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Abstract

Given the lack of empirical data available from automo-
tive serial-communication networks, an automated fault-
injection environment can be used to create synthetic
datasets for training and testing data-driven diagnosis al-
gorithms. We use commercial fault-injection hardware with
custom software to implement such an environment. A
small pilot study using injected physical-layer faults shows
promise in producing identifiable error-patterns.

1 Introduction

The automotive industry has become steadily more reliant
on software-intensive distributed systems to implement ad-
vanced vehicle features. In fact, it has been estimated [7]
that “up to 90% of all innovations are driven by electron-
ics and software”. It is further estimated [7] that 50-70%
of an ECU’s development costs come from software, with
some vehicles having up to 70 ECUs. Overall, electronics
and software can account for up to 40% of a vehicle’s cost
[7]. When problems in software-based systems are uncov-
ered after a vehicle has gone to production, recall costs can
rival development costs. For example, 2004 saw the recall
of 680,000 Mercedes-Benz E-Class vehicles due to issues
with the electronic brake-by-wire system [23].

A growing trend is toward features that assist the driver
in maintaining safe control of the vehicle under a variety of
conditions. Previously, such assistance has been provided
passively in the form of information or warnings. These
features are now being given increasing amounts of author-
ity to control the vehicle’s motion by actively supplement-
ing the driver’s inputs. The long term trend is towards fully
autonomous operation [16, 21].

Because these systems are critical to ensuring the safe
operation of the vehicle, they must be designed to toler-
ate faults and provide high levels of dependability. Typi-
cally, a systematic safety analysis is conducted during the
design phase, to evaluate both the severity and likelihood

of the consequences of possible faults. Formal verification
methods are used to analyze system dependability. Fault-
injection can play a complementary role in this analysis by
providing an empirical way to study the system’s depend-
ability in the presence of faults and to analyze the system’s
fault-handling capabilities with respect to a particular fault
model. This can aid in fault-removal and fault-forecasting
[2]. The upcoming ISO 26262 standard for functional safety
in automotive electronics highly recommends that fault-
injection be included as part of the dependability analysis
of critical systems [10].

Despite extensive design processes, emergent behavior
will still appear at runtime in dependable automotive sys-
tems. Such behavior occurs due to unforeseen interactions
and complexity between independently designed compo-
nents. These interactions are not readily apparent to the sys-
tem designers, and might not be captured by system models.
Therefore, diagnostic approaches that rely solely on system
models are unlikely to provide a satisfactory diagnosis when
presented with emergent behavior. A data-driven diagnos-
tic approach that analyzes system metrics as well as system
models has the potential to provide a more accurate diag-
nostic output [12].

In order to support the development of data-driven di-
agnostic approaches, we built an automated fault-injection
environment for FlexRay [6]. This environment combines
off-the-shelf fault-injection hardware with custom software
to allow a large number of highly repeatable experiments to
be coordinated from a centralized host. It also enables data-
logging from each node in the cluster, as opposed to relying
on a single monitoring point.

We performed a pilot study to validate this fault-injection
environment and to determine whether it is feasible to dis-
tinguish faults based on their manifestations. The results
of this study show that faults do no necessarily manifest
symmetrically in a linear bus topology. Furthermore, those
manifestations produce identifiable error patterns.
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2 Synthetic Data-Driven Diagnosis

The analytic techniques used for data-driven diagnosis vary
[3, 4, 8, 11], but commonly require a large dataset for al-
gorithm training and testing. This data typically comes
in the form of metrics that are derived from various in-
strumentation points. These instrumentation points exist at
the system-level as well as the component-level. Examples
of potential instrumentation points are the status indicators
exposed by the FlexRay Controller-Host Interface (CHI)
(see section 3.2), hooks inserted into software components,
and Operating System (OS) metrics such as context-switch
rates. The data can then be analyzed to infer a correlation
between the metrics and the system health. Ideally, this cor-
relation leads to some actionable diagnostic output.

Usually, such metrics are gathered from deployed sys-
tems. This is problematic in automotive systems, because
real-world failure data is scarce. The most advanced de-
pendable automotive systems exist only as research pro-
totypes, and therefore have not seen wide enough deploy-
ment to generate useful failure metrics. For the few systems
that have been deployed, Original Equipment Manufactur-
ers (OEMs) are understandably reluctant to release failure
data for public scrutiny.

Therefore, we propose leveraging fault-injection to build
a synthetic data-driven approach. Fault-injection is already
recommended to be used in the dependability analysis of
critical systems [10], so the impact on existing development
processes should be minimal. Even so, there are many re-
search challenges involved in developing such an approach.
We discuss these research challenges elsewhere [12], but
the entire endeavor rests on a few key propositions.

Proposition 1 The errors induced by faults form identifi-
able patterns.

