

Estimation of Performance and Availability

of Cloud Application Servers through External Clients

Sune Jakobsson

Department of Telematics

NTNU

Trondheim, Norway

sune.jakobsson@comoyo.com

Abstract— This paper investigates two aspects of the QoS

offered by some cloud providers on the Internet, the

availability and the dedicated capacity in terms of how well a

user process is isolated from other users of the same

application server instance. By using standard components and

software utilities, a small external measurement client is able to

gather the necessary information about the cloud application

servers in question, and hence, addresses the measured

availability and capacity over time. In summary, I show that

the biggest cloud providers indeed demonstrate good isolation

and availability.

Keywords-component; QoS; Java virtual machines; garbage

collection; application servers; availability

I. INTRODUCTION

More and more of our computing needs are being moved
to the "cloud", but what does this really mean with respect to
dedicated capacity, availability, and reliability? The terms
used in this paper are defined in [6]. This paper describes a
limited experiment with cloud providers on the Internet that
commercially provides application server instances, with the
objective to investigate the quality of service one can
observe from these providers with a client connected to
multiple providers as shown in Figure 1. The focus in this
paper is on application availability, and to some extent
dedicated capacity. Some major providers offer application
server instances for free for a limited period of time and
others provide them at a reasonable cost. None of the
providers provide detail regarding their availability or their
internal structure. The best one can find ahead of signing up
are the relative up-time during the last period often without
stating what the period is. So how can one assess their offer
in reasonable time and at a reasonable cost?

Several papers point out failures on servers present on the
Internet, [2, 10]. There are several papers addressing the
isolation among virtual machines, [11], but in these
particular cases there is no prior knowledge available of the
underlying system, and hence, a different approach is
needed. The approach chosen here is to probe live
application servers, and collect externally available data from
their operation. This paper presents the approach, and
discusses what is possible to observe from the outside of the
application server providers.

By analyzing just a few isolated parameters, one may
yield significant conclusions regarding their behavior. In

other papers related to this subject [1, 13], it is shown that it
is sufficient to observe the response time and the amount of
free memory in the application container to experimentally
predict their long term behavior.

Figure 1. The measurement system.

For the current experiment, a simple client and server
instance is developed and run for more than a month. The
external client, in turn, invokes four application instances at
different nodes, i.e., virtual machines provided as cloud
services. All virtual machines are running with the same
server software. An application instance is defined as an
application container running the application software in a
virtualized environment. The client measures the response
time of the invocation and logs the amount of free memory
reported by the respective application servers. The operating
systems provide a millisecond clock on the client side for
time stamps, and by choice the trial was run over a period of
one month, sampling the unavailability at 2.5 second
intervals to obtain enough samples to validate the claims.
The amount of free memory from the servers is reported in
bytes, and varies from instance to instance, but their overall
behavior is similar. In Section II the measurement system is
described. Section III gives some background on memory
allocation. The experiment and the kind of results obtained
are presented in Section IV. Finally, the results are presented
with a discussion related to the offerings from the vendors in
Sections V.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

II. THE MEASUREMENT SYSTEM

One key element was to investigate cloud based servers
and to see if the application server instances the providers
provide are indeed isolated from other usage or not. Since
Amazon EC2 [4] and Google App-server [3] are two big
players in this domain, they were selected. To have some
comparison and base line, a smaller vendor and a personal
reference server connected to the Internet was part of the
experiment as shown in Figure 1. All invocations were done
from the same place, to avoid or filter out close and near
network issues. With the chosen invocation rate of 2.5
seconds, unavailability of less than 2.5 seconds is not
detected, see Figure 2. The client logs the result code of the
invocation, the invocation duration time, and the reported
server side free memory.

The client and the servers running on the virtual
machines were all programmed in Java [7].

Figure 2. Amount of free memory.

Some of the cloud providers use intrusion detection
systems, and to avoid having a client black listed when the
server is unavailable, a back-off mechanism is included in
the client. This is implemented so that if there are more than
a fixed number of non-finished requests, the client waits until
the server responds or the network connection times out.

III. DEDICATED CAPACITY

Each server allocates an amount of memory to process
the request and in this context the amount is fixed and only
dependent on the server side implementation. In this
experiment the amount of free memory is logged by the
client each time a server is invoked, typically resulting in
steps of approximately 10k bytes as shown in Figure 2. In an
idealized instance the amount of free memory would then

produce a downward-stepping shaped curve until the garbage
collector runs and restores the curve to the “max” value, or
what memory it is able to free up, as shown in Figure 2. This
curve can be modeled as follows. Let us assume the garbage
collector runs at instances ,…, ,… and let be

the memory available to the virtual machine immediately
after the garbage collection is finished. The free memory
available to the virtual machine can then be expressed as

 and (1)

 () ∫

 (2)

Where p(t) is the instant load on the virtual machine at
time t. For equidistant and constant invocations, the result is
an almost linear behavior as shown in Figure 2.

