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Abstract—Every simulation is based on an appropriate model.
Particularly in 3D simulation, models are often large and complex
recommending the usage of database technology for an efficient
data management. However, the predominant and well-known
relational databases are less suitable for the hierarchical structure
of 3D models. In contrast, graph databases from the NoSQL field
store their contents in the nodes and edges of a mathematical
graph. The open source Neo4j is such a graph database. In
this paper, we introduce an approach to use Neo4j as persistent
storage for 3D simulation models. For that purpose, a runtime
in-memory simulation database is synchronized with the graph
database back end.
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I. INTRODUCTION

Before a technical system can get into mass production
and is ready for execution it has to pass certain stages of
development. Besides the new component’s design, an intense
test phase is compulsory in order to confirm its operability,
increase its prospects and if necessary to initiate some steps of
optimization. For such tests, engineers utilize simulation tools
like block-oriented simulation or 3D simulation to analyze
their target system in a virtual environment. In particular, 3D
simulation systems allow to analyze the spatial properties and
behavior of the intended system and its interaction with its
surroundings in an expressive visual way.

Every simulation is based on an appropriate model describ-
ing properties and behavior of the system under development.
This model data needs to be managed conveniently. The usage
of database technology has established for such requirements.
In contrast to flat files, they offer high performance data
evaluation and simplify data management with regard to secu-
rity, reliability, recovery, replication and concurrency control.
Currently, relational databases are dominating the market. Due
to different problems with scalability and effective processing
of big data with relational databases the field of NoSQL (”Not
only SQL”) databases has emerged [1]. In this context, the
approach of graph databases (GDBs) has become popular.
GDBs save their data in the nodes and edges of a mathematical
graph, in particular, to manage highly linked information.
As such, they are ideally suited for 3D simulation models.
Like in Computer-aided Design (CAD), such 3D data usually
comprises a huge number of parts of many different types
(mostly, each with only few instances), structured hierarchi-
cally with interdependencies. This recommends a graph-like

data structure. For the same reason, the scene graph is a
common approach to manage 3D data at runtime.

In this paper, we present a concept for a synchronization
interface between a GDB and a 3D simulation database, i.e.,
the runtime database of a 3D simulation system. The applied
data mapping strategy is bidirectional and in part incremental.
The approach was developed in the context of a student project
and is based on our previous work [2]. Its feasibility is shown
with a prototypical implementation using the GDB Neo4j
and the 3D simulation system VEROSIM and its Versatile
Simulation Database (VSD) (Figure 1).

Figure 1. Robot model (from Figure 9) loaded from Neo4j into the
in-memory simulation database VSD.

In Section II, we start with the basics of GDBs and a
short introduction to Neo4j and VEROSIM including VSD.
Section III gives an overview of different GDBs and moti-
vates the decision for Neo4j. In Section IV, the prototype’s
general requirements are itemized and Section V describes the
specific implementation of the interface with Neo4j and the
VSD. Subsequently, Section VI presents an evaluation of the

78Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications



interface and Section VII recaps our work with a concluding
statement.

II. STATE OF THE ART

In this section, the necessary basics for our work are
presented.

A. Graph Databases
The idea of a GDB relies on the mathematical graph theory.

Information is saved in the nodes (or vertices) and edges (or
relationships) of a graph as shown in Figure 9. A graph is a
tuple G = (V,E), where V describes the set of nodes and
E the set of edges, i.e., vi ∈ V and ei,j = (vi, vj) ∈ E
[3]. To specify records, properties of nodes and (depending on
the GDB) even relationships can be described by key-value
pairs [4]. An important aspect of GDBs is the fact that all
relationships are directly stored with the nodes so that there is
no need to infer them as in relational databases using foreign
keys and joins. Hence, read operations on highly connected
data can be performed very fast. During a read access, the
graph is traversed along paths so that the individual data
records (nodes and edges) can be read in situ and do not have
to be searched globally. Therefore, the execution time depends
only on the traversal’s depth [1].

GDBs also provide standard database features like security,
recovery from hard- or software failures, concurrency control
for parallel access, or methods for data integrity and reliability.

In contrast to flat files, using a (graph) database, data can be
modified with a query language. Such languages are a powerful
tool to manipulate the database content so that the data is not
only stored persistently and securely but can also be handled
simply.

