
Modeling and Simulation Versions of Business Process using Petri Nets

Fatma Ellouze, Mohamed Amine Chaâbane, Rafik
Bouaziz

University of Sfax/ Faculty of Economics and Management
of Sfax

Route de l’aéroport, BP1088 Sfax, Tunisia
fatma_ellouze@hotmail.com; {Ma.chaabane,

Raf.bouaziz}@fsegs.rnu.tn

Eric Andonoff
University of Toulouse/ IRIT

2 Rue de Doyen Gabriel Marty, 31042 Toulouse Cedex,
France

andonoff@univ-tlse1.fr

Abstract — This paper proposes a solution for modeling and
simulating flexible Business Processes (BP) using version
concepts. It advocates a Model Driven Architecture approach
to handle versions of BP. The paper presents, first, a meta
model (VBP2M: Versioned Business Process Meta model) for
modeling versions of BP considering six perspectives of
business processes: process, functional, operation,
informational, organizational and intentional perspectives.
Then, it proposes an extension of the meta model of Petri nets
(PN) to support the version concepts. Finally, it defines
mapping rules to translate versions of BP modeled in
accordance with the VBP2M to PN models, with graphical
representations, in order to be able to simulate the behavior of
each version of BP.

Keywords-Flexible Business Process; Version; VBP2M; Petri
nets; Mapping rules; MDA framework.

I. INTRODUCTION

Nowadays, the importance of Business Processes (BP) in
organizations’ Information Systems (IS) is widely
recognized and these last few years, there has been a shift
from data-aware IS to process-aware IS [1] [2] [3]. However,
despite important advances in Business Process Management
(BPM), several issues are still to be addressed. Among them,
the business process flexibility issue is a really a relevant and
challenging one. Indeed, the competitive and dynamic
environment in which organizations and enterprises evolve
leads them to frequently change their business processes in
order to meet new production or customer requirements, new
legislation or business rules. We define flexibility of BP as
the ability of BP to deal with both foreseen and unforeseen
changes in the environment in which they operate [4].

This issue has mainly been addressed using two main
approaches: a declarative (decision oriented) approach and a
procedural (activity oriented) approach. The declarative
approach consists in defining a set of constraints defining BP
execution rules [5] [6] [7] [8]. In this approach, dealing with
flexible BP seems very easy as we just need to add and/or
remove constraints to define new BP execution rules.
However this approach is only available in the Declare BPM
suite [13], which is an academic solution unknown in the
industry. At the opposite, the procedural approach is widely
used in industrial Workflow management systems and BPM
suites. Thus BPM community has to deal with procedural BP
flexibility. In this approach, a BP is defined as a set of
activities coordinated by using control patterns [9]. Several

techniques have been introduced to address BP flexibility
and among them we quote late binding, late modeling and
versioning [10] [11].

In a previous work [12], we advocated to use versioning
for BP flexibility. Indeed, using this technique, it is possible
to deal with the different flexibility types defined in [11] as it
is possible to handle, at the same time, different schemas
(versions) of a given BP.

Our proposition [12] extends the three main contributions
about BP versions ([16] [17] [18]) considering, in addition to
the process and functional perspectives of BP. four other
perspectives aiming to have a comprehensive description of
BP [9] [10]. These perspectives are: (i) the operation
perspective which defines actions to be achieved within an
atomic activity, (ii) the informational perspective which
describes the structure of information consumed and/or
produced by the BP, (iii) the organizational perspective
which details roles, organizational units and actors invoked
by the BP and (iv) the intentional perspective which explains
the context of use of a BP.

To sum up, our previous works [19][20] deal with BP
flexibility issue adopting the procedural paradigm and using
the versioning technique. It introduced VBP2M (Versioned
Business process Meta model) for BP version modeling.
However, we did not addressed the simulation and
verification of the modeled BP versions in order to check
their behavior. As a consequence, the aim of this paper is to
simulate and verify the behavioral dimension of the modeled
versions of BP using conventional Petri nets. Conventional
Petri nets have been chosen since they are recognized as a
perfect mean for simulating and verifying distributed
applications and they are widely used in BPM [14] [15].
More precisely, this paper:

• advocates an MDA approach for dealing with BP
simulation;

• extends PN meta model to integrate BP version
concepts;

• defines a transformation process including (i) the
mapping between concepts of VBP2M and extended
PN meta model and (ii) translation related rules;

• presents a tool implementing this transformation.
The remainder of this paper is organized as follows.