Proposition 2 The error patterns corresponding to faults
are evident in, and can be derived from, system metrics.

Proposition 3 The error patterns derived from system met-
rics allow faults to be distinguished by type, persistence,
etc.

The remainder of this paper describes a study with dual
purposes. The primary purpose is to determine whether our
fault-injection environment is suitable for studying Propo-
sitions 1–3. The secondary purpose is to determine whether
the propositions themselves have any credibility. The ex-
perimental apparatus (i.e., fault-injection environment) and
process are described in Section 3. We specify the param-
eters of the pilot study in Section 4. Section 5 discusses
the results of the study. A brief overview of related work is
contained in Section 7. Section 8 concludes this paper.

3 An Automated Fault-Injection Environ-
ment for FlexRay

In order to study Propositions 1–3 — and, indeed, any
propositions — the fault injection environment should pro-
vide repeatability, controllability and observability. We
also require automation in order to allow unattended op-
eration for extended periods of time.

Controllability. The experimenter should be able to define
experimental parameters accurately, with respect to
time (e.g., fault activation-trigger and duration), space
(e.g., fault location) and value (e.g., fault type).

Repeatability. Experiments run under similar conditions
with similar parameters should produce similar results.

Observability. The effect(s) — or lack thereof — of a fault
should be readily apparent. We do not assume that
faults manifest symmetrically across nodes. Therefore,
observations (i.e., snapshots of instrumented data)
must be made at each node and compared with respect
to the time, space and value domains. In FlexRay,
the space domain corresponds to the node identifier
(ID); the time domain corresponds to the local view
of global time (denoted by the current macrotick and
cycle counter); and the value domain corresponds to
the measured data itself.

Automation. While a manual fault-injection process [13]
can be useful for rapid-prototyping applications, such
a process becomes unwieldy when a large number of
experiments are required. In order to develop a robust
dataset for training and testing different diagnosis al-
gorithms, we need to experiment with a wide range
of faults. Experiments also need to be repeated many
times in order to allow for statistically significant anal-
ysis.

These goals are achieved through a rigorous process that
is enabled by off-the-shelf hardware (see Section 3.1) and
implemented by custom software (see Section 3.2).

3.1 Hardware Architecture

The fault-injection environment is based on a cluster of
(6) Elektrobit EB 61201 prototyping nodes that commu-
nicate with each other over a linear FlexRay communica-
tion bus. The prototyping nodes feature MFR4310 FlexRay
controllers. The TTXDisturbance node, by TTTech, pro-
vides fault-injection capabilities at the FlexRay physical-
layer and protocol-layer. An Amrel ePower PDS8202 pro-
grammable power-supply provides (8) independent DC out-

1Formerly known as DECOMSYS NODE MPC5200
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Figure 1. The hardware architecture of the
fault-injection environment.

puts that allow each node to be power-cycled programmati-
cally.

The placement of the TTXDisturbance node corresponds
to the location of injected physical-layer faults. For exam-
ple, in the current topology, the bus lines can be short cir-
cuited or broken between the fourth and fifth prototyping
nodes (see Figure 1).

A Windows-based personal computer (PC) communi-
cates directly with the prototyping nodes using an Ether-
net backchannel. The PC also controls the power supply
and TTXDisturbance node via RS-232 connections. Finally,
a National Instruments USB-6008 Data Acquisition (DAQ)
unit connected to the PC provides digital and analog I/O
interfaces for triggers and signals. Figure 1 shows the hard-
ware architecture in detail.

3.2 Experimental Process

The high-level experimental process is fairly straightfor-
ward.

Step 1 Power-cycle each prototyping node to reset its in-
ternal state.

Step 2 As the the prototyping nodes boot and synchronize,
begin logging observations.

Step 3 Once all of the prototyping nodes have synchro-
nized, delay for a specified time to allow for steady-state
observations (i.e., the pre-fault delay).

Step 4 Wait for a repeatable trigger before activating a
fault of some duration and type.
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Figure 2. The fault-injection process requires
coordinating actions across disparate com-
ponents.

Step 5 When the fault has passed, allow additional time to
log observations as any lingering fault-effects pass (i.e., the
post-fault delay).

Step 6 Return to Step 1 and repeat the process, if required.

A custom control-application that runs on the PC imple-
ments the configuration, coordination, and data-collection
functionality that this process requires.

3.2.1 Configuration

The pre-fault delay (from Step 3); fault duration, type
and trigger (from Step 4); and post-fault delay (from
Step 5) are set in a configuration file that is uploaded to the
TTXDisturbance node by the PC over RS-232. This configu-
ration file is known as a disturbance scenario, and specifies
the faulty behavior that is applied during the fault-injection
process.

