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Abstract—Graph-based models have become pivotal in under-
standing and predicting navigational patterns within complex
networks. Building on graph-based models, the paper advances
path extrapolation methods to efficiently predict Wikipedia
navigation paths. The Wikipedia Central Macedonia (WCM)
dataset is sourced from Wikipedia, with a spotlight on the
Central Macedonia region, Greece, to initiate path generation.
To build WCM, a crawling process is used that simulates human
navigation through Wikipedia. Experimentation shows that an
extension of the graph neural network GRETEL, which resorts
to dual hypergraph transformation, performs better on a dense
graph of WCM than on a sparse graph of WCM. Moreover,
combining hypergraph features with features extracted from
graph edges has proven to enhance the model’s effectiveness.
A superior model’s performance is reported on the WCM dense
graph than on the larger WIKISPEEDIA dataset, suggesting that
size may not be as influential in predictive accuracy as the
quality of connections and feature extraction. The paper fits the
track Knowledge Discovery and Machine Learning of the 16th
International Conference on Advances in Databases, Knowledge,
and Data Applications.

Keywords—Wikipedia Dataset; Path Extrapolation; GRETEL;
Dual Hypergraph Transformation; Graph Neural Networks.

I. INTRODUCTION

Graph structures offer an intuitive and powerful means to
capture relationships and interactions within various kinds of
data, paving the way for advanced analysis through the prism
of Graph Neural Networks (GNNs) [1]–[5]. From node classi-
fication [6]–[8] to link prediction [9] [10], GNNs have proven
indispensable across a spectrum of applications. Among these,
the task of link prediction focuses on path inference, namely
to predict an agent’s trajectory over a graph.

The efficacy of such models is inherently tied to the quality
and structure of the underlying graph. In this context, our work
pivots on the creation of the Wikipedia Central Macedonia
(WCM) dataset, a new dataset comprising paths extracted from
the huge graph of Wikipedia, with a specific emphasis on
articles related to Central Macedonia, Greece. The dataset tries
to simulate human navigation paths as in WIKISPEEDIA [11]
game, where users are asked to navigate from a given source
to a given target article by only clicking Wikipedia links. Our
objective is to leverage this dataset to address the problem of
path inference.

WCM dataset is specifically designed to navigate through
the complexities of Wikipedia’s topology. It takes “Central
Macedonia” as the starting article, from which it explores

the external links through a series of random walks. Each
step is contingent on a set of well-defined validity criteria.
This ensures that each selected link is pertinent and non-
redundant, providing a true reflection of the path an agent
might traverse within the bounds of this thematic cluster.
The dataset constructed for this study is made publicly
available [12]. It comprises two separate files within the
Wikipedia_Dataset directory, representing the Dense
Graph and the Sparse Graph structures, each containing
details of the paths, unique articles, path identifiers, categories,
edges, hyperedges, observations, and path lengths. The code
to create the WCM dataset can be found at [13].

The interest in the path inference problem has led to the
development of advanced models like GRETEL [14], which
has demonstrated promise in leveraging path extrapolation
on graphs. GRETEL works as a generative model trying to
capture the directionality of the path. It has been applied to
both navigation data and paths constructed on the Wikipedia
graph. This paper applies a graph transformation method based
on the Dual Hypergraph Transformation (DHT) [15]. This
method, as demonstrated in [16] [17], extends the traditional
graph framework enabling connections among multiple nodes
(i.e., vertices) within a hypergraph. Hypergraphs are suitable
for this purpose because their edges can connect any number
of nodes, not just two, as in a conventional graph. The new
representation is able to capture more complex interactions
between the data, and new more representative features can
be extracted [18].

