
Solving a Combinatorics Challenge by Exploiting Computational Techniques
Available on Relational Databases

Wei Hu

Software Engineering, Fairfield University
Fairfield, Connecticut USA

e-mail: wei.hu@student.fairfield.edu

Mirco Speretta
Gateway Community College
New Haven, Connecticut USA

e-mail: msperetta@gwcc.commnet.edu

Abstract—Experimental studies are based on data that,
sometimes, needs to be manually created. Moreover, the data is
handled in relational databases to exploit their capabilities of
manipulating (i.e., sorting, combining, and inserting) data. In
this study, we show how this approach was successful in
solving a combinatorics challenge to create a data set used in a
separate research study that involves all the possible card
combinations of the SET game®. The data required for the
study was very extensive. The exact number was unknown, as
this is an open combinatorics question, but the estimate was in
the order of hundreds of millions. We solved this challenge by
using a relational database (i.e., MySQL) as a computational
tool to generate the data set. Advanced SQL scripts, based on
cross joins, were applied to generate all the data. Table
partitioning was also applied to improve the database
performance of tables whose number of records exceeded the
size capability of the database table. The data set created from
this project was then used to support a Web based user
interface that collects data to be used in a separate research
study based on the SET® game.

Keywords-MySQL; partitioning; computation; cross join.

I. INTRODUCTION

SET game® [1] is a popular card game created by
Marsha Jean Falco in 1974. She is also the founder of Set
Enterprises, Inc., the company that published the game in
1981. In this game, 12 cards (i.e., a hand), randomly selected
from a deck of 81 cards, are placed in front of the players.
The winner of a hand is the first player that identifies a group
of three cards that makes a SET. There are four types of SETs
that a player can identify.

Two professors from the department of mathematics, at
Fairfield University, were responsible for a Math club in a
middle school of the town. They incorporated the SET game
into the sessions with the students. Noticing the selection of
specific SETs by the students, the professors wanted to
investigate further this behavior with a research study whose
main goal was to explore whether the personal information
of the player, such as gender, age, or academic interests, can
influence the types of SET identified. The study is based on a
statistical analysis of data collected from anonymous users
that are playing the game using a Web based interface. To
avoid any statistical bias in the study, each hand must
include one (and only one) instance of each of the four types
of SET. To give a rough estimate of the amount of data to be
processed, first we needed to look at the total of possible
combinations: given 81 cards (i.e., the deck) there are 7.07

× 10�� possible ways to choose a hand (i.e., 12 cards). Out
of this number of combinations, we had to identify and
remove all the hands that did not satisfy the requirement of
the statistical design. This requirement presented the
following two main challenges. The first challenge is the
combinatorics challenge, which can be described as follows:
it is not known how to count the total number of
combinations of hands that comply with the requirements
mentioned above. This is still an open question in the
mathematical community. The second challenge is the
technical challenge to guarantee efficiency, which can be
described as follows: the number of combinations is too high
and it would take too much time to select the cards that form
a hand in real time; lots of time would be wasted generating
combinations that do not comply with the requirement.
Because of the two challenges explained above, the users of
the Web interface would not be able to play the game
properly.

The solution to both challenges was to pre-generate four
types of SET to compose all the possible hand combinations
and store them into a database table. This approach would
allow to show a randomly picked hand of cards in real time.

In this paper, we describe the process of generating and
storing the data set using the MySQL® [2] relational
database. More specifically, in Section II, we list the
software used in the study. In Section III, we provide the
context to this study by describing specific features of the
SET game. Section IV outlines the details of the
methodology, along with the information about the final data
generated. We conclude our work in Section V.

II. BACKGROUND

MySQL [2] is a popular database that supports SQL
along with transactions. The idea to use a relational database
to manipulate data in our study comes from various research
ideas, especially in the context of testing data [7].