Section 2 shows how we model versions of BP. Section 3
introduces the MDA framework we propose to handle
versions of BP. Firstly, this section details the three models
(CIM, PIM and PSM) of the framework. Secondly, it gives

150Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

mapping rules allowing to represent a version of BP,
modeled according the previous meta model, as a tree.
Thirdly, it explains mapping rules to translate a version of
BP represented as a tree to a Petri Net model. Section 4
illustrates our proposals within a case study. Section 5
presents the tool implementing our contributions. Finally,
Section 6 recaps our contributions, discusses them according
related work, and gives some perspectives for our future
works.

II. MODELING VERSIONS OF BUSINESS PROCESS

This section briefly presents the Versioning Business
Process Meta model (VBP2M) we have proposed to model
versions of business process [12][19][20]. More precisely,
first it introduces the version concept and then it details the
VBP2M for versions of BPs.

A. The version concept

A real world entity characteristic that may evolve during
its life cycle: it has different successive states. A version
corresponds to one of the significant entity states. So, it is
possible. Hence, it is possible to manage several entity states.
The entity versions are linked by derivation link; they form a
derivation hierarchy. When created, an entity is described by
only one version. The definition of every new entity version
is done by derivation from a previous one. Such versions are
called derived versions. Several versions may be derived
from the same previous one. They are called alternative
version. Fig. 1 illustrates a derivation hierarchy to describe
entity evolution.

Figure 1. Derivation hierarchy

A version is either frozen or working. A frozen version
describes a significant and final state of an entity. A frozen
version may be deleted but not updated. To describe a new
state of this entity, we have to derive a new version (from the
frozen one). A working version is a version that describes
one of the entity states. It may be deleted or updated to
describe a next entity state. The previous state is lost to the
benefit of the next one.

B. VBP2M: A meta model for versions of BPs

The VBP2M is result from merging of two layers; a BP
meta model for classical BP (which not evolve on time)
modeling, and versioning pattern to make some classes of
the BP meta model versionable (i.e., classes for which we
would like to handle versions). Because of space limitation,
in this we focus on the VBP2M only. Intersected reader can
consult our previous work [19] [20] to have additional
information about these two layers and the way we merge
them to obtain the VBP2M.

Fig. 2 below present the VBP2M in terms of classes and
relationships between classes. This figure visualizes in gray
versionable classes (i.e., classes for which we handle
versions), and non-versionable classes (i.e., classes for which
we do not handle versions). The VBP2M considers the six
perspectives (Functional, operation, process, informational,
organizational, and intentional perspectives).

Figure 2. Versioning Business Process Meta model

1) Main concepts of VBP2M: The main concepts of the
VBP2M are Process, Activity, Control Pattern, Operation,
Informational resource, Role and Context concepts. A
process performs activities, which are atomic or composite.
Only the first of these activities is explicitly indicated in the
meta model. At the composite activity, we keep its
component activities, which are coordinated by control
patterns. In our meta model, the main control patterns
described in the literature are provided. Some of them are
conditional (e.g., if, while, etc.), while others are not (e.g.,
sequence, etc.). An atomic activity can have precondition
(or start condition), post-condition (or end condition) and
execute one or several operations. It is performed by role,
which can play by several actors belonging to organizational
units (organizational perspective). Moreover, an atomic
activity consumes and/or produces informational resources
(informational perspective). A use context is associated for
each version of process.