Here, in pursuit of advancing path extrapolation methods,
WCM dense and sparse graphs are employed to assess both the
original GRETEL and the Dual GRETEL variant in environ-
ments of varying complexity, providing a thorough insight into
its adaptability and accuracy in different graph densities. To
capture a comprehensive range of interactions within the data,
a feature extraction process is implemented as proposed in [14]
[16] [17]. [16] introduces an enhanced model, DualGRETEL+,
that applies dual hypergraph transformation and a second-
order optimizer to GPS navigation data, showing improved
path inference capabilities. [17] assesses path extrapolation
using GRETEL on Wikipedia data, with a focus on extracting
informative features through the DHT.

The paper is structured as follows: Section II provides a
detailed description of the dataset creation and its characteris-
tics, along with an overview of the features employed and the
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GRETEL model. A detailed exposition of the experiments and
results is found in Section III. The paper concludes in Section
IV, underscoring the profound impact of graph density on the
path extrapolation with graph neural networks.

II. METHODOLOGY

This section focuses on the methodical approach to cre-
ating and analyzing the WCM, outlining the comprehensive
process of collecting, categorizing, and extracting features
from Wikipedia data to construct various graph types for path
extrapolation.

A. Dataset Creation

The dataset is created through a crawling process designed
to traverse the vast interconnected landscape of Wikipedia,
with Wikipedia Central Macedonia article [19] serving as
the focal starting point. During data collection, we remained
cognizant of the load implications on Wikipedia’s servers.
We inserted a pause of one second between two requests,
safeguarding against potential server overload while accessing
Wikipedia’s data. This was a measure of digital courtesy and
sustainability.

The path generation process begins with the Central Mace-
donia Wikipedia article. From this starting point, the crawler
extracts all the external links associated with the current arti-
cle. A subsequent article is then randomly selected from the set
of external links, adhering to certain validity checks, ensuring
the relevance of the link and its absence from the current
path. To maintain the integrity of the dataset and concentrate
solely on core articles, stringent validation criteria are instated.
The process of path creation continues until the generated
path either attains a predetermined length ranging from 4 to
7 articles or encounters an article devoid of valid external
links. The algorithm employs a well-defined criterion to ensure
the relevance and validity of each article within the path.
The function is_valid_title is utilized to exclude titles
containing terms like Talk, User, File, ‘ISO’, percentages,
hashes, or colons, and those consisting solely of digits. This
careful filtering is instrumental in maintaining a dataset fo-
cused on content-rich articles, avoiding disambiguation pages,
meta-articles, or other forms of non-standard content that could
detract from the dataset’s integrity.

To ensure the intelligibility of the dataset, each Wikipedia
article is associated with a distinct identifier. Leveraging tensor
manipulation, the identifiers for the linked articles are distilled
and organized within distinct tensor frameworks. These ten-
sors serve as the foundation for the node indices within the
constructed graph. To further aid our analysis, each trajectory’s
length is documented, and each article in the trajectory is
associated with its unique identifier. This process is reiterated
until a grand total of 3000 paths emerges. The graph G
is created comprising m nodes and n edges, where nodes
represent articles and edges denote links between articles.
The extracted paths are referred to as trajectories. We have
documented these trajectories, noting their lengths and the

articles they connect. The graph is represented using the Graph
Markup Language.

Two distinct graph types have been created, each following
a unique path selection process:

Dense Graph: This is formed by a modified path selection
protocol within the crawler. Here, the crawler opts for a
random choice from the first five external links of an article.
We choose the first five external links for path selection to
intentionally narrow down the possible trajectories, aiming
for a denser graph structure that facilitates a more focused
analysis of interconnected topics. This results in a connected
network among a smaller subset of 912 nodes, 1311 edges,
and 3000 paths. The same process of path generation,
involving the extraction of links, applying validity checks,
and documenting each trajectory with unique identifiers, is
followed as in the general dataset creation.
Sparse Graph: This graph follows the initial broader se-
lection process, incorporating a more extensive set of 7307
nodes, 10612 edges, and 3000 paths. The selection is made
from all the external links.