We implemented our database on a MySQL 5.7.22
server, to store pre-generated hand data set. The server we
used was equipped with 16 CPU (2.4 GHz) and 64 GB of
RAM, running Linux Ubuntu (version 18.04.4 LTS). In our
study, the largest amount of computational effort is needed to
fulfill the following tasks: 1) joining tables to get the
maximum number of possible card combinations; 2)
validating that no more than one occurrence of a card
appears in one hand; 3) validating that each hand card
combination included only one instance of the four types of
SET. Cross joins, comparisons between data tuples and row

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

by row computations are all very time and resource
consuming due to the big size of data. In this study, we show
that all these tasks can be carried out using a relational
database in a simple and efficient way.

III. THE SET GAME

The SET game is a popular card game that has been
widely disseminated by online media such as the New York
Times. It has been used in mathematics learning by several
educational institutions at different school levels [3]-[6].

A. Cards of the SET game

The game SET has a rich mathematical structure based
on combinatorics principles. An example of cards is shown
in Figure 1.

Cards have four attributes: number, shading, color, and
shape. Each attribute has three features. The complete list is
given in Table I.

TABLE I. SET CARD ATTRIBUTES AND THEIR VARIATIONS.

Attribute Feature
Number {One, Two, Three}
Shading {Solid, Striped, Open}
Color {Red, Green, Purple}
Shape {Oval, Squiggle, Diamond}

The deck of the SET game has eighty-one cards, one for
each possible combination of attributes.

B. Rules of the SET game

Three cards are called a SET if, with respect to each of
the four attributes, the cards are either all the same or all
different. The goal of the game is to find collections of three
cards satisfying this rule. For example, the three cards in
Figure 2 compose a SET because all cards have different
shapes, different colors, and different shading, and each card
has the same number of shapes (three).

C. Four types of SETs

Case 1: One attribute has different features; three
attributes have the same features

a) different: shape; same: shade, color, number
b) different: shade; same: shape, color, number
c) different: color; same: shape, shade, number
d) different: number; same: shape, shade, color

Case 2: Two attributes have different features; two
attributes have the same features

a) different: shape, shade; same: color, number
b) different: shape, color; same: shade, number
c) different: shape, number; same: shade, color
d) different: shade, color; same: shape, number
e) different: shade, number; same: shape, color
f) different: color, number; same: shape, shade

Case 3: Three attributes have different features; one
attribute has the same feature

a) different: shape, shade, color; same: number
b) different: shape, shade, number; same: color
c) different: shape, color, number; same: shade
e) different: shade, color, number; same: shape

Case 4: All four attributes have different features

a) different: shape, shade, color, number

Figure 3. Typical hand of the SET game.

D. Hands of the SET game

To play the game, twelve cards, called a hand as shown
in Figure 3, are dealt face up in front of players. Players
search for SETs. After all SETs in the hand are found, the
hand is refreshed and another twelve random cards are dealt
out of the deck.

IV. METHODOLOGY

As the question on how to count the number of hand
combinations containing exactly four SETs, one for each
type, remains open, we could not know the exact number of
records we were supposed to generate. The only solution to
this problem was to work on an efficient algorithm to
generate all the possible combinations.

Our goal is to find all possible hand card combinations
that satisfy the requirements of the experimental study: every
hand includes exactly four SETs, one for each type. In a
typical play, 12 cards are dealt randomly out of the 81 cards
deck. The total number of hand combinations to consider is
about 7.07 × 10��. This number of combinations is too big
to be handled practically. For this reason, we had to apply
some heuristic to reduce it to a number that was
computationally feasible. If we start from the four types of
SETs and we consider them as the basic components that
form a hand, the biggest number of hand combinations to

Figure 1. Typical cards of the SET game.

