
appending TIDs at the end (write operation), iterating over
the list of TIDs (read operation), and performing and/or
operations on complete lists.

Further operations that are mainly based on this basic
functionality, include the materialization [7] of the corre-
sponding values from the requested columns, the storage of
the whole list or parts of it in a file and the import from a
file.

B. Implementation Variants

Based on the logical structure and behavior discussed
above, the first intuitive implementation of a Position List
is using a dynamic array (an array of flexible size) of
unsigned integer values. The advantage of this variant is,
that the implementation is straight-forward and the storage
of the TIDs is cache-conscious [9], [10] in the context of
the above-mentioned operations like iterating, storing, and
and/or operations.

As Position Lists store the TIDs in ascending order
without duplicates, typical and/or operations are very fast,
as the cost for both operations is O(|Pl1|+ |Pl2|).

One big drawback of the implementation as a dynamic
array is the fact, that the lists may be very large. This is
especially true for predicates over multiple columns, where
no predicate has a high selectivity. High selectivity means,
that only a small number of tuples qualify the condition.
A low selectivity, by contrast, means that a lot of tuples
satisfy the condition. Typical predicates of low selectivity
are the “family status” or the “gender” of a person. Let us
consider a conjunctive query consisting of 6 predicates on
different columns. Each single predicate has a selectivity
of up to 50% (i.e. gender, family status, etc.). The overall
selectivity of the query is about 1.5% of the original number
of tuples, but the size of the cardinality of the individual
Position Lists is up to 50% of the original table. Starting
with the predicate of the highest selectivity and iteratively
examining the values of tuples from the subsequent columns
which qualified previously (see Figure 3) can reduce this
problem. However, if no or only vague information about the
selectivity of the different predicates is available, this can be
a serious problem. Figure 4 shows the size of a Position List
in megabytes with respect to the selectivity (density) of the
predicate for a 100 million tuple table. In the worst case, the
resulting Position List can be bigger than the original column
(e.g. for columns with binary values or a small number of
possible values only).
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Figure 4. Memory consumption of a Position List implemented as array
(logarithmic scale on x-axis)

The problem of the unpredictable size of the intermediate
Position Lists can be prevented by using a bitvector to
represent the Position List. Here, every tuple is represented
by one bit. A value of ’1’ means, that the tuple belongs to
the (intermediate) result, a value of ’0’ means that the tuple
does not belong to the result.
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This has the advantage of the size of a Position List being
exactly predictable, independently of the selectivity of the
predicate. The selectivity only has impact on how many bits
are set to ’1’. Moreover, the two important operations and
and or can be mapped on the respective primitive processor
commands, which makes the operations fast. If Position
Lists are sparse, bitvectors can also be compressed very well
using run length encoding (RLE) [11]. The idea behind RLE
encoding is, that if only a small number of bits are one, the
’0’ bits are not stored physically, but only the number of ’0’
bits are stored.

The Word Aligned Hybrid-algorithm (WAH) [12] uses this
principle and distinguishes between two word types: fills and
literals. The two word types are distinguished by the most
significant bit, so 31 (63) bits remain for the stored bits per
word or the length field. A literal is a word consisting of 31
(63) bits of which at least one bit is ’1’. A 0-fill consists of
a multiple of 31 (63) ’0’ bits which are stored in one word.
The maximum number of ’0’ bits which can be stored in
one word is 31 ∗ 231 (resp. 63 ∗ 263 for the 64-bit version).

The necessary operations like iterating, and, or can be
performed on the compressed lists, thus avoiding a tempo-
rary decompression of the compressed representation. In the
context of this paper, the bitvector implementation of the
WAH algorithm and a simple plain uncompressed bitvector
implementation are used. The WAH algorithm is considered
to be one of the fastest algorithms for performing logical
and/or operations on compressed bitmaps.

IV. THE COLUMN-STORE-TOOLKIT

The Column Store Toolkit (CSTK) was deveolped as
a toolkit with a minimum amount of basic components
and operations required for building column store appli-
cations. These basic components were used as catalysts
for further research into column store applications and for
building data-intensive, high-performance applications with
minimum expenditure.

The main focus of our components is on modeling the
individual columns, which may occur both in the secondary
store as well as in main memory. Their types of representa-
tion may vary. To store all values of a column, for example,
it is not necessary to explicitly store the TID for each value,
because it can be determined by its position (dense storage).
To handle the results of a filter operation, however, the TIDs
must be stored explicitly with the value (sparse storage).

Another important component is the already discussed
Position List. Just like columns, two different representation
forms are available for main and secondary storage. In this
paper, it is concentrated on the main memory behavior of
the Position Lists.

To generate results or to handle intermediate results con-
sisting of attributes of several columns, data structures are
required for storing several values (so-called multi columns).
These may also be used for the development of hybrid

systems as well as for comparing the performance of row
and column store systems.

The operations mainly focus on writing, reading, merging,
splitting, sorting, projecting, and filtering data. Predicates
and/or Position Lists are applied as filtering arguments.

