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Abstract—Robust and partially robust codes are used in
cryptographic devices for detecting active side channel &dcks == - IR !

on the hardware. The codes are usually designed for uniformy i Ori"inal azrc\eesz;tttzctﬁsr:ra;sa v i
distributed codewords. In practice, however, there are codwords I g Nonlinear ]
that are much more likely to appear than others. This paper | Lcomponent | encoder | |
addresses the question of how good are existing robust codes I ) il ]

! information word redundancy !

this context. The worst case scenario is analyzed and a meitho [HOORN ke Adng gtV iy A I
that allows the designer to avoid this scenario with a relatiely *
low cost is presented. A

Index Terms—Robust codes; security; undetected error proba- Nonlinear
bility; puncturing; fault analysis attacks; non-uniform distribution; checker
 {
One bit flag

I. INTRODUCTION . . . o
Fig. 1. A schematic architecture of a circuit component gotetd by

The security of cryptographic devices is threatened %/tzyéigermatic security-oriented code. The shaded area essble to the

fault injection attacks on the hardware. By injecting fault
an adversary can obtain secret or private information that i |

stored in the device. Modern fault injection techniquesvall +

an adversary to introduce faults at any physical point of the co‘;”fg;a;m !

circuitry. A fault can flip bits, stuck a gate at a certain \&lu . Nonlinear

or change data on wires [2], [8], [10]. In turn, an attack can b X infof;:gﬁon encoder |

mathematically modeled as an additive (i.e., symmetrig)rer word w(x) lred;f;;ncy

that distorts the correct output of that circuit. Unlike d@am  arackonthe ™~ §~ """ T 1 Attack on the

errors, i.e., errors caused by nature, an error induced by &fermation ——(+ o : redundancy

adversary can be of any multiplicity. part e —— R ! part
Fault injection attacks can be detected with relativelyhhig Rl

probability by security-oriented codes. It is convenieat t checker

classify fault injection attacks by their strength; In weak

attacks the adversargannot control which codeword will v One bit flag

appear at the output of the circuitry, whilestrong attackshe
can determine the outputs by choosing the inputs.A SChem"ﬁb. 2. Mathematical model of a circuit component protedigdh systematic
architecture, which provides robustness against weaklkattasecurity-oriented code.
is shown in Fig. 1; Its equivalent mathematical model is show
in Fig. 2.

Codes for detecting weak attacks, e.g., [1], [3]-[6], [11]nput combinations are invalid and hence cannot occur. The
are usually designed under the assumption that the codswatitribution of the outputs of arithmetic modules is alsgtty
are equally likely to occur. However, when the source of theon-uniform. For example, it is more likely to have a '0’ aéth
information is a computation channel, i.e., a combinatoriautput of a multiplier than other values. In arithmetic misdu
logic or a sequential machine, this assumption is almaoatd in sequential state machines, the probability of haging
always violated. Indeed, the distribution of vectors aggbli certain output can be easily computed. A judicious attacker
at run-time to the inputs of the combinational portion of &an use this information to choose an error that is hardly (if
sequential machine is highly skewed due to the fact that somrer) detected.
state transitions are more common than others and that som&his paper addresses two questions: a) how good are the
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known robust codes, and in particular the Quadratic-Sum Ey

codes and codes derived from the cubic code, against an @
adversary that knows the distribution of the codewords, and 0 erC
b) is it possible to reduce the error masking probabilityhe t
code without adding more redundancy?

The remaining of the paper is organized as follows. Sec-
tion Il briefly describes security oriented codes and prisen
the Punctured-Cubic and the Quadratic-Sum codes. Section
lll analyzes the worst case scenario. Section IV introduces
methods to avoid this scenario by mapping the set of m S 2 The ermore, ¢ B, is always detected Singé N {e1 & C) = &,
probable words to a predefined set. An upper bound on th& errore, € K, is never detected sin@= {e> & C}, andes is detected
error masking probability when using this mapping is alsaith probability Q(es) = |C N {e3 @ C}|/|C]|.
presented. Section V concludes the paper.