Figure 2. Typical SET.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

screen is no more than number of Type 1 SET × number of
Type 2 SET × number of Type 3 SET × number of Type 4
SET = 432 × 324 × 108 × 216 = 3,265,173,504 =
3.265×109. The number of each type of SET is shown in
Table III. All sets for each type can be stored in a table and
all four tables can be merged using cross joins. In this way,
the four types of SETs are automatically combined to form
all the possible hands. From this number, we need to remove
the combinations that do not satisfy the requirements:

1. each card occurrence is unique in one specific hand.
2. no extra new SETs are formed other than the four

built-in SETs.
We used the database server MySQL (version 5.7.22) to

store and manipulate all the card combinations. The data
flow from the generation of four types of SETs through the
generation of the final hand combinations is illustrated in the
following three steps.

Step 1: We implemented a Java program to generate the
four basic tables storing the four types of SET (Figure 4).

Figure 4. Java program generating the four basic tables.

Step 2: We implemented an SQL script to combine the

four attributes of each card into a 4-digit number. This step

also includes the generation of a new group of the four basic

tables storing all the 4-digit numbers (Figure 5).

Figure 5. SQL script combining basic tables.

Step 3: We implemented an SQL script to cross join the

four types of SETs. Then, we removed the records where any

card occurred more than once, along with the records where

the new SETs are formed (Figure 6).

Figure 6. SQL script generating more SET hands and removing
duplications.

In the remaining part of this section, we will provide more
details about the work involved in carrying out the above
steps.

A. Card Value Definition

We numbered all the cards using the following
representation. A four-digit number is assigned to each card
based on its specific attributes. From left to right, each digit
refers to one attribute. Each digit can be either 0, 1, or 2.
Each value represents one variable of an attribute (shown in
Table II.) Using this representation, each card can assume a
value in the range [0000] - [2222].

TABLE II. CARD DEFINITION.

Attribute
Variable

Number Shading Color Shape

Position (from left to right)

0 One Open Red Diamond

1 Two Striped Green Oval

2 Three Solid Purple Squiggle

One example is shown in Figure 7.

Figure 7. Visual representation of the card [2101].

This card value is [2101]: three, striped, red, and ovals.
Another example is shown in Figure 8.

Figure 8. Visual representation of the card [0010].

This card value is [0010]: one, open, green, and diamond.

B. SET Type Definition

We define four types of SET as Type 1, Type 2, Type 3
and Type 4. The details of the definition are described below.

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

1) Type 1 SET: Only one attribute is the same, the other
three attributes are different. The number of this type of SET
is 432.

2) Type 2 SET: Two attributes are the same and the
remaining two attributes are different. The number of this
type of SET is 324.

3) Type 3 SET: Three attributes are the same, only one
attribute is different. The number of this type of SET is 108.

4) Type 4 SET: All attributes are different. The number
of this type of SET is 216.

C. Four Basic Tables Creation

We created four basic tables, one table for each type of
SET. Potential card combinations of hands are created using
these four basic tables (Table III).

TABLE III. FOUR BASIC TABLES DEFINITION.

Every SET has three cards, namely Card1, Card2 and
Card3. Each card has four attributes namely A1, A2, A3 and
A4. We run a Java program to generate data for the four
basic tables type1, type2, type3 and type4. We create one
attribute of each card at one time. The structure of table is
shown in Figure 9 (cNaM – card N attribute M, N = 1, 2, 3
M = 1, 2, 3, 4).

Figure 9. Basic SET table (type1-type4).

We then create and run an SQL script to validate the
correctness of the data stored in these four tables.

In order to facilitate the calculation and improve the
efficiency of the database, we combined the four attributes of
each card into a one 4-digit number. The output of this
process was to create the four new tables type1_concat,
type2_concat, type3_concat, and tyep4_concat. They store
the four types of SETs represented by the four-digit attribute
value of cards. See a sample of these data in Figure 10.

Every SET is composed by three 4-digit numbers, each 4-
digit number representing one card. For example:
[0000,0111,0222] is a type 1 SET. The value of the first card
is [0000] and refers to “one open red diamond".

Eight tables were created after validating and
concatenating the data. For the remainder of the process,
only the four tables with concatenated attributes were used.

