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Abstract—Robust and partially robust codes are used in
cryptographic devices for detecting active side channel attacks
on the hardware. The codes are usually designed for uniformly
distributed codewords. In practice, however, there are codewords
that are much more likely to appear than others. This paper
addresses the question of how good are existing robust codesin
this context. The worst case scenario is analyzed and a method
that allows the designer to avoid this scenario with a relatively
low cost is presented.

Index Terms—Robust codes; security; undetected error proba-
bility; puncturing; fault analysis attacks; non-uniform distribution;

I. I NTRODUCTION

The security of cryptographic devices is threatened by
fault injection attacks on the hardware. By injecting faults
an adversary can obtain secret or private information that is
stored in the device. Modern fault injection techniques allow
an adversary to introduce faults at any physical point of the
circuitry. A fault can flip bits, stuck a gate at a certain value,
or change data on wires [2], [8], [10]. In turn, an attack can be
mathematically modeled as an additive (i.e., symmetric) error
that distorts the correct output of that circuit. Unlike random
errors, i.e., errors caused by nature, an error induced by an
adversary can be of any multiplicity.

Fault injection attacks can be detected with relatively high
probability by security-oriented codes. It is convenient to
classify fault injection attacks by their strength; In weak
attacks the adversarycannot control which codeword will
appear at the output of the circuitry, while instrong attacks, he
can determine the outputs by choosing the inputs.A schematic
architecture, which provides robustness against weak attacks
is shown in Fig. 1; Its equivalent mathematical model is shown
in Fig. 2.

Codes for detecting weak attacks, e.g., [1], [3]–[6], [11],
are usually designed under the assumption that the codewords
are equally likely to occur. However, when the source of the
information is a computation channel, i.e., a combinatorial
logic or a sequential machine, this assumption is almost
always violated. Indeed, the distribution of vectors applied
at run-time to the inputs of the combinational portion of a
sequential machine is highly skewed due to the fact that some
state transitions are more common than others and that some
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Fig. 1. A schematic architecture of a circuit component protected by
a systematic security-oriented code. The shaded area is accessible to the
attacker.
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Fig. 2. Mathematical model of a circuit component protectedby a systematic
security-oriented code.

input combinations are invalid and hence cannot occur. The
distribution of the outputs of arithmetic modules is also highly
non-uniform. For example, it is more likely to have a ’0’ at the
output of a multiplier than other values. In arithmetic modules
and in sequential state machines, the probability of havinga
certain output can be easily computed. A judicious attacker
can use this information to choose an error that is hardly (if
ever) detected.

This paper addresses two questions: a) how good are the
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known robust codes, and in particular the Quadratic-Sum
codes and codes derived from the cubic code, against an
adversary that knows the distribution of the codewords, and
b) is it possible to reduce the error masking probability of the
code without adding more redundancy?

The remaining of the paper is organized as follows. Sec-
tion II briefly describes security oriented codes and presents
the Punctured-Cubic and the Quadratic-Sum codes. Section
III analyzes the worst case scenario. Section IV introduces
methods to avoid this scenario by mapping the set of most
probable words to a predefined set. An upper bound on the
error masking probability when using this mapping is also
presented. Section V concludes the paper.

II. PRELIMINARIES - SECURITY ORIENTED CODES

A binary codeC(n, k) is a subset of size2k of an n-
dimensional binary vector spaceFn

2 , (F2 = GF (2)). In
conventional coding theory, codes are designed to provide
reliability againstrandom errors, i.e., errors of low multiplic-
ity. The codes are therefore characterized by their rate (i.e.,
k/n), the minimal distance between the codewords, and the
undetected (random) error probability. All these parameters
are determined by the chosen code; They are indifferent to
the encoding scheme.

In cases where the reliability of the system is the main
concern, asystematic code, that is, a code in which the
information word is embedded in the codeword in its original
form, has an advantage over non-systematic codes since it
simplifies the decoding procedure and usually has a lower
implementation cost. However, in security oriented coding,
the most important property of a code is its robustness, i.e its
ability to provide immunity against weak attacks. As we show
next, when some codewords are more probable to appear than
others, the encoding (i.e., the mapping between an information
word m ∈ F

k
2 to a codewordc ∈ F

n
2 ) plays a crucial role in

determining the robustness of a code.