B. Neo4j
Neo4j is a GDB implemented in Java. It can be run in

server or embedded mode. Figure 2 shows its data model. Cen-
tral elements are nodes and relationships containing the stored
records. These records are described by an arbitrary number
of properties (key-value pairs). Neo4j offers the concept of
labels and types to divide the graph in logical substructures. A
node is extendible with several labels characterizing the node’s
classification. Similarly, a relationship is identified by a type
(exactly one). Besides the classification of the data, this also
improves reading performance as just a part of the graph must
be traversed to find the desired record [4][5]. Apart from that,
Neo4j is schemaless, i.e., it does not require any metadata
definition before inserting actual user data.

All Neo4j accesses are processed in ACID (Atomicity,
Consistency, Isolation, Durability) compliant transactions guar-
anteeing the reliability, consistency and durability of the
database content [1]. Accesses are either performed with
Neo4j’s own query language called Cypher or using its Java
API.

C. VEROSIM and VSD
VEROSIM is a 3D simulation system rooted in the field

of robotics [6]. In recent years, it evolved to a versatile
framework for simulation in various fields of application
(in particular: environment, space, industry). During runtime,
simulation models are managed by its VSD. This in-memory

Figure 2. Neo4j data model.

database not only stores the passive structure and properties
of a 3D simulation model but also its active behavior, i.e., the
simulation algorithms themselves. VSD is an object-orientated
GDB.

Objects are called instances and are characterized by prop-
erties. Such properties can either be value properties (Val-
Properties) with basic or complex data types or reference
properties. The latter model 1 : 1 (Ref-Properties) or 1 : n
(RefList-Properties) directed relationships between instances.
Furthermore, these relationships can be marked to contain
target instances using an autodelete flag allowing to model
UML composite aggregations.

Figure 3. VSD data model (top: metadata, bottom: instance data).

VSD comprises a meta information system providing ac-
cess to its schema and also to specify its schema. So-called
meta instances describe an instance’s class (name, inheritance,
etc.) and so-called meta properties its properties (name, type,
etc.). Figure 3 shows VSD’s data model.

III. RELATED WORK

Besides Neo4j, there are many other GDBs in the market.
They differ in their conceptual structure and application area.

DEX is a GDB based on the labeled and directed attributed
multigraph model. All nodes and edges are classified (labeled),
edges are directed, nodes can be extended with properties
(attributes), and edges can be connected with more than two
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nodes (multigraph) [7]. The graph is represented by bitmaps
and other secondary structures. DEX has been designed for
high performance and scalable graph scenarios. The good
performance is achieved by the bitmap-based structure and the
indexing of all attributes, which are efficiently processed by
the C++ kernel [8].

Trinity [9][10] is a memory-based graph store with many
database features like concurrency or ACID-conform transac-
tions. The graph storage is distributed among multiple well
connected machines in a globally addressable memory address
space yielding big data support. A unified declarative language
provides data manipulation and message passing between the
different machines. The great advantage of Trinity is the fast
access to large data records. It is based on a multigraph model,
which can exceed one billion nodes. Since there is no strict
database schema, Trinity can flexibly be adapted to many data
sets.

HypergraphDB stores its data in a directed multigraph,
whose implementation is based on BerkeleyDB. All graph
elements are called atoms. Every atom is characterized by its
atom arity indicating the number of linked atoms. The arity
determines an atom’s type: An arity larger than zero yields an
edge atom, or else, a node atom. Each atom has a typed value
containing the user data [11].

InfoGrid is a framework specialized in the development of
REpresentational State Transfer (REST)-full web applications.
One part of this framework is a proprietary GDB used for
data management. The graph’s nodes are called MeshObjects,
which are classified by one or more so-called EntityTypes,
properties, and their linked relationships. MeshObjects not
only contain the user data but also manage events relevant
to the node [12].

Infinite Graph is a GDB based on an object-oriented
concept. All nodes and edges are derived from two basic
Java classes. Thus, the database schema is represented by
user-defined classes. Besides data management, Infinite Graph
provides a visualization tool [13]. Since the database can be
distributed on multiple machines working in parallel, Infinite
Graph can achieve a high data throughput. To manage concur-
rency, a lock server handles the different lock requests [8].

AllegroGraph [14] provides a REST protocol architecture.
With this interface, the user has full control of the database
including indexing, query and session management. All trans-
actions satisfy ACID conditions.