[I. PRELIMINARIES - SECURITY ORIENTED CODES 3) The error will be detected with probability < 1 —
A binary codeC(n,k) is a subset of size* of an n- Q(e) < 1. Thatis, there exists at least one codeword that
dimensional binary vector spack?, (F; = GF(2)). In detects the error, and there exists at least one codewords

conventional coding theory, codes are designed to provide that masks it.

reliability againstrandom errors i.e., errors of low multiplic- The three scenarios are illustrated in Fig. 3.

ity. The codes are therefore characterized by their rage, (i.

k/n), the minimal distance between the codewords, and theDefinition 1 (Robust and partially robust codes): Robust

undetected (random) error probability. All these paramsetecodesare codes for which the dimension &f,; equals zero,

are determined by the chosen code; They are indifferenttftat is, no attack is maske®artially robustcodes are codes

the encoding scheme. for which the dimension of; is greater than zero but less
In cases where the reliability of the system is the maffank.

concern, asystematic codethaF is, a code in .WhiCh .th_e B. The error masking equation

information word is embedded in the codeword in its original . )

form, has an advantage over non-systematic codes since ill'mc(_”’k>,c be a binary systematic code of length= & +

simplifies the decoding procedure and usually has a |0V\Zéland S'.ZeQ . A codeworde € C(n, k) has two parts.: an

implementation cost. However, in security oriented cogin forma’uqn part denoted by and a redundancy pait, which

the most important property of a code is its robustnessts.e e fchtpn ofz. Each part can be fe_fef”e‘?' to as an element

ability to provide immunity against weak attacks. As we sho f a_f|n|te f|e_ld or as a vector over a finite field. F_or example,

next, when some codewords are more probable to appear t information partc can be considered as a binary vector

others, the encoding (i.e., the mapping between an infoomat'" k—dimensional_ ;pac@”“; It can be 2'30 referred to as an
word m € F% to a codeword: € F}) plays a crucial role in element of the finite field,. = GF(2"). For example, the
determining the robustness of a code expressionPz3 whereP is ar x k matrix, has to be read as:

refer tox as an element iffy: and computer?, then refer to
A. Definition of robustness the result as a vector 5 and multiply it by the matrixP,

Let C be a code and denote hyc) is the probability that the outcome of this operation is an elementin.

the codeworde € C will be used. The robustness 6f is Let c = (z,w) € C be a codeword, where = w(z). Let

measured in terms of its undetected error probability, tvhi€ = (¢x€w) b8 @ nonzero error vector, € Fyx, e, € For.
is also referred to as therror masking probability The error AN error is undetected (masked) by the codewoifd-oe € C.

masking probability is the probabilitg)(e), that a given error EQuivalently,c is masked by if

e € F3 will map a codeword onto another codeword, i.e., w(z @ ey) = w(z) B ey 2)
Qe) = Zp(c)é(c@ e) 1) Equation (2) is called thesrror masking equationfor
cec systematic codes. The number of solutions) to (2) and

the probability of each determin@(e). Namely, letX (e) be

whered(z) is the characteristic function of the codéz) = 1 : _ :
the set ofz’s that satisfy this equation,

if z € C and it equalg) otherwise.
When the adversary induces an ergane of the following X(e) = {z|c(z) @ e € C}. 3)
three scenarios may happen:
1) The error will always be detected)(e) = 0). The set Then,
of errors of this type is denoted by,. Qle) = Z p(@), (4)
2) The error will never be detected(e) = 1). Errors that zeX(e)
are never detected form a group. The group, denoted Wherep(z) is the probability of the codeword= (z, w), i.e.,
K, is called the Kernel of the code. p(x) = p(c).
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The error masking probabilities af and error masking
probabilities of a coset of are identical. Therefore, without Orig'inal
loss of generality, we assume th@at= (0,0) € C. Conse- component
quently, mo
Property 1: If 0 € X(e), thene € C.  febit vector
¢ v
The error masking probability for uniformly distributed Nonlinear
codewords is lower bounded by [6], X| kit encoder |
information word wix r-bit
¥ re ndan
Qe) > max(2/2",2/2"). ®) tackonthe [T l‘e'd'"‘; e ek on the
Codes that achieve this bound are caltgdimum codes i”“g:i“"“ Y access to this area | re"‘;’;‘:fncy
C. The Punctured-Cubic code and the Quadratic-Sum code ¥