2) Taking into account versions: The underlying idea of
our proposition to take into account versions of BP is to
describe, for each versionable class, both entities and their

151Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

corresponding versions as indicated in “Fig. 1”. As
consequence, each versionable class is described using two
classes: the first class is called “…”, to model entities and a
second one, called “version of …”, whose instances are
versions. For instance, versions of processes are modeled
within two classes: the Process class contains all modeled BP
while the Version of process contains versions of the
modeled BP. These classes are linked together by two
relationships: the “is_version_of” relationship links a
versionable class with its corresponding “Version of…” class
and the “Derived_from” relationship describes version
derivation hierarchies between versions of a same entity.
This latter relationship is reflexive and the semantic of both
sides of this relationship are: (i) a version (SV) succeeds
another one in the derivation hierarchy and, (ii) a version
(PV) precedes another one in the derivation hierarchy.
Moreover, we introduce in the “Version of…” classes,
classical properties for versions i.e., version number, creator
name, creation date and state [21].

3) Versionable class: Finally, it is possible to manage
versions both at the schema and the instance levels. In the
Business Process context, it is only interesting to consider
versions at the schema level (i.e., versions of BP schemas),
and the notion of version must be applied to all the
perspectives defined at the schema level. In our proposition,
and unlike related work (e.g., [16] [17] [18]), which consider
only two perspectives (functional and process perspectives),
we take into account the five main perspectives of BPs, i.e.,
the process, functional, operational, organizational and
informational perspectives, which are considered as relevant
for BP modeling and execution [9] [10]. More precisely,
regarding the process and functional perspectives, we think
that it is necessary to keep versions for only two classes: the
Process and the Atomic activity classes. It is indeed
interesting to keep changes history for both processes and
atomic activities since these changes correspond to changes
in the way that business is carried out. More precisely, at the
process level, versions are useful to describe the possible
strategies for organizing activities while, at the activity level,
versions of atomic activities describe evolution in activity
execution. We defend the idea that versioning of processes
and atomic activities is enough to help organizations to face
the fast changing environment in which they are involved
nowadays. Regarding the other perspectives, it is necessary
to handle versions for the Operation class of the operational
perspective, for the Informational resource class of the
informational perspective, and for the Role and
Organizational Unit classes of the organizational perspective.

III. MDA FRAMEWORK TO HANDEL VERSIONS OF BUSINESS

PROCESSES

After modeling, verification of version of business
process (VBP) can be done by (i) semantic verification and
(ii) behavioral verification. The aim of the semantic

verification is to verify the presence of VBP’s activities, their
coordination, the invoked roles and the used informational
resources. This verification can be ensured by the graphical
languages and notations (i.e., BPMN, Yawl.) Regarding the
behavioral verification, we verify some behavioral properties
such as the liveness (i.e., the absence of global or local
deadlock situation), the consistency (i.e., the existence of
cyclic behavior for some marking), etc. This verification can
be done with languages which have a simulator as Petri Nets.
In our previous work [4], we interested by the semantic
verification using BPMN. More precisely, we have generated
a BPMN specification from a VBP obtained by instantiation
of the VBP2M. Using this specification, we can visualize a
version of a BP model in order to approve it. In this paper we
deal with the behavioral verification issue. Especially, we
propose mapping rules to translate automatically a VBP
modeled according to VBP2M to a Petri nets specification.
Then we use the Platform Independent Petri net Editor 2
"PIPE2" (which is an open source tool that contains a
simulator and analyzer. It conforms to Petri Net Markup
Language "PNML") to verify the behavior of the modeled
VBP.

This section is organized as follows: first, we detail a
MDA framework we propose to consider VBPs from
modeling to execution. Second, we propose mapping rules
allowing the translation from a VBP to VBP-tree. Finally, we
define mapping rules to generate a Petri-net from the VBP-
Tree.