The number of times that a particular disturbance sce-
nario is repeated is defined by the reps parameter, which is
provided as an input to the control application.

3.2.2 Coordination

Implementing this high-level process involves many steps
taken by disparate components without any common com-
munication channel. The PC provides the “glue” required
to coordinate these steps (see Figure 2).

The PC commands the power supply to turn on its out-
puts, which causes the prototyping nodes to boot and syn-
chronize. The fault should not be injected until all of
the prototyping nodes have synchronized (i.e., reached a
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steady-state). The TTXDisturbance node does not provide
a way to wait until all nodes achieve synchronization, so
the prototyping nodes each send a sync signal through the
DAQ to the PC. Once the PC has received all of the sync
signals, it sends a signal through the DAQ to trigger the
TTXDisturbance node, which begins running the configured
disturbance scenario. The PC then waits until it receives
signal from the TTXDisturbance node that the disturbance
scenario has terminated. After receiving the signal, the PC
commands the power supply to turn off its outputs. If the
configured number of iterations has been completed, then
the PC ends the process. Otherwise, the process is repeated.

3.2.3 Data Collection

The PC provides centralized data-collection functionality
for observations made by the prototyping nodes. Each pro-
totyping node is assigned to a dedicated port on the PC
that listens for incoming data using User Datagram Proto-
col (UDP). All of the data that the PC receives is tagged
with the source node ID and experiment ID and then logged
for offline analysis.

4 Pilot Study Specification

For this pilot study, the prototyping nodes were loaded with
a simple application. Note that the purpose of this applica-
tion was not to provide realistic application-level behavior.
Rather, it was only used to stimulate bus traffic. Each node
transmitted a message counter and a node IDs using two
frames in the static segment and a single (arbitrated) frame
in the dynamic segment. These frames were received by all
controllers but not read by the application. The OS task-
schedule and FlexRay communication-schedule were con-
figured to execute synchronously with a 2ms period. The
nodes were connected in a linear topology, as shown in Fig-
ure 1. Each node in the network was configured as a sync-
node with respect to the FlexRay protocol.

4.1 Instrumentation

The FlexRay specification defines various data structures
that indicate the status of the communication protocol. Such
data structures provide metrics that can be used to detect er-
ror patterns. They are accessed though the FlexRay CHI,
which is accomplished on the MFR4310 controller by read-
ing and writing 16-bit memory-mapped registers.

A custom instrumentation-component runs on each
EB 6120 node and makes observations by reading a sub-
set of the CHI registers at the beginning of each task period
(e.g., once every 2ms). Observations are buffered in volatile
memory on the node. The instrumentation component pe-

riodically empties the buffer by sending all of the stored
observations to the PC using the Ethernet backchannel.

For this study, we observed 4 discrete error-indicators
during each experiment: Boundary Violations (BVs),
Syntax Errors (SERRs), Content Errors (CERRs) and Valid
Frames (VFs). The indicators themselves were aggregated
over the entire communication cycle. Observations were
made at the beginning of each communication cycle by
reading error indicators from the FlexRay CHI.

4.2 Disturbance Scenarios

The consisted of 5 disturbance scenarios, each of which
was repeated 100 times. For this study, we choose to fo-
cus on a small set of physical-layer faults. Each scenario
was associated with a different fault-type, which was acti-
vated for 500ms. No fault was activated during the none
scenario, which provided a baseline case. The break sce-
nario caused a physical separation of the Bus Plus (BP) and
Bus Minus (BM) lines. The noise scenario injected dif-
ferential white noise onto the bus. The short vcc and
short gnd scenarios short-circuited the BP line to ground
and supply voltage, respectively. Observations from each
node were logged for 1s prior to activation and 5s following
deactivation of the disturbance.

5 Results

Recall that the instrumentation component records an ob-
servation once every 2ms. Therefore, 500 observations are
expected during the pre-fault period (1000 ms); 250 obser-
vations are expected while the fault is active (500 ms); and
2500 observations are expected during the post-fault period
(5000 ms). For this study, we are not interested in observa-
tions made during the synchronization phase. In total, each
experiment is expected to produce 3250 total observations.
Note that because each observation accumulates indicators
over an entire cycle, you can have multiple indicators set in
a single observation (i.e., the sum of the observed indicators
may be greater than the total number of observations).

none (baseline) As expected, no error indicators were
observed during the baseline scenario.

break The break scenario resulted in SERRs, CERRs
and BVs at each node, with some variation across nodes
(see fig. 3). The break scenario was further distinguished
by being the only scenario to result in CERRs (see fig. 4).

noise A roughly equal number of BVs and SERRs were
observed during the noise scenario, along with a corre-
sponding drop in VFs (see fig. 5).
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Figure 3. The break scenario resulted in
SERRs, CERRs and BVs at each node, with
some variation across nodes.

short Short circuits resulted in a drop in valid frames,
compared to the total number of observations (see fig. 6).
Between three and four syntax errors were also observed
consistently during each short circuit. There was no mea-
surable difference in the effects of shorting to ground vs.
shorting to supply voltage.