Figure 5 presents an overview of the most important
operations and transformations among the components. The
arrows show the operations among the different components
(ColumnFile, Dense-/Sparse ColumnArray, PositionList, and
PositionListFile). For a detailed description of the opera-
tions, see [2].

          Dense ColumnArray

      ColumnFile

 PositionList

      PositionListFile

         Sparse ColumnArray

load

filter

filter/split/sort(project)

filter

   load

  store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter/extract

merge

sort

Figure 5. CSTK: Components and Operations (from [2])

V. MEASUREMENTS

A. Elemental Operations

1) Memory consumption: In a first experiment we com-
pare the size of the different data structures with respect to
memory consumption. As shown in Figure 6, the behavior
of the dynamic array implemetation is quite good for very
small selectivities, but changes for the worse for medium
and high densities. Uncompressed bitmaps (plain bitvector,
WAH-uncompressed) behave independently for all densities,
their size is determined by the number of tuples in a table
only. Compressed bitmaps show a very good behavior for
all densities. If the selectivities get low, they behave like
uncompressed bitmaps (compared to a pure uncompressed
implementation of a bitvector, there will be a slight overhead
of 1/32 resp. 1/64.). From a selectivity of about 3% the array
has a higher memory consumption than the uncompressed
bitvector.

2) Iterating over TIDs: In the next experiment, we ex-
amine the runtime behavior of the two elemental operations:

• Appending TIDs on a Position List
• Iterating over the TIDs in a Position List.

These two operations are heavily used in the implementation
of the CSTK components.

We implement a simple bitvector class by our own (with-
out compression facility), and also use the well-known WAH
algorithm. The overhead of the uncompressed representation
of WAH is quite small, in terms of both runtime and memory
consumption.
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Figure 6. Memory consumption of different implementation alternatives
for Position Lists

In contrast to the original implementation of the WAH
algorithm, we also use hardware support for special opera-
tions. The Leading Zero Count Instruction (LZCNT) is used
to find the ’1’ bits inside a processor word. This leads to
a performance advantage of a factor of 3 compared to the
orginal WAH version.

In our first experiment we take a table of 100 million
tuples and formulate predicates with different selectivities
between 0.0001 and 0.5. The TIDs of the qualified tuples
are then stored in the different representation forms (plain
bitvector, WAH bitvector uncompressed/compressed with 32
and 64 bit word size, array). After that, we measured the
time to iterate over all the stored TIDs.

Figure 7 presents an overview of the runtime behavior for
our different implementations:

The fastest implementation for all selectivities is the dy-
namic array. In contrast to this, the worst runtime behavior is
reached from the standard WAH iterator (both 32- and 64 bit
version), which therefore will not be considered any further.
More interesing values come from the iterators which use
the builtin clzl instruction from the gnu compiler family,
which is mapped on the LZCNT instruction if available (the
plain bitvector implementation was the fastest).

Two more detailed graphs are given in Figure 8 and
Figure 9. Here the static array implementation and the
LZCNT supported iterators are considered for high and low
selectivity, respectively.

While Figure 8 shows the details for selectivities between
0.0001 and 0.05, Figure 9 shows the lower selectivities
between 0.05 and 0.5. One interesting point is, that with
low selectivity (Figure 9) the hardware-supported iteration
behaves differently for the 32 and 64 bit WAH version.
While the compressed version is faster for the 32 bit version,
the opposite is true for the 64 bit version. This behavior
can be founded with the better compression ratio of the 32
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Figure 7. Measured time to iterate over 100 million data sets with different
densities

bit version for lower selectivities, which leads to a smaller
amount of memory which has to be loaded into the CPU.
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Figure 8. Measured time to iterate over 100 million data sets with high
selectivity

It is obvious that the time for the uncompressed bitvector
versions is the least dependent on the selectivity. This
can be explained by the dominating time for loading the
data from the main memory into the CPU. For all other
implementations the influence of the descending selectivity
is higher.

Although the static array implementation is faster by
a factor of five for some selectivities, we also have to
consider that in absolute values, the time of iterating over
a bitlist of 50 million entries (selectivity: 0.5) is between
0.08 seconds (array) and 0.26 (64-bit, hardware supported,
uncompressed). This is not bad and probably not such a
dominating factor compared to the memory consumption of
the different implementations shown in Figure 6.
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3) Writing TIDs: In our next experiment we analyse the
time to write TIDs in the different implementation variants.
This operation is done every time, when a predicate is
evaluated against a column value and found to be “true”.
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Figure 10. Measured time to write TIDs in different implementation
variants for Position Lists

As a basic condition we can assume that writing of TIDs is
mostly done in in the append mode. The reason is, that when
evaluating a predicate on a column, this is done sequentially
value by value with increasing TID values. In some complex
situations, however, TIDs must be written in random order
(i.e. after a previous sort operation on a column).

The results for this experiment are shown in Figure 10.
Again, the storage as an array of UINT values is the fastest
solution for all selectivities. This is true for the append
mode and the random order mode (from the implementation
point, there is no difference between the two variants).
The uncompressed bitvector turned out to be the second

best solution. Based on the implementation, the solution
in append mode is slightly faster than the random write
mode. This can be motivated by the fact that the number
of cache misses is lower in the append mode, than in the
random mode. This characteristic increases with decreasing
selectivity (0.05 and above), because the probability of the
next TID being close enough to the previous TID and so
the corresponding memory segment (the bit) being already
in the cache, increases.