B. Article Categorization

Categorization provides a structured framework to analyze
the dataset. Organizing articles into distinct categories enables
researchers to identify content trends and patterns within
the generated paths. This categorization not only enriches
the dataset but also amplifies its potential utility for diverse
research, analytical, and educational purposes.

Our categorization strategy focuses on dynamic online
querying using DBpedia [20]. In order to determine the cate-
gory of a given Wikipedia article, we rely on the SPARQL end-
point of DBpedia. Each article is queried to retrieve its seman-
tic type from DBpedia’s ontology. Whenever an explicit type is
not obtained or if there are errors during the querying process,
the articles are classified under subject.General.

C. Feature Extraction

In addition to graph generation, a feature extraction process
is conducted to leverage semantic information from the content
of the articles and to capture complex interactions in the graph
structure. According to [14], the feature vector for the nodes
corresponds to its in/out degree, and its length is 2.
For edges, the feature vector contains the Text Frequency -
Inverse Document Frequency (TF-IDF score), capturing
the semantic similarity between source and destination articles
of a hyperlink [21], and the number of times the link was
clicked in the training dataset of paths (nof).

1) Dual Hypergraph Transformation
The framework commences with the configuration of a

conventional graph, designated as G having n nodes and
m edges. Node features are represented by a feature matrix
FFF ∈ Rn×d, and edge features by a feature matrix EEE ∈ Rm×d′

.
Here, d and d′ are the size of node and edge feature vectors,
respectively. Considering an undirected graph, the incidence
matrix is defined as MMM ∈ {0, 1}n×m. In the case of a directed
graph, the incidence matrix is defined as MMM ∈ {−1, 0, 1}n×m.
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In any case, the incidence matrix represents the relationships
between nodes and edges in a graph, indicating which nodes
are connected by specific edges.

The conventional graph and the corresponding dual hy-
pergraph are represented as G = (FFF ,MMM,EEE) and G∗ =
(FFF ∗,MMM∗,EEE∗) respectively. FFF ∗ represents the node features
of hypergraph while EEE∗ represents the hyperedge features.
The DHT algorithm interchanges the roles of nodes and edges
of the original graph [15]. That is, the edges of the original
graph are reinterpreted as nodes in the dual hypergraph, while
the original nodes become hyperedges in the dual hypergraph.
Accordingly, FFF ∗ = EEE ∈ Rm×d′

and EEE∗ = FFF ∈ Rn×d. The
incidence matrix of the dual hypergraph is the transpose of
the incidence matrix of the original graph, i.e., MMM∗ = MMM⊤.
The transformation is mathematically defined as:

G = (FFF ,MMM,EEE) → G∗ = (EEE,MMM⊤,FFF ) (1)

Notably, the DHT is a reversible transformation, ensuring
that applying it to G∗ recaptures the initial graph G, thereby
preserving the structural and feature integrity of the transfor-
mation.

2) Features extracted from the dual hypergraph
Following the methodology proposed in [16], the origi-

nal graph is transformed into its corresponding dual graph
by applying the DHT algorithm in order to capture more
complex interactions among edges. Two new features are
extracted, namely the similarity-hyperedge and the
DHnode-in-out-degree. The first feature assumes an
undirected graph, while the second one assumes a directed
graph. The implementation of dual hypergraph feature extrac-
tion, which significantly enhances the predictive accuracy of
our models, can be found in [22].

For the similarity-hyperedge feature, the first step
is to construct the incidence matrix MMM ∈ {0, 1}n×m. Row
vector qqql ∈ {0, 1}m of MMM , corresponds to node l. The cosine
similarity between the incidence row vectors qqqv and qqqu is
computed, where v is the source node and u is the target node
of an arbitrary edge e. The corresponding vector in the MMM∗

matrix is a column vector qqq∗l ∈ {0, 1}m ≡ qqq⊤l . The position
of each 1 in this column vector indicates which nodes of the
dual hypergraph are connected with the hyperedge l∗.