6 Discussion

In order to look for potential error patterns, we simply com-
pared the average number of times a particular indicator is
observed for each scenario. Thus, we can deduce the fol-
lowing preliminary error patterns:

break: many content errors and boundary violations with
comparatively few syntax errors

noise: equal number of syntax errors and boundary vio-
lations with a corresponding drop in valid frames

short vcc: lack of valid frames with comparatively few
syntax errors

short gnd: lack of valid frames with comparatively few
syntax errors

The fault-injection process itself showed good controlla-
bility and repeatability. It was trivial to specify the experi-
mental parameters accurately. Given consistent parameters,
the process produced consistent results.
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Figure 4. Content Errors (CERRs) were only
observed during the break scenario.

7 Related Work

A useful overview of general fault injection techniques is
available in [9]. Here, we focus on fault injection techniques
that specifically target the automotive domain, with an em-
phasis on diagnosis.

Fault-injection experiments using heavy-ion fault injec-
tion have shown fail-silence violations [20] and error prop-
agation [1] in Time-Triggered Protocol/Class-C (TTP/C).
Fault-injection experiments using hardware models have
show that transient faults in the CAN Communication Con-
troller (CC) and Communication Network Interface (CNI)
can result in masquerade failures, where a faulty node “im-
personates” a non-faulty node [17]. Within the context of
diagnosis, this result can be viewed as a false-positive on the
non-faulty node as well as a false-negative on the true faulty
node. Experiments performed using modeled FlexRay con-
trollers have highlighted instances of error propagation in
FlexRay bus and star topologies [5].

The online diagnosis algorithms developed by [22] were
extended to discriminate healthy nodes from unhealthy
nodes in time-triggered automotive systems [18]. A proto-
type implementation of the protocol was built using TTP/C
controllers and analyzed via physical fault injection [19].

Out-of-Norm Assertions (ONAs) are introduced as a way
to correlate fault effects in the three dimensions of value,
time and space . The ONA mechanism underlies a frame-
work for diagnosing failures in time-triggered networks
[14]. A prototype implementation of the framework us-
ing TTP/C controllers instruments the frame status field of
the controller, which is similar to the information available
from the FlexRay CHI. The TTPDisturbance node was used
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Figure 5. The noise scenario produced a
roughly equal number of BVs and SERRs
with a corresponding drop in VFs.

along with Electromagnetic Interference (EMI) injection to
evaluate the effectiveness of this diagnostic framework as
applied to connector faults TTP/C [15].

8 Conclusion

These preliminary results suggest that (1) errors do not
manifest uniformly across nodes and (2) identifiable error
patterns may exist. However, these results cannot be gen-
eralized beyond this small study. These patterns are likely
to change, perhaps drastically, depending on many factors
such as network topology, communication schedule, node
configuration, etc. Furthermore, other disturbances that
we did not include in this pilot might show similar pat-
terns, making them difficult to distinguish from each other.
Clearly, more advanced analysis will be required for more
robust fault models.
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F. Tagliabò, and J. Koch. A tunable add-on diagnostic
protocol for time-triggered systems. In Proceedings, 2007
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN ’07, pages 164–174, Los Alami-
tos, CA, USA, June 2007. IEEE Computer Society.

[20] H. Sivencrona, P. Johannessen, and J. Torin. Protocol mem-
bership in dependable distributed communication systems –
a question of brittleness. SAE Technical Paper Series 2993-
01-0108, SAE International, Warrendale, PA, USA, March
2003.

[21] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bit-
tner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M.
Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajku-
mar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider,
A. Stentz, W. R. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou,
V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and
D. Ferguson. Autonomous driving in urban environments:

Boss and the urban challenge. Journal of Field Robotics,
25(8):425–466, July 2008.

[22] C. J. Walter, P. Lincoln, and N. Suri. Formally verified on-
line diagnosis. IEEE Transactions on Software Engineering,
23(11):684–721, November 1997.

[23] D. Wilson. Ray of hope for auto industry.
Electronic Business, Nov 2006. Available at
http://www.edn.com/article/CA6385672.html.

Acronyms

BM Bus Minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BP Bus Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BV Boundary Violation. . . . . . . . . . . . . . . . . . . . . . .4

CC Communication Controller . . . . . . . . . . . . . . . . 5

CERR Content Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHI Controller-Host Interface . . . . . . . . . . . . . . . . . .2

CNI Communication Network Interface . . . . . . . . . 5

DAQ Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 3
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