Despite this wide range of GDBs, for the following reasons,
we decide to use Neo4j in our approach:

• In many tests it proves to process data fast and
efficiently,

• it can handle more than one billion nodes – even
enough for extremely large 3D simulation models –
which could be useful in coming stages of extension,

• Neo4j is a full native GDB so that traversal and other
graph operations can be performed efficiently,

• Neo4j provides a comprehensive and powerful query
language (e.g., for efficient partial loading strategies
in future versions of the presented prototype),

• directed edges allow to model object interdependen-
cies more accurately, however, without disadvantages
in traversal performance,

• properties on relationships allow for a more flexible
modeling (e.g., to distinguish between shared and
composite aggregation relationships),

• finally, Neo4j is currently the most prevalent GDB in
the market indicating it to be especially well explored
and developed. Hence, it provides the best prospects
of success.

Note that while we choose Neo4j for the reasons given above,
the presented concepts are mostly independent of the choice
of the particular GDB.

IV. CONCEPT

In this section, we describe the fundamental concept and
the required features of our synchronization component’s pro-
totype. Its implementation using Neo4j and VSD is described
in Section V.

A. Structure Mapping
An essential question when synchronizing two databases is:

How do we map the different data structures? Depending on
the database paradigm, entities with attributes and relationships
(connecting two or more entities) are represented differently.
For example, a relational database uses relations, attributes
and foreign keys while a GDB uses nodes, relationships and
properties.

1) Schema Mapping: Before synchronizing user data,
a generic schema mapping is performed mapping the
metadata of one database to the other as described in
[15]. This is performed once on system startup. For
example, when performed between a relational and
an object-oriented database, each table of the former
might be mapped to a corresponding class of the latter
(columns and class attributes accordingly).

2) Schemaless Approach: When a schemaless database
is involved, a different approach has to be applied.
Here, metadata from a non-schemaless database must
be mapped onto the user data of the schemaless one.
For example, class names from an object-oriented
database are mapped onto node labels of a schemaless
GDB.

For the schemaless Neo4j, in our prototype, we chose the
second approach.

B. Object Mapper
Another key aspect of the concept is the object mapper. It

maps objects from one database to an equivalent counterpart
in the other database. For example, an object from an object-
oriented database is mapped to a corresponding node in the
GDB. The mapping is based on the counterparts’ identities
and includes a transfer of all property (or attribute) values in
between. Based on these mappings, individual object or prop-
erty changes can be tracked and resynchronized. Summarized
the mapping is bidirectional and in part incremental.

C. Transactions
Any changes (insert, update, delete) to the data are

tracked and stored in transactions, which can be pro-
cessed independently. By executing these transactions, data
is (re)synchronized on object level. During the accumulation
(and before the execution) of such transactions, the operations
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stored within can be filtered for redundancies. For example, a
transaction for creating a new object followed by a transaction
for deleting the very same object can both be discarded.

V. PROTOTYPE

This section gives an insight into the prototypical im-
plementation of the interface between VSD and Neo4j. The
prototype should have the ability to save simulation data from
VSD in Neo4j and to load it back into VSD. Initially, when
storing a simulation model in Neo4j, VSD’s contents are
archived once. Subsequently, changes in VSD are tracked and
updated to Neo4j individually. That is, when a VSD instance
has been changed just the changes are transferred as mentioned
above. In the current version of the interface, only changes
within VSD are tracked for resynchronization. Thus, Neo4j
serves as database back end, which can store simulation models
persistently.

The prototype is realized in a C++ based VEROSIM plugin,
which uses Neo4j’s Java API in embedded mode in order to
communicate with Neo4j.

A. Data Mapping
In the context of this work, synchronization represents data

transfer from one database to another. However, the structure
of one database’s data elements often differs from the other’s.
Thus, it becomes necessary to map these different structures
on each other. Figure 4 shows our intuitive approach.

Figure 4. Data mapping of the synchronization component (top: VSD data
model, bottom: Neo4j data model).

Single VSD instances are mapped to single Neo4j nodes
and references (Ref/List-Properties) from one instance to an-
other are represented by relationships between the correspond-
ing nodes. The relationship is orientated to the referenced
node’s direction. Furthermore, we transfer the Val-Properties
of a VSD instance to Neo4j node properties.