For the DHnode-in-out-degree, a directed graph G
is assumed. The corresponding incidence matrix is defined
as MMM ∈ {−1, 0, 1}n×m. To extract features associated with
the input and output degrees of the dual hypergraph nodes,
determining the direction of hypergraph edges becomes es-
sential. This involves an examination of the column vector of
MMM∗ qqq∗l ≡ qqq⊤l . The position of each 1 in this column vector
indicates which nodes of the dual hypergraph are connected
with the hyperedge l∗. For every combination (v∗i , v

∗
j ), we

verify the existence of a path ei → ej in the original graph
that passes through the scrutinized node l. The new feature is
the in-degree and out-degree of dual hypergraph nodes which
are normalized by the maximum observed degree Dmax in the

hypergraph to facilitate comparison across different nodes:

Normalized In/Out-Degree (v∗i ) =
In/Out-Degree (v∗

i )
Dmax

(2)

The aggregation of similarity-hyperedge
and DHnode-in-out-degree results in
Similarity-Hyperedge-DHnode-In-Out-Degree
feature. These enhanced features are particularly critical
in the sparse graph context, where the reduced number of
connections demands a more nuanced approach to capturing
node relationships. In the dense graph, with its inherently
richer connectivity, these features play a pivotal role in
distilling the essence of the network’s complexity into a
format conducive to advanced path prediction algorithms.

The feature extraction procedure is performed on the sparse
graph with 7,307 nodes and 10,611 edges and the dense graph
with 912 nodes and 1,311 edges.

D. Path Extrapolation Employing GRETEL

The paper addresses path extrapolation focusing on predic-
tive path analysis via the GRETEL model [14]. The graph G
consists of nodes and edges, represented as G = (V, E), with
n = |V| denoting the node count and m = |E| the edge count,
respectively. An agent progresses through the graph, stepping
from node vi to vj contingent on the presence of a directed
edge ei→j ∈ E .

The agent’s position at time t is a sequential set of traversed
nodes, symbolized as a given prefix p = (v1, v2, . . . , vt).
Let the path suffix s = (vt+1, . . . , vt+h) be a collection of
potential future for prediction horizon h. Within this setting,
GRETEL is leveraged to estimate the conditional likelihood
Pr(s | h, p,G) of path suffix s given the prefix p, the horizon
h, and the graph G. The agent’s position at each step t is
encoded by a sparse vector xt ∈ Rn

≥0 normalized to a unit
sum, with its i-th element reflecting the likelihood of the agent
being at node vi.

GRETEL constructs a generative model that considers the
directionality of edges via a latent graph with edge weights
informed by a Multi-Layer Perception (MLP) that respects
the graph’s inherent directionality. The model’s essence lies
in its ability to forecast paths by learning from the traversed
sequences, leveraging node features and the collective path
history. More specifically, the non-normalized weights of each
edge are computed by

zi→j = MLP(ccci, cccj , fff i, fff j , fff i→j), (3)

where ccci and cccj are the pseudo-coordinates of the sender and
the receiver node, respectively, while fff i and fff j denote the
features of the sender and the receiver node, respectively. In
(3), fff i→j is the feature vector of the edge that connects the
sender and the receiver node. The computed MLP outputs are
normalized with the softmax function. The pseudo-coordinates
ccci are computed using a GNN of K layers. They are the agent
representations xxxτ for τ ∈ I, where I denotes a trajectory.
The non-zero elements of xxxτ refer to the distance between the
agent and the K closest graph nodes normalized to measure
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one. Let e⃗t and e⃗t define the edges that go from vt → vt+1

and vt → vt−1, respectively. Let also xxxt be the last position
of the agent. GRETEL [14] can be trained through the target
likelihood. That is, given a target distribution xxxt+h, the model
tries to estimate the destination distribution x̂xxt+h ∈ Rn×1 over
a horizon h by the non-backtracking walk [23]

x̂xxt+h = BBB+
ϕPPP

h
ϕBBBϕxxxt. (4)