In a server that is little used, the period between garbage
collections is long compared to the invocation time, and
when plotted on a curve it will show a downward stepping
function until the minimum memory point is reached and the
garbage collector recovers the memory at which point it
starts at the “Mmax” point again. If one removes the garbage
collection steps and only looks at the slope of the steps there
is a correlation between how often the server is invoked and
how much memory is used for each invocation. This
correlation is then proportional to the load that the server
process processes. If the load is constant then the slope is
only dependent on the invocation frequency and if the slope
is constant this implies that there are no others invoking the
server in that same time period. Assuming that there is little
amount of processing in the request, the requests will be
memory intensive and show the amount of available memory
at any time.

Figure 3. Distorted delta free memory

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

The time between when the garbage collector is run then
depends on the amount of initial memory and the load on the
server. The higher the load on the server, the more memory
is allocated, and the more often the garbage collector runs
[8]. Also if there are other users of the same application
server instance the relatively modest usage of the application
server is then cluttered by other invocations and the smooth
downward-stepping pattern is not observed. Figure 3 shows a
delta free memory plot that is showing distorted available
free memory.

If one plots the memory usage over a long period, as in
Figure 4, one gets a macro view of the data, where the
amount of free memory shows up as a fat black line on the
graph, this is due to the number of samples, but if the time
axis is expanded, the figure would show a pattern as in
Figure 2. In Figure 4, the invocation times are shown in
green, however, the details get lost in the macro view except
in the cases where the server does not respond and the free
memory sample is unavailable, and hence, is zero.

The minimum invocation time illustrates the physical
transport times and the clustering of these indicate that the
route the requests took was the same over longer periods of
time which establishes the pattern seen in the Figure 4.

Figure 4. Macro view of the collected data from a Amazon EC2 instance.

By sorting the green invocation times in descending
order and plotting them according to their value as shown in
Figure 5, the different invocation times appear in better detail
and the different “plateaus” seen in Figure 4 are recognized.
Note the logarithmic scales. Where the red horizontal and
vertical lines cross, the lower right quadrant contains the
“successful” invocations meeting the requirement of a
response within 5 seconds.

Figure 5. Sorted invocation times from a Amazon EC2 instance.

IV. INVOCATION TIME

When a server is invoked the invocation consists of
multiple parts:

1. Connection set-up time
2. Request transport time
3. Request acknowledge time
4. Processing time
5. Response transport time
6. Response acknowledge time

In this experiment the client is the same running instance

sending requests in parallel to all servers. The amount of data
in the request and the response is small enough to fit into a
single transport unit, so there is no consideration of
reassembly of transport packets in this experiment. To avoid
blacklisting by intrusion detection systems, a back-off
mechanism was implemented, so that in the cases where a
server ceases to respond, no more than 5 new requests were
issued before responses started returning, hence, effectively
changing the sampling interval until the server starts
responding again.

Note that if the client in question was a person interacting
with a graphical user interface and consuming a service and
the invocation takes more than 5 seconds their interpretation
of the situation would be that something may have gone
wrong.

The invocation times were measured with the internal
system clock with millisecond accuracy. The invocation

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

times are typically one to a few hundred milliseconds range
as shown in Figure 5.

V. AVAILABILITY STATES

The invocations are logged on the client side and they

are categorized using the following states depending on

their outcome.

1. Invocation succeeded (Ok).

2. Invocation succeeded, but the invocation took more

than 5 seconds (Slow).

3. Invocation failed, and connection was established,

but a timeout occurred when reading or writing the

data to the client (Time-out).

4. Invocation failed due to lack of connectivity, no

route to server was available (No conn.).

5. Invocation of server was not started since there are

currently more than five outstanding unanswered

requests in a row (Un-answer.).

6. Skipped requests due to errors in a row (Skip).

In order to avoid the black-listing of the client, the client

stops sending new requests when the server does not

respond in a timely manner. These impacts the availability

in state 5 by staying in that state until the issued request

receives a response or the network connection times out. A

consequence of this is that the server or network might have

recovered earlier than the built-in retry times at the TCP

transport layer. The results of the invocation per server are

summarized in Table I.

TABLE I. STATES OBSERVED BY INVOCATIONS

Servers

Availability states

1. Ok
2.

Slow

3.

Tim-

out

4.

No

Conn.

5.

Un-

answer.

6.