A. MDA framework

An MDA (Model Driven Architecture) [22] framework
specifies three levels of models: (i) the CIM (Computation
Independent Model) refers to a business or domain model,
(ii) the PIM (Platform Independent Model) is an independent
model from all execution platforms and (iii) the PSM
(Platform Specific Model) gives a textual description which
can be used by execution platforms. To automate the
transition from modeled VBP to the execution step, we
propose an MDA framework where the CIM model contains
the VBP2M and its instances (modeled VBP). The PIM
model contains the specification of these VBP using a
graphical specification language. At PIM model user can
choose a language from (BPMN, Yawl, PN, etc.) to visualize
in order to approve the modeled VBP. Regarding the PSM
model an execution description (i.e., XPDL, BPEL.) is
generated. This description belongs to specific platform (i.e
Bonita, PETALS). This paper proposes mapping rules to
translate from CIM model to PIM model. This
transformation is operated according two steps: (i) consist of
the querying the VBP2M in order to obtain the components
elements of a VBP. These elements are organized in a tree
named VBP-Tree (Versionned Business Process Tree). This
step is common for all the graphical languages from PIM
model (ii) allows the generation of graphical representation
according to a chosen specification language using mapping
rules. Fig. 3 shows the propose framework.

VBP-Tree is used to optimize the execution and the
development time as the common operations will be done
only once with all specification languages. For example, if

152Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

we have a graphical representation of a VBP with BPMN
then we want to visualize this same VBP with PN, so we just
reuse the VBP-tree and just make mapping rules from VBP-
Tree to BPMN.

VBP-Tree contains two types of nodes:
• Terminal node (leaves): represented by ellipses and

correspond to versions of atomic activities of a VBP.
• Non terminal node: represented by rectangles and

correspond to composite activities.
Fig. 4 below presents the meta model of VBP-Tree in

terms of classes and relationships.

BPMN RP YAWL

Instantiation

VBP2M VBP2M’s instances

:process

:V of process: VAA1

: VAA2

: VAA3

...

Description XPDL

<Activity name=Production
<Performer >…</Performer >

</Activity>

Platform Bonita

Description BPEL

<Invoke inputVariable >
<source>
<target>
</Invoke>

Platform PETALS
Figure 3. Framework MDA used

Figure 4. VBP-Tree meta model

Table I describes properties of a terminal node.

TABLE I. PROPERTIES OF TERMINAL NODE

Properties Description
Id-TN ID of the Terminal Node
Name-TN Name of the Terminal node
Vers-TN

Properties of version of the atomic
activity that the Terminal Node
represents, it refers to another class type
that contains the following properties

number, Creator name, Creation Date
and state of the version

Operations-TN

List of operations that are executed by
the version of atomic activity that the
Terminal Node represents

PreCondition-TN

Condition that must be evaluated to true
to make the execution of the version of
atomic activity that the Terminal Node
represents

PostConditions-TN

Conditions associated to the version of
atomic activity, after the execution of
operations of the Terminal Node

Roles-TN

List of role able to execute the version
of atomic activity that the Terminal
Node represents

Consumes-TN

List of informational resources required
to execute operations of the version of
atomic activity that the Terminal Node
represents

Produces-TN

List of informational resources produced
after executing operations of the version
of atomic activity that the Terminal
Node represents

Properties of a non terminal node are described in Table II:

TABLE II. PROPERTIES OF NON TERMINAL NODE

Properties Description
Name-NTN Name of the Non Terminal Node
CP-Name-NTN Name of the control pattern used for the

composite activity that the Non Terminal
Node represents

Condition-NTN Optional property associated to conditional
control patterns

Child-TN List of Terminal Node that compose the
Non Terminal Node

Child-NTN List of Non Terminal Node that compose
the Non Terminal Node

In the remainder, we represent firstly mapping rules from

VBP2M to VBP-Tree. Secondly, we generate a PN with
mapping rules from VBP-Tree to PN.

B. Mapping rules from VBP2M to VBP-Tree

To translate from a VBP to a VBP-Tree, we propose
three mapping rules detailed in Table III below.

TABLE III. MAPPING RULES FROM VBP2M TO VBP-TREE

N° VBP2M concepts VBP-Tree concepts
1 Version of Business Process Tree
2 Version of Atomic Activity Terminal Node
3 Composite Activity Non Terminal Node

The function implementing the mapping from a VBP to

VBP-Tree (cf. Fig. 5) use a set of functions permitting the
handling version of processes and nodes

• StartWithVAA (VP): indicates if the VP start with
Version of Atomic Activity class;

• BuildTN (A, Tree): build a Terminal Node with
properties of the Version of Atomic Activity (A) and
its relations (performed-by, consumes, etc.), then add
it in the Tree;

153Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

• BuildNTN (A, Tree): build a Non Terminal Node
with properties of the composite Activity and its
relations (uses, etc.), then add it in the Tree;

• Children (Node): return all the children of the
composite activity (Node).