Let wϕ(ek→j) stand for the normalized MLP weights. In (4),
PPPϕ ∈ Rm×m has elements

[PPPϕ]ei→j ,ek→l
=

{
0 if j ̸= k or i = l
wϕ(ek→l)

1−wϕ(ek→i)
otherwise,

(5)

BBBϕ is a m × n matrix with [BBBϕ]ei→j ,k = 0 if k ̸= i and
wϕ(ek→j), otherwise, and B+

ϕ stands for the pseudoinverse
of Bϕ. Such an approach integrates node and edge feature
vectors, the former delineating the in/out-degree and the latter
embedding the textual and usage-based similarity metrics.
These primal features are pivotal in the model’s capacity to
estimate the suffix likelihood, aiding in approximating the path
probability Pr(s | h, φ,G). In the paper, we will aggregate the
original edge features fff i→j with the features extracted from
the dual hypergraph.

III. EXPERIMENTS AND RESULTS

To quantify the structure of each graph, we calculate the
density, which provides a measure of how complete the graph
is. The density is defined as the ratio of the number of edges
m to the number of possible edges, with the formula given
for a directed graph without loops as

D =
m

n(n− 1)
, (6)

where n is the number of nodes.

TABLE I. DATASET CHARACTERISTICS

Datasets Nodes Edges Density
Sparse Graph 7307 10612 2× 10−4

Dense Graph 912 1311 1.58× 10−3

Wikispeedia 4604 119882 5.66× 10−3

Table I summarizes the characteristics of the graphs used in
the experiments, providing a clear comparison of the number
of nodes, edges, and density across the Sparse Graph, the
Dense Graph, and WIKISPEEDIA. Based on the characteristics
outlined in Table I, the sparse graph demonstrates a lower
density ratio due to its larger node count. In contrast, the
dense graph, with fewer nodes, exhibits a higher density
ratio. Notably, the WIKISPEEDIA dataset possesses the greatest
density ratio of the three.

The following metrics are used to assess the feature vectors.
Target probability measures the average chance that the model
will choose a node with non-zero likelihood. Choice accuracy
measures how accurate the decisions of an algorithm are at
each crossroad of the ground-truth path, connecting nodes vt
and vt+h. It is computed on nodes whose degree is at least
3. precision top1 measures how often the correct next step

appears in the model’s first prediction only, while precision
top5 evaluates how often the correct next step appears within
the model’s first five predictions.

In all experiments, the node feature vector includes the
in/out degree for the nodes, retaining a constant size of two,
underscoring consistent complexity in nodal characteristics
despite the variation in graph densities.

An empirical assessment of model performance using the
features derived from the original graph and those of the
corresponding dual hypergraph is conducted. In the case
of original edges, the TF-IDF score and nof
features are used, yielding a feature vector of size 2. By
aggregating the features similarity-hyperedge
of length 1, DHnode-in-out-degree
of length 2, and their combination
similarity-hyperedge-DHnode-in-out-degree
of length 3, the associated edge feature vector has length 3,
4, and 5, respectively.

Table II summarizes the performance of the GRETEL model
with original edge features and the features extracted from the
dual hypergraph (Dual GRETEL) added on top of the original
edge features on the Sparse Graph.

Table III repeats the model’s performance assessment on
the Dense Graph. Table IV details the model’s performance
on the WIKISPEEDIA dataset. This dataset encapsulates the
essence of human navigational strategies within Wikipedia,
compiling 51318 completed paths from the WIKI GAME
where participants navigate through article links towards a
target article, with an aim for efficiency in both clicks and
time.