As mentioned above, a basic difference between VSD and
Neo4j is that the former comprises metadata describing (and
prescribing) a schema while the latter is schemaless. VSD
metadata contains important information for the simulation and
is indispensable for a correct data mapping. Thus, it is essential

to transfer this informations as well. We store VSD metadata
on Neo4j’s object level:

1) A VSD instance’s class name is mapped to it’s Neo4j
node’s label,

2) a VSD Ref/List-Property’s name is mapped to it’s
Neo4j relationship’s type, and

3) a VSD Val-Property’s name is mapped to it’s Neo4j
property’s key.

Val-Property values are handled depending on their data
type. If the type corresponds to one of Neo4j’s supported
basic types (e.g., integer, float, string, boolean, etc.) the value
will be transfered directly. More complex data structures
(e.g., mathematical vectors, etc.) are serialized to a binary
representation and transfered as such.

To store additional meta information about VSD Ref/List-
Properties, we take advantage of Neo4j’s feature to add
properties to relationships. Currently, every relationship gets a
boolean property with the key autodelete as introduced above.
Additionally, a RefList-Property entry’s order is stored as an
index in a relationship property.

B. Synchronization Component
Figure 5 depicts the structure of the synchronization com-

ponent (based on [2]). Its core is the (object) mapper managing
mappings between pairs of VSD instances and Neo4j nodes.
Each mapping is stored in form of a so-called ObjectState (OS)
holding all relevant information. The OS contains both objects’
ids, all collected (but not executed) transactions and the state
of the relation between the two. This state indicates whether
the pair is synchronous, i.e., equal, or whether one of them has
been changed and differs from its counterpart. An exemplary
list of object states of the mapper is given in Figure 6.

Figure 5. Synchronization component.

Figure 6. Exemplary list of object states of the mapper.

Each change to a VSD instance is encapsulated in a
transaction stored in the appropriate OS. Subsequently, they
can be executed. Depending on the change’s type, a create,
update, or delete transaction is generated. Furthermore, a
separate load transaction is used to load Neo4j contents into
VSD. Each transaction comprises all type specific information
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necessary for its execution. For example, a create transaction
contains the names and values of all Val-Properties, the class
name, and information on Ref/List-Properties like target ids,
reference names and autodelete values.

The last part of the synchronization component is the
Neo4jAPI, which interacts with Neo4j’s Java API.

1) VSD to Neo4j: VSD is an active database. One aspect
of this activity is that changes to its instances are notified
to registered components like the synchronization component
presented in this work. Notifications include all relevant in-
formation about the modification like the instance’s id or the
changed property. The synchronization component encapsu-
lates this information in an appropriate transaction. Using the
instance id, the mapper is able to identify the corresponding OS
and retrieve the mapping’s state. A change tracking mechanism
is used to filter redundant transactions as mentioned above
(more details are given in Section V-C).

When the user or some automatic mechanism (e.g., a
timer) triggers a resynchronization, all collected transactions
are executed modifying Neo4j’s contents accordingly.

2) Neo4j to VSD: When loading a Neo4j database’s con-
tents to VSD, the Neo4jAPI traverses the graph and generates
a load transaction for each visited node. All data is read
from Neo4j before entries are stored in the mapper. Load
transactions contain the respective node’s id, all its property
keys and values and the ids of adjacent nodes of outgoing
relationships and their respective properties (autodelete and
index for RefList-Properties). Subsequently, the synchroniza-
tion component executes all load transactions. For each, a new
VSD instance with appropriate properties is created and its id
is stored in an OS with the corresponding node’s id.

C. Change Tracking
As mentioned above, when collecting transactions, newly

created ones may cancel out older ones. A change tracking
mechanism performs the necessary filtering of such redundant
transactions.

Change tracking is based on the current state of the con-
sidered OS. Depending on the incoming transaction’s type, the
state changes and the list of collected transactions is updated.

Figure 7. State machine of the change tracking mechanism.

Change tracking is modeled as a state machine as depicted
in Figure 7. Here, the input (triggering state transitions) is
represented by the incoming transaction type and the output
(emitted during state transitions) describes the transaction
list’s modification. The initial state of any OS for a newly
created VSD instance is the MISSING state as there is no

corresponding Neo4j node. This intermediate state is left as
soon as the corresponding create transaction is generated and
the state changes to PENDING CREATE. If this VSD instance
is deleted before the transaction of type create has been
executed, both transactions (create and delete) are removed
and the whole OS is deleted. Else, upon a resynchronization
trigger, a corresponding Neo4j node is generated, the state
changes to SYNCED, and all executed transactions are removed
from the list. The SYNCED state means that a Neo4j node and
its VSD instance counterpart are in sync. It is reached every
time a resynchronization was performed and is left when the
VSD instance is modified (PENDING UPDATE) or deleted
(PENDING DELETE).