Figure 5. Function BuildVBP-Tree

C. Mapping rules from VBP-Tree to PN

Firstly, we explain more what is PN? In fact, Petri Net is
a formal tool that is composed of:

• A set of places (P1, P2, ..., Pn) which represents
triggering conditions;

• A set of transitions (T1, T2, ..., Tn) which represent
activities;

• A set of oriented arcs. Two types of arcs are
distinguished: input arcs which link place to
transition and output arcs which link transition to
place. For the input arcs, we distinguish also two
types which are normal (arc with an arrow at the
end, that can contains a token) and inhibitor (arc
with a small circle at the end, that cannot contains a
token) arcs.

The meta model of PN is shown in the UML diagram of
Fig. 6.

Figure 6. Petri net meta model

In order to support concepts of the VBP2M, we propose
to extend Petri net meta model by adding five classes:

• Version class: that contains version number, creator
name, creation date and state attributes. This class
linked by the Node class and the Petri Net class in
order to specify their versions;

• Operation class: contains an attribute which specify
its name and has a relationship named "op-vers" that
is linked to Version class;

• Informational resource class: specify the type of the
Place class. It contains two attributes: type and
nature of the resource;

• Role class: specify the type of the Place class;
• Organizational unit class: specify the type of the

Place class;
Besides these new classes, we add also two attributes in

the Transition class that concerns the precondition and the
post conditions and one relationship named "has-vers-op"
linked to Version class. The aim of this extension is to
increase the semantic dimension by specifying each node
with its version and non version information. Fig. 7 shows
the extended meta model of PN. These new classes are
represented with gray color.

name: String

Node

name: String

PetriNet

marking: Int

Place

weight: Int

Kind: ArcKind

Arc

normal

inhibitor

<<enumeration>>

ArcKind

precondition: String

post conditions: String

Transition

type: String

nature: String

Informational resource

versionNumber: Int

creatorName: String

creationDate: Date

state: String

Version 1

1

input

output *

*

1

11..* 1..*

opName: String

Operation Role

0..* 0..*

pn-vers

node-vers

ou-vers

role-vers

ir-vers

o
p
-v

er
s

h
as

-v
er

s-
o
p

1..*

1..*

1..*

1..*

OrganizationalUnit

1

1

1 1

1..*

1..*

Figure 7. Petri net meta model extended

To generate a PN from VBP-Tree we propose mapping
rules (cf. table IV) between VBP-Tree properties and the
extended PN properties. After applying these rules, it
becomes possible to verify the behavioral of the obtained
PN. This verification ensured using the simulator of PIPE2.

TABLE IV. MAPPING RULES FROM VBP-TREE TO PN

VBP-
Tree

concepts

VBP-Tree properties PN properties

Terminal
Node

Name-TN Name of a transition
Name-Role of the
attribute Roles-TN

Name of an input Role or
Organizational unit place
drawn with an inhibitor arc

Name-IR of the attribute
Consumes-TN, when
Type-IR is “internal” or
“external”

Name of an input
Informational resource
place drawn with a normal
arc

Name-IR of the attribute
Consumes-TN, when
Type-IR is “position”

Name of an input
Informational resource
place drawn with an
inhibitor arc

Name-IR of the attribute Name of an output

154Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Produces-TN Informational resource
place drawn with a normal
arc

Tree Name-BP and Vers-BP Name of the Petri net

We use the inhibitor arc for resources (Role and/or

Information) that are not consumed by an atomic activity.
These mapping rules are implemented by the function “Build
PN” detailed in Fig. 8:

Figure 8. Function BuildPN

This function uses a set of functions:
• IsTN(n): indicates if a node n is a terminal node;
• BuildTransitionPlace (n): build and add the

corresponding transition and places of the terminal
node n;

• Pattern (n): return the used pattern if n is a non
terminal node;

• BuildTranPlacSeq(n) : build and add the transition
and places of the terminal node n into the PN
according to a sequence control pattern;

• BuildTranPlacPar (n): build and add the transition
and places of the terminal node n into the PN
according to a parallel control pattern.