The modularity class algorithm in Gephi [24] is used to
identify the clusters within the network. These clusters contain
nodes that are more densely connected to each other than to
nodes in different clusters. The resulting clusters are indicated
by the color coding of the nodes. The size of each node is
proportional to its degree, reflecting the number of connections
it has within the network. This allows for the immediate visual
identification of highly connected nodes. The visible labels on
the nodes in the figures were chosen because they have higher
degree values, which show their importance in the graph,
and they represent the main topic of each cluster within the
expansive Wikipedia network.

Figure 1 represents the dense graph of Wikipedia. The
selective navigation results in a dense network with several
clusters, one of which is built around the Central Macedonia
article, connecting closely related topics. Adjacent nodes like
‘History of Greece’ and ‘Politics of Greece’ form clusters that
delve into the nation’s past and governance, and ‘Geographic
Coordinate System’ and ‘France’ appear as nodes indicative
of broader geographical discourse.

The visualization of the sparse graph in Figure 2 reveals a
network that unfolds from the Central Macedonia article, form-
ing a large, primary cluster due to the random link selection
strategy, and extending outward into a sparse array of smaller
clusters. These smaller clusters are thematic, with subjects
such as European countries, Greek cities, and historical events.
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TABLE II. PERFORMANCE METRICS (%) ON THE SPARSE GRAPH

GRETEL Dual GRETEL
Metrics Original Edges Similarity-

Hyperedge
DHnode-In-Out-
Degree

Similarity-Hyperedge-
DHnode-In-Out-
Degree

target probability 68.76± 0.0044 68.76± 0.0019 68.99± 0.0064 69.71± 0.0038
choice accuracy 51.18± 0.0011 38.69± 0.0042 39.60± 0.0082 39.24± 0.0090
precision top1 66.65± 0.0050 66.71± 0.0012 66.65± 0.0025 67.14± 0.0045
precision top5 80.62± 0.0019 80.62± 0.0019 80.68± 0.0023 80.98± 0.0036

TABLE III. PERFORMANCE METRICS (%) ON THE DENSE GRAPH

GRETEL Dual GRETEL
Metrics Original Edges Similarity-

Hyperedge
DHnode-In-Out-
Degree

Similarity-Hyperedge-
DHnode-In-Out-
Degree

target probability 0.0030± 0.0021 19.1007± 0.0004 18.8741± 0.0033 19.0980± 0.0026
choice accuracy 48.0602± 0.0135 27.8261± 0.0084 29.8662± 0.0096 29.5318± 0.0086
precision top1 0.001± 0.0023 19.8995± 0.0074 18.0904± 0.0075 20.5025± 0.0067
precision top5 0.2513± 0.0012 83.2161± 0.0088 82.8141± 0.0258 83.8694± 0.0112

TABLE IV. PERFORMANCE METRICS (%) ON THE WIKISPEEDIA DATASET

GRETEL Dual GRETEL
Metrics Original Edges Similarity-

Hyperedge
DHnode-In-Out-
Degree

Similarity-Hyperedge-
DHnode-In-Out-
Degree

target probability 6.42± 0.1 6.74± 0.1 6.44± 0.2 6.2± 0.1
choice accuracy 22.16± 0.4 23.2± 0.1 22.88± 0.1 21.86± 0.4
precision top1 11.6± 0.2 12.7± 0.1 12.14± 0.1 11.66± 0.3
precision top5 30.1± 0.1 30.14± 0.1 30.02± 0.05 30± 0.09

Figure 1. Dense Wikipedia Graph.

The construction methods of the two graphs distinctly shape
their representations. The dense graph demonstrates that the
Central Macedonia article forms a cluster, with surrounding
clusters closely related in theme, predominantly focusing on

Greece. This clustering suggests that the used method tends
to group related topics tightly together. On the other hand,
the sparse graph shows a different pattern where the Central
Macedonia article and closely linked articles stand out in num-
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Figure 2. Sparse Wikipedia Graph.

Figure 3. Wikispeedia Graph.

ber, while other articles appear less connected. This difference
highlights how the choice of links in the construction process
can significantly affect the network’s structure.