In PENDING UPDATE state, the changed property of an
additional update transaction is compared to existing update
transactions to avoid multiple updates of the same property. If
two transactions modify the same property only one of them
needs to be stored. This is represented by the intermediate
PENDING UPDATE UPDATE state.

VI. EVALUATION

Finally, the interface’s effectiveness and performance have
been evaluated using two simulation models of an industrial
robot and a satellite shown in Figure 8. Given the current
functional range of the presented prototype, further tests do
not appear to provide more insights. Initially, both models are
stored in a Neo4j database and, subsequently, loaded back into
an (empty) VSD. The robot model yields 170 Neo4j nodes and
209 relationships. The more complex satellite about 20,000
nodes and 25,000 relationships. The highly connected nature
of the 3D simulation data is apparent making a GDB ideally
suited for its storage.

Figure 8. Robot and satellite (data: [16]) simulation model.

Figures 9 and 1 give an impression of the interface’s
effectiveness. Figure 9 shows an excerpt of the robot model
data within Neo4j. Figure 1 shows the same data loaded into
the VSD in-memory simulation database. The data mapping
operates generically, i.e., independent from the actual data,
making the whole synchronization component very flexible.
The interface can synchronize arbitrary VSD contents to a
Neo4j database.

In Section V, we present the interface’s functionality to
selectively resynchronize changes to VSD instances. This
feature has been tested by changing some VSD instance’s
properties (e.g., name or postion of a component). In the Neo4j
browser, we verified that these modifications were transferred
correctly. Inversely, changes to node properties from the Neo4j
browser show up in VEROSIM when the model is reloaded.
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Figure 9. 3D simulation model data (excerpt) of an industrial robot stored
within Neo4j.

TABLE I. LOADING AND SAVING TIMES OF THE PROTOTYPE.

Neo4j File
Robot Satellite Robot Satellite

Loading 0.14 3.99 0.1 2.8
Saving 2.63 10.53 1.8 9.9

This also shows the advantage of selectively modifying data
within a database in contrast to a file-based approach.

Another important aspect of the evaluation is the interface’s
performance. Here, the initial storage of a simulation model
into Neo4j and the loading of a whole simulation model from
Neo4j were examined and compared to saving and loading
models to and from the native VEROSIM file format. Results
are given in Table I. The access operations to the GDB are
only somewhat slower than the native file operations. For
a prototypical implementation from a student project, these
results are very promising. First of all, compared to the highly
optimized code for reading and writing the native file format,
the current prototype is only optimized to a certain degree.
Furthermore, the more high-level database access operations
will always remain a little more complex than simple, sequen-
tial file reading or writing. Yet, the additional benefit from a
full-fledged database (providing security, multi-user support,
etc.) more than compensates for this small drawback.

Altogether, this shows that a GDB like Neo4j is well suited
for highly connected 3D simulation model data and can be
handled fast.

VII. CONCLUSION AND FUTURE WORK

Our approach to connect the GDB Neo4j with VEROSIM’s
simulation database VSD is motivated by the hierarchical
structure of 3D simulation models that matches well with
a graph structure. The presented interface encapsulates all

VSD modification in independent transactions. A mapper
maps individual VSD instances to single VSD nodes so that
modifications can be processed individually and there is no
need to save the complete VSD contents to Neo4j every time
a single VSD instance changes. The stored data (as shown in
Figure 9) indicates the highly linked structure of the simulation
data so that GDBs are an ideal storage back end.

As future work, further performance optimizations and
evaluations beyond the results from the student project could
be performed. For instance, better traversal algorithms might
improve loading speed. Another idea is to use Neo4j’s batch
inserter in contrast to the transactional structure to reduce
resynchronization time. Furthermore, Neo4j might be used as
a central database in a distributed simulation scenario with
several VEROSIMs and VSDs. Here, an equivalent notification
mechanism is needed for Neo4j to be able to track modifica-
tions in the central database.
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