Figure 10. Basic SET table with concatenated attributes (type1_concat-
type4_concat).

D. Cross join of the Four basic Tables and Deduplication

In order to work with the smallest possible amount of
data, at any given time, we started the merging process using
the two tables with the fewest number of records. They are
represented by the tables type3_concat and type4_concat.
Their joined table was then cross joined with type2_concat.
As the last step, we cross joined this newly created table with
the biggest table, type1_concat.

Due to the exponential increase of data size, after each
cross join, we used SQL queries to validate records and filter
out those records where the same cards were used more than
once. In this study, this deduplicate validation is different
from the typical deduplicate operation, which is responsible
to remove redundant records from the table. We then
performed another cross-join, the goal of which was to
minimize the number of records of each cross join as much
as possible. Table IV describes the number of records, the
table size and the time spent to create each specific table.
The tables whose names end by ‘_unique’ refer to the tables
created after the deduplication operation. In table IV we can
notice the reduction in terms of both number of records and
table size. The last table, ‘crossjoin_1234_concat_valid’,
stored the valid hand combinations that were used in the
research study.

TABLE IV. CROSS JOIN TABLES.

E. Hand Combination Validation

Once the four tables type1_concat, type2_concat,
type3_concat, and type4_concat were cross joined into one
table, the number of records grew fast. Although, upon the
completion of each cross join, we removed the records where
the instance of specific cards appeared more than once, still,
a large amount of calculation had to be carried out to validate
the SETs that were added. This was necessary because each
group of three cards, one from each type of SET, could have
made up a new SET. We used SQL queries again to validate
which hand combinations contain exactly four SETs, one for

Table No. Table Name SET Type Number of SETs
1 type1 Type 1 432
2 type2 Type 2 324
3 type3 Type 3 108
4 type4 Type 4 216

Table name Number of
records

Table
size
(MB)

Time
elapsed

crossjoin_34_concat 23328 2 NS
crossjoin_34_concat_unique 20736 2 NS
crossjoin_234_concat 6718464 277 NS
crossjoin_234_concat_unique 5351040 216 NS
crossjoin_1234_concat 2311649280 118410 7h, 5m
crossjoin_1234_concat_valid 269635392 13121 27h,

40m

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

each type excluding the new SETs added after the cross join
operations. To improve the performance of the database and
accelerate the speed of the calculation, we used the
partitioning technique, built-in in MySQL, to organize each
cross joined table into (~20) partitions.

TABLE V. POTENTIAL NEWLY FORMED SET COMBINATIONS.

Group Potential SETs
Type 3

+
Type 4

+
Type 2

card1+card4+card7 card1+card4+card8 card1+card4+card9
card1+card5+card7 card1+card5+card8 card1+card5+card9
card1+card6+card7 card1+card6+card8 card1+card6+card9
card2+card4+card7 card2+card4+card8 card2+card4+card9
card2+card5+card7 card2+card5+card8 card2+card5+card9
card2+card6+card7 card2+card6+card8 card2+card6+card9
card3+card4+card7 card3+card4+card8 card3+card4+card9
card3+card5+card7 card3+card5+card8 card3+card5+card9
card3+card6+card7 card3+card6+card8 card3+card6+card9

Type 3
+

Type 4
+

Type 1

card1+card4+card10 card1+card4+card11 card1+card4+card12
card1+card5+card10 card1+card5+card11 card1+card5+card12
card1+card6+card10 card1+card6+card11 card1+card6+card12
card2+card4+card10 card2+card4+card11 card2+card4+card12
card2+card5+card10 card2+card5+card11 card2+card5+card12
card2+card6+card10 card2+card6+card11 card2+card6+card12
card3+card4+card10 card3+card4+card11 card3+card4+card12
card3+card5+card10 card3+card5+card11 card3+card5+card12
card3+card6+card10 card3+card6+card11 card3+card6+card12