. = Nonlinear

In this paper, we analyze two robust codes, the Punctured- ¢ checker
Cubic (PC) code derived from the cubie,z3) code by ¢

deleting some redundancy bits, and the Quadratic-Sum (QS) m one bit flag

code. Both codes are robusystematiccodes of rate higher

than one-half [1], [4], [7]. Moreover, both codes are optmu rjg 4. A mathematical model of a computation channel ptetedy a

or close to Optimum. one-to-one mapping followed by a systematic error detecting cade
Construction 1 (Punctured-Cubic code [1]):

Let P be a binaryr x k£ matrix of rankr < k. The code

whereR is the autocorrelation function @, that is,
C={(z,w):z €For,w = P2® € Fyr} (6)

R(e) = 0(z)d(z®e). (12)
is called a Punctured Cub&(k + r, k) code. Z;F;

The error masking equation of the PC code is The error.masking probabilities of the PC and QS codes are
the following:
Pz ®e,)® = Px® ©ey. (7)
Theorem 1 ( [7]): Let C be a PC code defined by a binary
i , r x k matrix P of rankr > 1, Then the kernel of the code is
Construction 2 (Quadratic-Sum code [4]): of dimension0. For odd values of, Q.. = 2-"+1. For even

Let k = 2sr andz = (21,22, -~ 2,), Wherez; € For for \a1yes ofk, there existP matrices for whichQ,,. = 277
1 <4< 2s. The code

C={(z,w): 2z €For,w=a129 D - D xos_1T25 € For} Theorem 2 ( [4]): Let C be a QS code. Then the kernel of
(8) the code is of dimensiofi. For k = 2sr, the error masking
is called a Quadratic-Su®(k + , k) code. probability is Q. = 27"

Ill. THE WORST CASE SCENARIO

Consider a computation channel that produces each cycle
an output vectorn € F5. Let » be a one to one mapping
betweenm and an information word:, i.e., z = ¢(m). To

(9) provide immunity, each cycle a codewoed= (z,w(x)) is
generated from the information word (as shown in Fig. 4).
D. The robustness of the PC and QS codes under unifoffRe probability that a codeword(z) = c(p(m)) is used

The error masking equation for the QS code is

S
2(121'71 @ ez 2i—1)(T2 Bepoi) = Zlﬂziqﬂfzi D ew-
i=1 i=1

distribution equals to the probability that the output is produced, that
If the codewords are uniformly distributed, then each codis,
word may appear on the output with probabilitylofiC|. The p(c) = p(x) = p(m). (13)

worst case error masking probability under uniform distrib

tion of the codewords is denoted 6Y,,,.. The subscriptnc Since for a given codeX (e) is fixed, and

stands for maximal correlation, since in this case Qle) = Z p(z) = Z p(m), (14)
R(e zeX(e) m, o(m)eX(e)
Qle) = 9, (10) | § o
R(0) the error masking probability under non-uniform distribat
and, of the outputs depends solely gn

The following lemma provides a lower bound on the error

(11) masking probability when the worst is used. In the next
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section we show that if one uses¢athat maps the most Q,,..(e) = 0.5. Although this paper deals with robust codes, to

probable vectors: to apredefinedset.S, s/he can reduce the simplify the presentation, we assume that the adversanyatan

error masking probabilities. induce the errof4,1). This assumption allows us to use the
Without loss of generality assume that C(4,3) partially robust PC code.

Assume now that then's are not uniformly distributed,

(1-¢)/5 m € {2,3,4,6,7}

and p(m) = (20)

Zp(mJ -1 (16) €/3 otherwise

i=1 If no mapping is used (i.eg; = m;), then a judicious at-
Consider the mapping; = m;. For this mapping we have, tacker would apply the errdi,0) whose correspo:nding error
masking probability is the maximal)((5,0)) = (1 — ¢).