Skip

Amazon
EC2

1259371 326 7 10 170 89

Google

App.
Engine

1258780 1167 471 36 761 3319

GetNet 1258890 2288 380 17 651 5320

Reference

system
1259191 320 25 17 350 901

VI. OPERATIONS

The client was deployed in the NTNU network and was
run for a period of over a month. Initially some adjustments
had to be made on the client to avoid getting blacklisted on
intrusion detection systems if one issued request towards a
server that was taken down for maintenance. All but one of
the providers provided continuous service, while one took a
restart every night in order to restore the system to a known
state, also called software rejuvenation [5, 9]. This resulted
in a down-period, at a fixed time every night (2AM),
however, this is not mentioned anywhere in the terms or

conditions for their site. The biggest players announce their
target figures for the availability of services and instances. In
the case of not meeting their targets, customers may get
credits for future free usage. Amazon states that they will use
commercially reasonable efforts to make Amazon EC2
available with an “Annual Uptime Percentage” of at least
99.95% during the Service Year. “Annual Uptime
Percentage” is calculated by subtracting from 100% the
percentage of 5 minute periods during the Service Year in
which Amazon EC2 was in the state “Region Unavailable”.
The Google Apps Covered Services web interface will be
operational and available to Customer at least 99.9% of the
time in any calendar month. Since the experiment is run over
a one month time the results show that they are indeed close
to their targets, where Amazon EC2 availability is
conservative, however, it is difficult to predict how much the
results would differ over a longer period of time.

VII. CONCLUDING REMARKS

As this simple experiment indicates, the cloud providers
may provide application servers with similar or better
availability than what one can obtain with a traditional non-
redundant approach using standard of the shelf hardware and
software. Using the results for “Ok” state in Table I, as
available, the availability is calculated and the results are
shown in Table II.

TABLE II. AVAILABILITY SUMMARIZED

Servers
Monthly values

Announced

Availability

Observed

Availability

Accumulated obs.

downtime in minutes

Amazon EC2 0.9995 0.999522 25

Google App. Eng. 0.999 0.995432 239

GetNet No info 0.993128 360a

Reference system No info 0.998719 67

a. Nightly restarts.

The reference system in this experiment is a standard PC
running Ubuntu operating system [12] and connected to the
NTNU campus network.

In summary the big players announce the same numbers
for availability as obtained in this experiment.

Concerning how well an instance in the “cloud” is really
isolated from other instances, if no prior information exists,
is possibly by the limited measurements, as described in this
paper. One can observe if the instance is alone or disturbed
by other usage from that provider. By comparing the macro
results with the micro results it is then possible to assess the
offer at hand and make qualified choices regarding the cloud
providers in question.

By looking at details of invocation times and amount of
free memory at both macro and micro levels, different types
of information emerges, to support decisions on scaling and
availability.

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

VIII. FURTHER WORK

Given the dynamic nature of cloud computing and the
possibility to both scale up and scale down by requesting
more or bigger instances from the cloud providers, finding a
simple means to detect when this should be done is of
economic interest for the users, however, starting new
instances of servers requires some startup time, and finding
good predictors on when new instances are required, or when
redundant instances can be stopped and shut down, are still
an issue for further work.

ACKNOWLEDGMENT

I would like to thank Professor Rolv Bræk and Professor
Bjarne E. Helvik at Department of Telecommunication at
NTNU, for their advice and guidance in my research work,
and my wife for proof reading my papers.

REFERENCES

[1] S. Jakobsson “Timing Failures Caused by Resource Starvation in
Virtual Machines ”, DEPEND 2011, ISBN: 978-1-61208-149-6

[2] Ryan K.L. Ko, Stephen S.G. Lee and Veerappa Rajan,
“Understanding cloud failures”, Spectrum, IEEE , vol.49, no.12,
pp.84,84, December 2012 doi: 10.1109/MSPEC.2012.6361788

[3] https://code.google.com/status/appengine/ (last seen June 2013)

[4] http://aws.amazon.com/ec2/ (last seen June 2013)

[5] W. G. Bouricius, W. C. Carter and P. R. Schneider, “Reliability
Modelling Techniques for Self-Repairing Computer Systems”
Proceedings 24th National Conference ACM, 1969.

[6] A. Avižienis , J. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1,no. 1,pp. 11-
33, Jan.-Mar. 2004.

[7] J. Engel: “Programming for the Java Virtual Machine”, Addison-
Wesley, 1999. ISBN 0-201-30972-6

[8] R. Jones, “The Garbage Collection Page”,
http://www.cs.kent.ac.uk/people/staff/rej/gc.html (last seen June
2013)

[9] Huang, Yennun, et al. "Software rejuvenation: Analysis, module and
applications." Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers., Twenty-Fifth International Symposium on. IEEE, 1995.

[10] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications
(CMU-PDL-05-109)”. Parallel Data Laboratory. Paper 48.
http://repository.cmu.edu./pdl/48 (last seen June 2013)

[11] http://en.wikipedia.org/wiki/Temporal_isolation_among_virtual_mac
hines (last seen June 2013

[12] http://www.ubuntu.com (last seen June 2013)

[13] S. Jakobsson, “A Token Based Approach Detecting Downtime in
Distributed Application Servers or Network Elements”, Networked
Services and Applications - Engineering, Control and Management,
16th EUNICE/IFIP WG 6.6 Workshop, EUNICE 2010, Trondheim,
Norway, June 28-30, 2010. ISBN 978-3-642-13970-3 Proceedings,
pp. 209-216

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