Figure 3 represents the Wikispeedia graph, characterized
by uniformly sized nodes, indicative of a network without
a predominant starting article. Clusters within the graph are
thematically organized, with ‘Isaac Newton’ and ‘Physics’
forming a cluster around scientific inquiry, while ‘Westminster
Abbey’ serves as a node for the cluster concerning England.
‘Mammal’ and ‘Zebra’ are central to a cluster on zoology.

These labels serve as the focal points for their respective
clusters, marking the diverse subjects navigated by users.

Table V showcases examples of how the extracted fea-
tures are employed to predict specific paths, highlighting
the model’s ability to deduce the most probable outcomes.
Table V includes the conditional probabilities that reflect the
model’s ability to correctly anticipate the actual path taken.
These examples are instrumental in illustrating the practical
application of the model and the effectiveness of the features
in guiding the model toward the most probable navigational
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route. The utilization of hypergraph features results in higher
conditional probability compared to the use of original
edge features. The examples clearly show that when hy-
pergraph features are considered, the model tends to assign
a greater likelihood to the true path, suggesting that these
features capture more of the complexities inherent in human
navigational behaviors on Wikipedia. The examples are drawn
from the sparse graph of the WCM dataset.

A. Performance Analysis of Model Across Dense and Sparse
Graphs

In the evaluation of the Dual GRETEL model, distinct
performances are observed between the sparse and dense
graphs. A higher predictive accuracy with respect to precision
top5 metric is measured for the dense graph than the sparse
one. This improved performance can be attributed to the vital
role of the hyperedges, which enrich the model’s contextual
framework for more accurate extrapolation.

The sparse graph, despite its lower connectivity, shows
commendable results, outperforming the dense graph in terms
of target probability and choice accuracy. Dual GRETEL
predicts the correct target with a probability of 69.71 ± 0.0038
%. GRETEL accurately chooses the next step with a rate of
51.18 ± 0.0011 %. It’s noteworthy that except for the precision
top 5, Dual GRETEL maintains a better performance on the
sparse graph than the dense one.

This comparison reveals that while the Dual GRETEL
model benefits from the rich link structures in dense graphs
for precision tasks, it retains substantial predictive strength in
sparse settings. This insight may guide further optimization for
the model, enhancing its adaptability across varying network
densities.

Also, this performance indicates that the model may benefit
from the reduced complexity in sparse networks, potentially
due to less noise and fewer connections, which can simplify
the path prediction process. The comparison suggests that
the model might generalize better in sparse environments,
avoiding potential overfitting that can occur in dense networks
with more intricate connections. Conversely, the specificity
that dense networks provide can enhance the model’s precision
in certain contexts.

B. Model Benchmarking on WCM Dense Graph Versus Wik-
ispeedia Graph

For the WCM dense graph, Dual GRETEL demonstrated
a significant improvement, achieving an impressive precision
top5 score of 83.8694 ± 0.0112%. On the WIKISPEEDIA
graph, Dual GRETEL also showed enhanced performance with
a precision top5 score of 30.14 ± 0.1%. This indicates that
hypergraph features greatly enhance the model’s ability to ac-
curately identify the most likely paths in a dense environment.

Furthermore, GRETEL demonstrated a high choice accu-
racy of 48.0602 ± 0.0135% on the dense graph compared to
23.2 ± 0.1% of Dual GRETEL on the WIKISPEEDIA dataset.
Our findings show that model performance on the dense graph
improves across all metrics except choice accuracy when we

use hypergraph features. That is, hypergraph features are par-
ticularly effective in densely connected graphs, enhancing the
model’s predictive accuracy across all metrics we tested. The
results indicate the potential of hypergraph features to improve
the performance of path prediction models like GRETEL,
especially in complex network structures.