12 p(21) 2 plaz) 2 -+ 2 plag) 20. (17) Howevgr,g Gray cgde can reduce the(\gvors)t)caseg)t(error n)wasking
Denote byP(5) the accumulated probabilify’, ¢ p(x;) and Pprobability. A Gray code maps. = (mg—1,...mo) t0 z =
assume that there is a s6tC F% for which P(C'\ S) is (Zk-1,...2o) as follows:z; = m;1@&m; fori=0,...k—1
negligible In the worst case scenario there exists an egrorwhere m;, = 0. In our case, the highly probable’s are
such that eitheS C X (e) or X(e) C S. Namely, mapped to the sef = {2,3,4,5,6}, and the worst case error
masking probability become%(l — €). As we show next, no
Lemma 1:The worst case error masking probabili€y,,., better mapping can be found.

is lower bounded by

1> p(m1) > p(ma) > -+ > p(mgx) >0 (15)

P(S) IS| < Que2F IV. CONSTRUCTIVE UPPER BOUNDS ON THE ERROR
Que > . (18) MASKING PROBABILITY
—Q"l'gf P(S) otherwise For uniformly distributed codewords, the error masking

probability of the PC and the QS codes is upper bounded
by Q.... Therefore, any error vector is masked by at most
2kQ,,. codewords. Consequently, if the size $f is greater
YR5n 2*Q,n¢, then any error will be detected with probability

Example 1l:Let £ = 3 andr = 1. The eight codewords
of the corresponding PC code (represented by their inte

values) are of at least e
(0,0),(1,0),(2,0), (3,1), (4,1),(5,1),(6,1),(7,0). (19) 1 g"mp(a > 0. (21)
Table | shows theX (e) of each error vector. . . . . .
Shows () v Obviously, if the size of5' is smaller than that, the probability
TABLE | that the error will be masked increases. In what follows we
THE ERROR VECTORS AND THEIR MASKING CODEWORDS discuss the case where

e [X(e)] | X(e) .
00| 8 [alzs |S| < min X (e)], (22)
0,1) 0 - e#0
8% i 2’%’2’? and present mappings for which any nonzero error will never
(2:0) 7 0z2:4:6 be masked.
(2,1) 4 1,3,5,7
(3,0) 4 1256 . "
3,1) 4 0,3,4,7 A. Sufficient conditions fof) < 1
8:(3 g all s In cases whergS| = 2, no mapping can help; An adversary
(5.0) 4 2,3,6,7 who knows the two most probable outputs, say andm.,
(CHY) 4 0,145 and the mapping may choose an error
(6,0) 4 1357
(6,1) 4 0,2,4,6 _ 5
GO 0547 e = c(p(m1)) @ c(p(mz)), (23)
@y | 4 |1256 for which Q(e) > P(S) =1 —e.

The following theorem suggests a lower bound on the size
The rows of the table are written in pairs. In each pair, ot g for which there exists a mapping that can redgie).

error vector is a codeword and the second is a non-codeword.
By Prop. 1, an error vector whos€(e) contains the all-zero  Theorem 3:LetC be a PC or a QS code. Then, there exists
word, is a codeword. It is clear from the table that the codg |east one se§ of sizes,
is partially robustsince the non-zero errge, 1) is masked k41
by all codewords. However, all the remaining error vectors _—
are either always detected or they are masked by half of the —loga(Qme)
codewords. Therefore, for uniformly distributed codewgrdsuch thatS \ X (e) # ¢ for all non-zeroe.

+1<s<min(2*Qume, 27%),  (24)
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Example 2:Let £ = 16 andr = 4. Assume that twenty :
vectors (out of the2!6) may appear with probability — € at
the output of the device to be protected. Since there exists
error for whichmin(|X (e)|) = 2'2, and20 << 2'2, in the
worst case scenario the error will not be noticed. For a F
code we have,

16+ 1 -
1 j1 +1<[9] =20 < min(2'3,2'972).  (25)

therefore, by Theorem 3, there exist a subSebf twenty

vectors such that any error is detected with probability tof a

least 12_06. Fig. 5. The probability that a random mapping for a QS codd wit= 6
Although Th. 3 states that it is possible to find a set thgpdr = 3 will provide a maximal error masking probability smallerath

. . . (e) for ten probability distributions havingS| = 7. The red dots denote

can detect any error, it does not provide an efficient way g)(e) achieved by Const. 3

do so. In the following sections we introduce two mappings,

i.e., two sets, for which any non-zero error can be detected.