Type 3
+

Type 2
+

Type 1

card1+card7+card10 card1+card7+card11 card1+card7+card12

card1+card8+card10 card1+card8+card11 card1+card8+card12

card1+card9+card10 card1+card9+card11 card1+card9+card12

card2+card7+card10 card2+card7+card11 card2+card7+card12

card2+card8+card10 card2+card8+card11 card2+card8+card12

card2+card9+card10 card2+card9+card11 card2+card9+card12

card3+card7+card10 card3+card7+card11 card3+card7+card12

card3+card8+card10 card3+card8+card11 card3+card8+card12

card3+card9+card10 card3+card9+card11 card3+card9+card12

Type 4
+

Type 2
+

Type 1

card4+card7+card10 card4+card7+card11 card4+card7+card12
card4+card8+card10 card4+card8+card11 card4+card8+card12

card4+card9+card10 card4+card9+card11 card4+card9+card12

card5+card7+card10 card5+card7+card11 card5+card7+card12

card5+card8+card10 card5+card8+card11 card5+card8+card12

card5+card9+card10 card5+card9+card11 card5+card9+card12

card6+card7+card10 card6+card7+card11 card6+card7+card12

card6+card8+card10 card6+card8+card11 card6+card8+card12

card6+card9+card10 card6+card9+card11 card6+card9+card12

We represented a hand, including the four types of SETs,
with the labels card1, card2, card3 through card12. In these
12 cards, there are 4 groups (i.e., 27 3-card combinations per
group) that could make up new SETs (Table V). We need to
check all the possible 3-card combinations (27 × 4 = 108) to
filter out those hands that include extra SETs (i.e., more
combinations than the four built-in SETs that are required.)

TABLE VI. ATTRIBUTE CHECK OF 3-CARD COMBINATION.

Each card has four attributes, for example [0000]. To
validate a 3-card combination, we need to check each of their
attributes. Only when three cards are either all-the-same or
all-different with respect to their four attributes, they form a
SET. If any attribute of 3 cards is neither all-the-same nor all-
different, the 3-card combination is not a SET. Let us
consider the color attribute of three cards to explain how to
check each attribute. TABLE VI illustrates this process.

We summed up the value of the color attributes of three
cards, then we divided the sum by three and we looked at the
remainders. When the attributes are either all different or all
the same, then the remainders are zero. Otherwise, the
remainder is either one or two.

Figure 11. Typical hand records before validation

Let us consider two hand records, shown in Figure 11 as
an example to illustrate how to check four attributes of 3-
card combinations. From the two hand records shown in
Figure 11, we took a 3-card combination namely card1,
card4 and card7 of each hand (shown in Table VII.). For
each hand, we summed up the corresponding four attributes
of three cards to get four sums, then divided the four sums by
three. Only when the four remainders are all zeros, the 3-card
combination forms a SET. Otherwise, they are not a SET.
Table VII shows the details of the validation, where A1
refers to attribute 1 of the card, and so on.

TABLE VII. 3-CARD COMBINATION VALIDATION

Next, we converted this algorithm into an SQL script that
can be run on the database to validate every hand by
checking each 3-card combination that could form a SET. As
an example, let us consider the validation of the 3-card
combination of card 1, card4 and card7. We used the
condition sentence of Not (((card1+card4+card7) div 1000)
mod 3) + (((card1+card4+card7) div 100) mod 10 mod 3)
+(((card1+card4+card7) div 10) mod 10 mod 3) +
((card1+card4+card7) mod 10 mod 3) = 0 to validate that
the 3-card combination is not a SET; and added the condition
in a WHERE clause of a SELECT statement to retrieve the
records that do not include new SETs.

After validation, those hand combinations having extra
SETs other than the four built-in ones were all filtered out.
Finally, we achieved 269,635,392 hand combinations that
were meeting our requirements and stored them into a table.