A. Definition of robustness

Let C be a code and denote byp(c) is the probability that
the codewordc ∈ C will be used. The robustness ofC is
measured in terms of its undetected error probability, which
is also referred to as theerror masking probability. The error
masking probability is the probability,Q(e), that a given error
e ∈ F

n
2 will map a codeword onto another codeword, i.e.,

Q(e) ≡
∑

c∈C

p(c)δ(c⊕ e) (1)

whereδ(z) is the characteristic function of the code,δ(z) = 1
if z ∈ C and it equals0 otherwise.

When the adversary induces an errore one of the following
three scenarios may happen:

1) The error will always be detected (Q(e) = 0). The set
of errors of this type is denoted byEa.

2) The error will never be detected (Q(e) = 1). Errors that
are never detected form a group. The group, denoted by
Kd, is called the Kernel of the code.

Fig. 3. The errore1 ∈ Ea is always detected sinceC ∩ {e1 ⊕ C} = ∅.
The errore2 ∈ Kd is never detected sinceC = {e2 ⊕C}, ande3 is detected
with probability Q(e3) = |C ∩ {e3 ⊕ C}|/|C|.

3) The error will be detected with probability0 < 1 −
Q(e) < 1. That is, there exists at least one codeword that
detects the error, and there exists at least one codewords
that masks it.

The three scenarios are illustrated in Fig. 3.

Definition 1 (Robust and partially robust codes): Robust
codesare codes for which the dimension ofKd equals zero,
that is, no attack is masked.Partially robust codes are codes
for which the dimension ofKd is greater than zero but less
thank.

B. The error masking equation

Let C(n, k) be a binary systematic code of lengthn = k+
r and size2k. A codewordc ∈ C(n, k) has two parts: an
information part denoted byx and a redundancy partw, which
is a function ofx. Each part can be referred to as an element
of a finite field or as a vector over a finite field. For example,
the information partx can be considered as a binary vector
in k-dimensional spaceFk

2 ; It can be also referred to as an
element of the finite fieldF2k = GF (2k). For example, the
expressionPx3 whereP is a r× k matrix, has to be read as:
refer tox as an element inF2k and computex3, then refer to
the result as a vector inFk

2 and multiply it by the matrixP ,
the outcome of this operation is an element inF2r .

Let c = (x,w) ∈ C be a codeword, wherew = w(x). Let
e = (ex, ew) be a nonzero error vector,ex ∈ F2k , ew ∈ F2r .
An error is undetected (masked) by the codewordc if c⊕e ∈ C.
Equivalently,e is masked byc if

w(x ⊕ ex) = w(x) ⊕ ew. (2)

Equation (2) is called theerror masking equationfor
systematic codes. The number of solutions (x’s) to (2) and
the probability of each determineQ(e). Namely, letX(e) be
the set ofx’s that satisfy this equation,

X(e) = {x|c(x) ⊕ e ∈ C}. (3)

Then,
Q(e) =

∑

x∈X(e)

p(x), (4)

wherep(x) is the probability of the codewordc = (x,w), i.e.,
p(x) = p(c).
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The error masking probabilities ofC and error masking
probabilities of a coset ofC are identical. Therefore, without
loss of generality, we assume that0 = (0, 0) ∈ C. Conse-
quently,

Property 1: If 0 ∈ X(e), thene ∈ C.

The error masking probability for uniformly distributed
codewords is lower bounded by [6],

Q(e) ≥ max(2/2k, 2k/2n). (5)

Codes that achieve this bound are calledoptimum codes.

C. The Punctured-Cubic code and the Quadratic-Sum code

In this paper, we analyze two robust codes, the Punctured-
Cubic (PC) code derived from the cubic(x, x3) code by
deleting some redundancy bits, and the Quadratic-Sum (QS)
code. Both codes are robustsystematiccodes of rate higher
than one-half [1], [4], [7]. Moreover, both codes are optimum
or close to optimum.

Construction 1 (Punctured-Cubic code [1]):
Let P be a binaryr × k matrix of rankr ≤ k. The code

C = {(x,w) : x ∈ F2k , w = Px3 ∈ F2r} (6)

is called a Punctured CubicC(k + r, k) code.