Therefore, by mapping the$&0 m's to a setS C B(;6,3) that

consists of binary vectors of Hamming weight less or equal

PIOD(Q,,(e)< Q(e))

B. Generalized Hamming ball mapping

We define a generalized Hamming ball as follows: to three, one can reduce the error masking probability to
Definition 2: Let V' = {v;}*; C F5 be an arbitrary set 3 h—rtl
of u, u < k, linearly independent vectors. A generalized ) SN X(e)| >0 ) 058 (30)

Hamming ball B, .,, € F% is a set (or a coset of a set)
that consists of the vectors

st~ Bl

u Note that if|.S| > &, then the size 06N X (e) decreases as
{Z aivi | a = (ay,...a1) € Fy, wtp(a) < w} (26)  the number of linearly independent vectarincreases. More-
=1 over, as|S| increases, the required increases. The following
wherewty (a) stands for the Hamming weight af construction, presented in [9], is not optimal, howevercsiit
uses binary vectors of weight one, it is simple to implement.
Theorem 4:Let C be a PC or a QS code. L&t C B, ., )
whereu > k + logs(Qme) + 1 andw is the smallest integer ~ Construction 3 ([9]): Let p(mi) > p(m2) = -+ >
such thaty"", (%) > |S|. Then, the cod€ can detect all the P(72+) ASSign to eachm; a binary vectorz; such that the
nonzero errors with probability greater or equal to Hamming weight ofz; is smaller or equal to the Hamming

w weight of z; for all i < j.
S| — Z o (k-&-log“zj(ch))

j=
S| (27) Note that if, for examplek = 6,7 = 3 and|S| = 7 with
The proof of Theorem 4 follows directly from the fact tha{he probability distribution

the PC code and the QS code have the following property: 1‘56 0<m<6

p(m) = = € m > 6 ) (31)
2k—|S

Theorem 5:Let C be a PC or a QS code. Thek,(e) is a . | l_ _ _

subspace if belongs toC and a coset otherwise. then there exist other mappings, which achieve smélien’s

than [9]:
Corollary 1: The minimal size of a set that can detect any  § = {0,1,2,4,8,16,32} [9] — Q(e) < 0.5714,
non-zero errofe with Q(e) > 0 is greater than two and less S =1{0,10,21,27,50,55,62} — Q(e) < 0.4286.
or equal tok + loga (Qme) + 2. (32)
Although the mapping in [9] is not optimal, it is much
Example 3:Let £ = 16 and r = 4. Assume that650 better than a random mapping. Fig. 5 shows, for ten different
output vectors (out of th@'6 possible combinations) occurprobability distributions havingS| = 7, the probability that
with probability of 1 — e. Since for a PC code, a random mapping will provide a maximal error masking
r probability smaller thai@)(e). The red dots in the figure denote
| X(e)] = 2877 = 22 > 650, (28) the error masking probabi)litQ(e) achieved by the suggested
in the worst case scenario, there may be an error that wiepping. Refer only to the-coordinate of the dots. Theg-
be masked with probability greater than- ¢. However, for coordinate has no meaning, the star is placed on the graph jus

w =3 andu = 16 we have for convenience. On average this mapping ifs) = 0.39.
3 The probability that a random mapping will provide error
|Bs.s)| = Z <16) — 697. (29) Masking probability smaller than that (s18.

j=0
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16 =t

C. Robust-code based mapping

The following theorem states that if the elementsSoére il L \ \ \
the codewords of a robust code, then a nonzero error is ne il \ \
N

masked.

Theorem 6:Let C be a PC or a QS code of dimensién
r redundancy bits, and error masking probabiliy,.. Let S Fig. 6. Error masking probability of punctured cubic codehwi = 16 and
be a robust code of length = &, dimensionk = u and error "~ 4 as a function of .
masking probabilityQ).,... Then, the error masking probability

of Cis \/—k V. CONCLUSIONS
Q(e) <\ 2QmeQme2F . (33) The Punctured-Cubic code and the Quadratic-Sum code are

_ ~ systematic robust codes designed for uniformly distridute
Corollary 2: Let C be a PC or a QS code of dimensiortodewords. The codes can detect any error with non-zero
k, r redundancy bits, and error masking probabity,.. Let probability regardless its multiplicity. In cases wheree th

S be a subset of a robust code of lengthdimensionu =  codewords are not equally likely to appear, the performance
[log2(|S[)] and error masking probabilitg,,.. Then, of the codes degrades significantly and the robustness may
A ou vanish. The paper addresses this problem. It is shown that by
Qe) < \/Q'"w2 (Qme2" + 1). (34) mapping the most probable data patterns to a predefined set