Compressed bitvectors behave worse. The reason for
random access is that with every insertion of a TID, the
compressed bitvector must be reorganized, which often has
an influence up to the end of the whole compressed bitvector.
This behavior occurs in the append and random mode for
the WAH implementation (the WAH implementation has no
special append mode, but only a setBit(uint pos, bool value)
method to set a bit at an arbitrary position). However, the
append mode could be implemented in a much more efficient
way. The basic concept for the algorithm is represented in
Figure 11. The idea of this implementation is, that in the
append mode only the last two words (LL: Last Literal, LF:
Last Fill) must be considered: The last but one word, which
is a literal, and the last, which is a 0-fill. Either the TID sets
a bit in the last literal word, or the last fill must be splitted
into two fills, with a literal in between (with holds the TID).
From the time behavior, we expect that this solution has
about half of the performance of the uncompressed version
(where we only have to jump to the corresponding word
and set the bit), but is by far better than the general purpose
setBit method from the WAH implementation.

Literal 0-Fill(n)

. . .

Literal 0-Fill(n)

Case 1: Set bit in last literal

Case 2: Split last fill and separate it with a literal

1        1      1

1    1   1      1

0-Fill(n-k) Literal 0-Fill(k-1)

    1   

Literal 0-Fill(n)

. . .
1        1      1

Literal

1        1      1

LL LF

LL LF

LL LF

LL LF

LL LF

Figure 11. Appending TIDs in a compressed bitvector

4) AND operations on Position Lists: Next, we perform
an experiment to measure the time for AND operations. This
is one of the basic operations performing the “WHERE” part
of a query on a column store, where two or more Position
Lists are ANDed (same with OR).

Figure 12 shows the results for the AND operation. As
you can see, the time for ANDding two uncompressed
bitvectors (both, the plain bitvector implementation and the
uncompressed WAH bitvector) is mostly independent of the
selectivity. This can easily be understood, because the length
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of the vector is also independent of the selectivity and so
the the AND operation consists of a constant number of
and instructions in the CPU. The slight overhead of the
WAH implementation can be explained by the more complex
algorithm and the additional memory consumption of 1/32
compared to the plain uncompressed bitvector.

The more interesting lines are the compressed bitvector
and the array. While the array performs best for selectivities
of 0.02 and higher, it degrades for lower selectivities. This
is a little surprising, because the array implementation was
one of the fastest in the previous experiments (iterating
and writing TIDs). The degeneration can be explained by
the caching strategies of modern CPUs. In the case of low
selectivities, the two arrays grow and there is a cut-throat
competition for places in the processor cache, which is why
many cache misses result.

The compressed bitvector outperforms the uncompressed
version for high selectivities (0.007 and above), because of
its more compact representation and the ability to skip all
the fill words completely. With lower selectivities the fills
get shorter and disappear later on. Hence there is no advan-
tage compared to the uncompressed representation. In this
situation, the more complex algorithm is another drawback
and leads to more instruction cache misses compared to the
uncompressed version.
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Figure 12. Measured time for ANDing two Position Lists with different
implementations

VI. CONCLUSION AND FUTURE WORK

The choice of the right data structure and algorithm
for implementing Position Lists is not an easy task. It
largely depends on the selectivity of the predicates and the
operations to perform. Especially for low selectivities, the
choice of the right solution is critical as was shown by the
experiments.

The data structure of a dynamic array of unsigned inte-
ger values is outperformed by the uncompressed bitvector

implementations by up to two orders of magnitude for low
selectivities. On the other hand, it is very good choice at
high selectivities.

Uncompressed bitvectors have a predictable behavior for
all selectivities, but are again outperformed by compressed
bitmaps and arrays for very high selectivities.

If no information about the expected selectivity is avail-
able, using an uncompressed bitvector probably is a good
choice. Depending on the selectivity and the used algorithm,
the execution time ranges over three orders of magnitude and
the uncompressed bitvector is of moderate performance.

Next, the “append-mode” will be used for setting bits in a
compressed bitvector. With this implementation. we will be
able to perform more experiments with repect to the runtime
behavior of complex conditions in both the sequential (Fig-
ure 3) and parallel (Figure 2) mode. After finishing this task,
we will perform some more experiments using the different
implementations together with our toolkit components to
measure the time behavior of ouf our components with more
complex queries like those from the TPC-H [13] benchmark.

Another interesting point is the usage of different data
structures in one query. This may sound strange, but the
conversion of compressed into uncompressed bitvectors and
vice versa is very fast compared to the penalty of using
the wrong algorithm/data structure. After evaluating the first
predicates using uncompressed bitmaps (which perform well
for low selectivities), the overall selectivity will increase and
use compressed bitvectors could be advantageous.

It has to be kept in mind that the ultimate goal is the
development of a query optimizer for a column store [3].
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