Because of space limitation, we do not specify other
control pattern such choice, iteration, etc.

IV. CASE STUDY

In order to illustrate our approach, we propose the
process of the participation in a business tender named BTP .

The first version of this process, represented in Fig. 9(a),
contains three activities (Acquisition of tender specifications,
Preparation of the offer, Submission of the offer).

Figure 9. Versions of process

• “Acquisition of tender specifications” which is
triggered by the presence of a call for tender (CFT)
and produces a tender specifications (TS). This
activity is achieved by a courser (Cr).

• “Preparation of the offer” which is triggered by the
availability of specifications tender and produces an
offer (of). This activity is done by a committee of
offer preparation (Cm).

• “Submission of the offer” which is triggered by the
prepared offer and produces a coupon. This activity
is realized by the courser.

Fig. 10, gives an extract of an instantiation of the
VBP2M according to the first version of BTP process.

Figure 10. Instantiation of the VBP2M for the first version of BTP process

Fig. 11 presents the VBP-Tree of this version with a
simplified view (nodes are not described in details).

Figure 11. VBP-Tree for the first version of the BTP process

In the second version of this process, represented in
Figure 9(b), the second activity “Preparation of the offer”
will be divided: (i) “Preparation of the technical offer”
activity which is realized by a technical manager (TM) (ii)

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

“Preparation of the commercial offer” activity which is
realized by a commercial manager (CM). These two
activities are done in parallel and executed respectively by a
Technical service and Commercial service. The VBP-Tree of
this version is illustrated in Fig. 12

Figure 12. VBP-Tree for the second version of BTP process

V. IMPLEMENTATION

We use PIPE2 (Platform Independent Petri net Editor 2)
[23] [24] tool to implement our propositions.

Two steps are considered to implement our propositions:
(i) extend the Petri net tool “PIPE2” in order to augment the
existing dialogues that open when you currently click on the
Place or Transition objects to display proprieties relative to
our context and (ii) implement the proposed mapping rules.

In fact, we add new package “vffs” that contain:
• Four forms: One associate to the Transition class and

the three others associate to the Place class (Role
Place, Informational resource Place and
Organizational unit Place);

• A class: contains methods that fill these forms.
We modify also:
• The “PlaceHandler.java” and

“TransitionHandler.java” classes in the package
“pipe.gui”, especially the method of
“mouseclicked”;

• The “Place.java” and “Transition.java” in the
package “pipe.dataLayer”, especially the method of
“showEditor”.

After extending PIPE2, we implement mapping rules of
detailed in sections III.B and III.C. Fig. 13 shows further the
steps to generate automatically PN from the VBP2M,
passing through the VBP-Tree.

View

RP.XML

File Edit Draw Help

PIPE2:Plateforme Independed Petri Net Editor

Figure 13. Steps of implementation

In fact, these steps are:
• 1: This step allows to translate from VBP2M to

VBP-Tree according the mapping rules detailed in §
III.B.

• 2: As PIPE2 save/load its Petri nets in XML file, we
generate this file from the VBP-Tree according the
mapping rule explained in § III.C. To create the
XML file we used the JDOM API (which enables to
parses, manipulates, and outputs XML using
standard Java constructs).

• 3: Finally, we open the created XML file by PIPE2
to verify by simulation the nets that belongs to a
specific VBP.

After choosing a VBP and building the VBP-Tree, we
choose PN to visualize and simulate our VBP. The result is
shown in Fig. 14.

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 14. The generation of the first version of participation in a business

tender process

• When we click in a transition we obtain on (1) a
form displaying its information such version
number, creator name, creation date, state,
description, precondition, operations and post
conditions.

• When we click in a role place we obtain on (2) a
form displaying its version information such version
number, creator name, creation date, state and
organizational units that the role place belongs.

• When we click in an organizational unit place we
obtain on (3) a form displaying its version
information.