The completion rate of paths in the WIKISPEEDIA dataset
may introduce additional complexity, given that there is a
mixture of successful and abandoned paths. In contrast, the
smaller dataset might offer more uniformly successful paths,
influencing the ease with which the model can learn and
predict.

The analysis of the model’s performance, as shown in
Tables II-IV, reveals a trend where effectiveness inversely
correlates with graph density. This suggests that as graphs
become more interconnected, the model encounters greater
challenges in path prediction accuracy. These observations
emphasize the critical role that graph density plays in the
deployment and refinement of path prediction algorithms. A
possible explanation for the deterioration of accuracy as den-
sity increases could be the rise in potential paths that the model
must discern. In denser graphs, the increased interconnectivity
results in a greater number of plausible trajectories between
nodes, potentially complicating the model’s task of pinpointing
the most likely path. Furthermore, a dense network may
introduce more noise in the form of less relevant or weaker
connections, which could mislead the prediction algorithm.
These findings indicate that models like GRETEL or Dual
GRETEL may require adjustments or enhancements, such
as more sophisticated feature extraction or the incorporation
of context-aware learning mechanisms, to better handle the
complexity introduced by higher-density graphs.

IV. CONCLUSIONS

A detailed analysis of GRETEL and its variant Dual GRE-
TEL has been presented on dense and sparse graphs derived
from the WCM dataset, aiming to improve path extrapolation
models. Having developed the novel dataset centered on
Central Macedonia, Greece, we have provided a resource that
captures the complexity of human navigational patterns on
Wikipedia.

Our investigation has shown that the density of a graph
significantly influences the effectiveness of path prediction
methods. Both models have performed better on sparse graphs
in various aspects, yet they have achieved higher accuracy
with respect to the top five predictions on the dense WCM
graph. Furthermore, the incorporation of hypergraph features
into the GRETEL model yielding the Dual GRETEL variant
has significantly enhanced the accuracy of path predictions,
underscoring the importance of feature extraction in graph-
based predictive analytics. Comparisons of Dual GRETEL
performance on the more extensive WIKISPEEDIA dataset
against the WCM dense graph have also shown that the top
metrics were measured on the WCM dense graph, despite
its smaller size. This indicates that the model’s success is
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TABLE V. EXAMPLES OF PATH PREDICTION

Pr(s | h, p,G) Pr(s | h, p,G) Pr(s | h, p,G)

prefix Naousa, Imathia,
History of Macedonia, Craterus

Volvi, Egnatia,
Thessaloniki, Arethousa

Thessaloniki, Greek National Road,
Evzonoi, Axioupoli

true suffix Antigenes, Nearchus, Tlepolemus Nea Madytos, Vrasna Greek Macedonia, Despotate of Epirus

original edges Antigenes, Nearchus, Satraps
Antigenes, Nearchus, Tlepolemus

0.74
0.26

Stefanina, Thessaloniki
Nea Madytos, Vrasna

0.75
0.25

Skra, Kilkis
Greek Macedonia, Despotate of Epirus

0.38
0.01

similarity-hyperedge Antigenes, Nearchus, Satraps
Antigenes, Nearchus, Tlepolemus

0.64
0.36

Stefanina, Thessaloniki
Nea Madytos, Vrasna

0.67
0.33

Skra, Kilkis
Greek Macedonia, Despotate of Epirus

0.26
0.03

DHnode-in-out-degree Antigenes, Nearchus, Satraps
Antigenes, Nearchus, Tlepolemus

0.69
0.31

Stefanina, Thessaloniki
Nea Madytos, Vrasna

0.78
0.22

Skra, Kilkis
Greek Macedonia, Despotate of Epirus

0.29
0.01

similarity-hyperedge
- DHnode-in-out-degree Antigenes, Nearchus, Tlepolemus 0.6

Stefanina, Thessaloniki
Nea Madytos, Vrasna

0.58
0.42

Skra, Kilkis 0.46

influenced by the quality of the graph’s structure and the
features used.
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