- |S| before the encoding, it is possible to significantly reduue t

error masking probability and maintain the robustness ef th
Corollary 3: Let C be a PC or a QS code of dimensibn codes.
r redundancy bits. Lef be a QS code of dimensiom and

X ACKNOWLEDGMENT
k — u redundancy bits. Then we have,

The work of the first two authors was supported by the Israel
(35) Science Foundation (ISF) grant No. 1200/12. The work of the
third author was supported by the NSF Grant CNS 1012910

Example 4:As before, letk = 16, r = 4 and assume that REFERENCES
400 output vectors may appear with probability— ¢. Here

—r42

Qle) < V2. 2—(h—u) . 9—r+1 . 9k—u < 275

[1] N. Admaty, S. Litsyn, and O. Keren, "Punctuating, Expatigg and

again, in the worst case Scenanowe h@‘(e) > 1—e. Define Expanding theg-ary BCH Based Robust Codes”, The 27-th |IEEE
Stobeasubsetof@(n =k =16,k=u=9,7 = k—u=2>5) Convention of Electrical and Electronics Engineers indra012, pp.1—
PC code withQ,,. = 2~°+1. Then, 5.
Qme [2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. ¥l4n, "The
Q(e) < /92.9-4.9-3.95 — (.707. (36) sorcerers apprentice guide to fault attacks”, Vol.94, N&abeé, pp.370—
- 382

Note that in this case, the construction suggested in Th.[34 S Engelberg and O. Keren, "A Comment on the Karpovskybla
Code,” IEEE Trans. Info. Theory, Vol. 57, No. 12, 2011, pp0368010.

; 378 _
prowdesQ(e) < 400 — 0.945. [4] M.G.Karpovsky, K. Kulikowski, and Z. Wang, "Robust Emr®etection
in Communication and Computation Channels” Keynote papéneé Int.
The following example shows the relation between the Workshop on Spectral Techniques, 2007.

; i M. G. Karpovsky and P. Nagvajara, "Optimal Codes for thénikhax
three upper bounds on the error maSkmg pI’ObabI|Ity Whéﬂ Criterion on Error Detection,” IEEE Trans. on Informatioméory, Vol.

a mapping is applied. 35, No. 6, November 1989, pp. 1299-1305.
[6] M.G.Karpovsky and A. Taubin, “A New Class of Nonlinear ssgmatic
Examp|e 5 (Conc|uding examp|e¢0nsider a PC code of Error Detecting Codes,” IEEE Trans. Info. Theory, Vol 50,.8,02004,

; . B h : pp.1818-1820.
dimensionk = 16 andr = 4 redundancy bits. Assume tha 7] Y. Neumeier and O. Keren, "Punctured Karpovsky-TaubinaBy Robust

the |.S| most probable words are mapped to a.Setind that Error Detecting Codes for Cryptographic Devices,” IEEEetnational
1 On-Line Testing Symposium, March 2012, pp.156-161.
| S‘E reSs [8] S. P. Skorobogatov, "Semi-Invasive Attacks - a New Amuto to Hard-
p(a:) - € z ¢ S - (37) ware Security Analysis” Technical Report, University of milaridge.
2k 3] Number 630.

.. . . . [9] I. Shumsky and O. Keren, "Security-Oriented State Assignt”,
The emC'enCy of the mapping, I.€., the error maSkmE TRUDEVICE, 1'st Workshop on trustworthy manufacturing amtiliza-

probabilities that can be achieved by using the suggestedtion of secure devices, 2013.
mappings, is shown in Fig. 6. [10] I. M.R. Verbauwhede(Ed.), Secure Integrated Circiated Systems,
L . s Springer, 2010.
The X-axis is the SI_ZG of 5 and the Y-axis is [11] Z. Wang, M. G. Karpovsky, and K. Kulikowski, “Design of émnories
max.xo(Q(e)). The black line represents a lower bound on "with Concurrent Error Detection and Correction by Non-lEneSEC-

worst case scenario (Lemma 1). The other lines representDED Codes” Journal of Electronic Testing, Vol. 26, No. 5, @10,
upper bounds o®(e). The red line is the bound presented in Pp.559-580.

Theorem 4, the blue line is the bound presented in Theorem

3, and the green line is the bound in Corollary 2.

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-301-8 30