• When we click in an informational resource place
we obtain on (4) a form displaying its information
such version number, creator name, creation date,
state, type and nature.

Fig. 15 shows the simulation result of this VBP
visualized in Fig. 14. In fact, we can conclude that all
transitions are attainable. So, the reachability property is
verified. There are many other properties that can be verified
such as the liveness property, the boundedness property, etc.
We can also use the analysis techniques that the PIPE2 tool
provides.

Figure 15. The simulation result of the first version of participation in a

business tender process

VI. CONCLUSION AND FUTURE WORK

This paper has presented a solution to simulate the
behavioral dimension of versions of BP using an extension
of PN. This solution is integrated into a more general
framework supporting a process designer for modeling and
specifying flexible business processes using the version
concept. This framework advocates a MDA approach
considering (i) at the CIM level, a specific meta model, the
Version Business Process meta model (VBP2M) for
modeling versions of BPs (ii) at the PIM level, an extension
of the PN meta model for validating by simulation the
behavioral dimension of modeled BP versions, and finally,
(iii) at the PSM level, several meta models for implementing
versions of BPs (e.g., XPDL and BPEL meta models). This
paper mainly focuses on the automatic mapping from the
CIM level onto the PIM level (i.e., the extension of the PN
meta model). Its contributions are the following:

• The specification of an extension of PN in order to
support the versions of BPs.

• An automatic mapping of versions of BP modeled
according the VBP2M onto BP versions modeled
with extended PN meta model.

 An implementation of this mapping extending the PIPE2
tool in order to take into account version specificities.
Regarding related work, main contributions in BPs
[16][17][18] only considered two perspectives (functional
and process) and did not consider four other perspectives
(operation, informational, organizational and intentional)
which are considered as relevant for BP [19][20]. Moreover,
theses contributions do not address the mapping from the
modeled versions to their graphical representation.

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Our future work will take two directions. First
perspective, an extensive study of control pattern in PN
because we only considered sequence, parallelism and
choice patterns. Other more long perspective, we will map
versions of BP modeled using the extended PN meta model
onto versions of BP described using language relevant from
the PSM level of our MDA-based framework: XPDL and
BPEL, which are the de-facto standards for implementing
BP. Second, we will address execution of specified BP.

REFERENCES
[1] H. Smith and P. Fingar, “Business Process Management: the

Third Wave business process modelling language (bpml) and
its pi-calculus foundations,” in the Information and Software
Technology 45(15), 2003, pp. 1065-1069.

[2] M. Dumas, W. van der Aalst and A. ter Hofstede, “Process-
Aware Information Systems: Bridging People and Software
through Process Technology,” Wiley-Interscience, 2005.

[3] W. van der Aalst, B. Benatallah, F. Casati, F. Curbera and E.
Verberk, “Business Process Management: Where Business
Processes and Web Services Meet,” in the Int. Journal on
Data and Knowledge Engineering, 61(1), 2007, pp. 1–5.

[4] I. Ben said, M.A. Chaâbane and E. Andonoff, “A Model
Driven Engineering Approach for Modelling Versions of
Business Processes using BPMN,” in the Int. Conference on
Business Information System (BIS’10), Berlin, Germany,
May 2010, pp. 254–267.

[5] F. Casati, S. Ceri, B. Pernici and G. Pozzi. “Workflow
Evolution,” in the Int. journal of Data and Knowledge
Engineering. 24(3), 1998, pp. 211–238.

[6] G. Faustmann, “Enforcement vs. Freedom of Action - An
Integrated Approach to Flexible Workflow Enactment,” in the
ACM SIGGROUP Bulletin, 20(3),1999, pp. 5–6.

[7] P. Kammer, G. Bolcer, R. Taylor and M. Bergman,
“Techniques for supporting Dynamic and Adaptive
Workflow,” in the Int. Journal on Computer Supported
Cooperative Work, 9(3/4), 2000, pp. 269–292.

[8] S. Rinderle, M. Reichert and P. Dadam, “Disjoint and
Overlapping Process Changes: Challenges, Solutions and
Applications,” in the Int. Conference on Cooperative
Information Systems, Agia Napa, Cyprus, 2004, pp.101–120.