Color
attribute of 3
cards

All different All the
same

Neither
(Non-SET)

Attribute
value of 3
cards

0+1+2 All 0, 1 or 2 0+0+1,
0+0+2,
1+1+2,
1+1+0,
2+2+0,
2+2+1

Sum of
attribute value

3 0, 3 or 6 1, 2, 4 or 5

Remainder
(Sum%3)

0 0 1 or 2

Hand
(id=1)

A
1

A
2

A
3

A
4

Hand
(id=2)

A
1

A
2

A
3

A
4

Card 1 0 0 0 1 Card 1 0 0 0 1
Card 4 0 2 2 2 Card 4 0 0 0 0
Card 7 0 1 1 0 Card 7 0 1 0 0
Sum 0 3 3 3 Sum 0 1 0 1
Remainder
(Sum%3)

0 0 0 0
Remainder
(Sum%3)

0 1 0 1

SET Non-SET

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

V. CONCLUSIONS

Experimental studies, which are based on the users’
feedback, face various challenges. The main goal of this
study was about answering the question whether the
identification of SETs in the card game SET is to be linked to
personal traits. In this paper, we tackled the specific problem
of generating the data used to support a user facing Web
application that was required in the process of collecting the
experimental data.

The amount of data to be generated was very
considerable and presented a challenge since it was not
possible to count mathematically the number of card
combinations (i.e., hands) to consider. By implementing our
computational design into a relational database server, we
were able to generate all the card combinations required in
the Web based user interface.

Our process solved the following two main problems.
The first one was about defining the appropriate
representation of the cards in the SET game. This task
required to consider minimal memory usage and quick
validation of SET card combinations. The second challenge
was about using a database server that could handle the
required amount of data and could easily generate SET cards
combinations by applying advanced SQL scripts.

Not only our methodology was successful in generating
the required data, but also provided a computational answer
to the mathematical challenge of providing the counts of
hands combinations. We believe that this approach can be
used in many other scenarios in which the creation of data
generation is required. Experimental studies based on users’
feedback should particularly benefit from this approach.

ACKNOWLEDGMENT

We would like to thank Dr. Janet Striuli and Dr. Laura
McSweeney for sharing their research idea and providing
support throughout the project. We would also like to
express our gratitude to the faculty and students of Fairfield

University and Gateway Community College for their
commitment to our data collection. A special mention to the
Physics department of Fairfield University to let us use their
server where we were able to run our code. Thanks also to
Set Enterprises, Inc. for allowing us to implement our study
based on their SET game. Finally, we would like to thank
Dr. Rankin and the Graduate Student Research Committee
for providing financial support to our study.

REFERENCES

[1] PlayMonster. LLC, "SET - PlayMonster," [Online].
Available: https://www.playmonster.com/product/set/.
[Accessed 07 2020].

[2] Oracle Corporation, "MySQL," [Online]. Available:
https://www.mysql.com/. [Accessed 07 2020].

[3] B. L. Davis and D Maclagan, "The Card SET game," The
Mathematical Intelligencer, vol. 25, no. 3, pp. 33-40, 2003.

[4] J. Vinci, "The maximun number of SETs for N cards and the
total number of interal SETs for all partitions of the deck,"
June 2009. [Online]. Available:
https://www.setgame.com/sites/default/files/teacherscorner/S
ETPROOF.pdf. [Accessed 07 2020].

[5] P. J. Fogle, "SET® AND MATRIX ALGEBRA," 15 03 2019.
[Online]. Available: https://www.setgame.com/set-and-
matrix-algebra. [Accessed 07 2020].

[6] N. Taatgen, M. van Oploo, J. Braaksma, and J.
Niemantsverdriet, "How to construct a believable opponent
using cognitive modeling in the game of Set," in The fifth
international conference on cognitive modeling, pp. 201-206,
Bamberg, 2003.

[7] C. De La Riva, M. J. Suárez-Cabal, J. Tuya, "Constraint-
based test database generation for SQL queries," in
Proceedings of the 5th Workshop on Automation of Software
Test (i.e., AST) pp. 67–74, 2010.

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