[9] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski and A.
Barros, “Workflow Patterns,” in the Int. Journal on
Distributed and Parallel Databases, 2003, 14(1), pp. 5–51.

[10] S. Nurcan, “A Survey on the Flexibility Requirements related
to Business Process and Modelling Artifacts,” in the Int.
Conference on System Sciences, Waikoloa, Big Island,
Hawaii, USA, January 2008, pp. 378–387.

[11] H. Schoneneberg, R. Mans, N. Russell, N. Mulyar and W. van
der Aalst, “Process Flexibility: A Survey of Contemporary
Approaches,” in the Int. Workshop on CIAO/EOMAS, at Int.
Conf. on Advanced Information Systems, Montpellier,
France, June 2008, pp. 16–30.

[12] M. A. Chaâbane, E. Andonoff, L. Bouzguenda and R.
Bouaziz. “Versions to Address Business Process Flexibility
Issue,” in the East-European Conference on Advances in
Databases and Information Systems (ADBIS
2009), Riga, 07/10/2009 – 10/10/2009, Janis Grundspenkis,
Tadeusz Morzy, Gottfried Vossen (Eds.), Springer Berlin,
Heidelberg, September 2009, pp. 2–14.

[13] M. Pesic, H. Schonenberg and W. van der Aalst, “Constraint-
Based Workflow Models: Change Made Easy,” in the Int.
Conference on Cooperative Information Systems, Vilamoura,
Portugal, November 2007, pp. 77–94.

[14] W. van der Aalst “Three Good reasons for Using a Petri-net-
based Workflow Management System, ” In proceedings of the
International Working Conference on Information and
Process Integration in Entreprises (IPIE’96), Cambridge,
Massachusetts, USA, November 1996, pp. 179 – 201.

[15] S. Narayanan and S. McIlraith, “Simulation, Verification and
Automated Composition of Web Services, ” in the 11th Int.
World Wild Web Conference, Honolulu, Hawaii, 2002, pp.
77–88.

[16] M. Kradofler and A. Geppert, “Dynamic Workflow Schema
Evolution based on Workflow Type Versioning and
Workflow Migration,” in the Int. Conference on Cooperative
Information Systems, Edinburgh, Scotland, 1999, pp. 104–
114.

[17] X. Zhao and C. Liu, “Version Management in the Business
Change Context,” in the Int. Conference Business Process
Management, Brisbane, Australia, September 2007, pp. 198–
213.

[18] B. Weber, M. Reichert and S. Rinderle-Ma, “Change Patterns
and Change Support Features -Enhancing Flexibility in
Process-Aware Information Systems,” in Data and
Knowledge Engineering 66 (3), September 2008, pp. 438–
466.

[19] M. A. Chaâbane, E. Andonoff, L. Bouzguenda and R.
Bouaziz, “Dealing with Business Process Evolution,” in the
Int. Conference on E-Business (ICE-B 2008), Porto, Portugal,
July 2008, pp. 267–278.

[20] M. A. Chaâbane, E. Andonoff, R. Bouaziz and L.
Bouzguenda, “Modélisation Multidimensionnelle des
Versions de Processus,” Ingénierie des Systèmes
d’Information, Numéro spécial Modélisation d’entreprise,
RTSI ISI 15(5), 2010, DOI:10.3166, Lavoisier, Paris, pp. 89–
114.

[21] E. Sciore. “Versioning and Configuration Management in
Object-Oriented Databases,” in the Int. Journal on Very Large
Databases, 3(1), 1994, pp. 77–106.

[22] OMG, MDA Guide Version 1.0.1, Document Number:
omg/2003-06-01. OMG, Juin 2003.

[23] PIPE Homepage. http://pipe2.sourceforge.net/
[24] P. Bonet, C. M. Llado, R. Puigjaner and W. J. Knottenbelt,

“PIPE v2.5: a Petri Net Tool for Performance Modeling,” in
23rd Latin American Conference on Informatics, October
2007.

158Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