The error masking equation of the PC code is

P (x⊕ ex)
3 = Px3 ⊕ ew. (7)

Construction 2 (Quadratic-Sum code [4]):
Let k = 2sr andx = (x1, x2, · · ·x2s), wherexi ∈ F2r for
1 ≤ i ≤ 2s. The code

C = {(x,w) : x ∈ F2k , w = x1x2 ⊕ · · · ⊕ x2s−1x2s ∈ F2r}
(8)

is called a Quadratic-SumC(k + r, k) code.

The error masking equation for the QS code is
s

∑

i=1

(x2i−1 ⊕ ex,2i−1)(x2i ⊕ ex,2i) =

s
∑

i=1

x2i−1x2i ⊕ ew.

(9)

D. The robustness of the PC and QS codes under uniform
distribution

If the codewords are uniformly distributed, then each code-
word may appear on the output with probability of1/|C|. The
worst case error masking probability under uniform distribu-
tion of the codewords is denoted byQmc. The subscriptmc
stands for maximal correlation, since in this case

Q(e) =
R(e)

R(0)
, (10)

and,

Qmc =
maxe6=0 R(e)

R(0)
, (11)
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Fig. 4. A mathematical model of a computation channel protected by a
one-to-one mappingϕ followed by a systematic error detecting codeC.

whereR is the autocorrelation function ofδ, that is,

R(e) =
∑

z∈F
n

2

δ(z)δ(z ⊕ e). (12)

The error masking probabilities of the PC and QS codes are
the following:

Theorem 1 ( [7]): Let C be a PC code defined by a binary
r× k matrix P of rank r > 1, Then the kernel of the code is
of dimension0. For odd values ofk, Qmc = 2−r+1. For even
values ofk, there existP matrices for whichQmc = 2−r.

Theorem 2 ( [4]): Let C be a QS code. Then the kernel of
the code is of dimension0. For k = 2sr, the error masking
probability isQmc = 2−r.

III. T HE WORST CASE SCENARIO

Consider a computation channel that produces each cycle
an output vectorm ∈ F

k
2 . Let ϕ be a one to one mapping

betweenm and an information wordx, i.e., x = ϕ(m). To
provide immunity, each cycle a codewordc = (x,w(x)) is
generated from the information wordx (as shown in Fig. 4).
The probability that a codewordc(x) = c(ϕ(m)) is used
equals to the probability that the outputm is produced, that
is,

p(c) = p(x) = p(m). (13)

Since for a given code,X(e) is fixed, and

Q(e) =
∑

x∈X(e)

p(x) =
∑

m, ϕ(m)∈X(e)

p(m), (14)

the error masking probability under non-uniform distribution
of the outputs depends solely onϕ.

The following lemma provides a lower bound on the error
masking probability when the worstϕ is used. In the next
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section we show that if one uses aϕ that maps the most
probable vectorsm to a predefinedsetS, s/he can reduce the
error masking probabilities.

Without loss of generality assume that

1 ≥ p(m1) ≥ p(m2) ≥ · · · ≥ p(m2k) ≥ 0 (15)

and
2k
∑

i=1

p(mi) = 1. (16)

Consider the mappingxi = mi. For this mapping we have,

1 ≥ p(x1) ≥ p(x2) ≥ · · · ≥ p(x2k) ≥ 0. (17)

Denote byP (S) the accumulated probability
∑

xi∈S p(xi) and
assume that there is a setS ⊆ F

k
2 for which P (C \ S) is

negligible. In the worst case scenario there exists an errore
such that eitherS ⊆ X(e) or X(e) ⊂ S. Namely,

Lemma 1:The worst case error masking probability,Qwc,
is lower bounded by

Qwc ≥











P (S) |S| ≤ Qmc2
k

Qmc2
k

|S| P (S) otherwise
(18)

Example 1:Let k = 3 and r = 1. The eight codewords
of the corresponding PC code (represented by their integer
values) are

(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 1), (6, 1), (7, 0). (19)

Table I shows theX(e) of each error vector.

TABLE I
THE ERROR VECTORS AND THEIR MASKING CODEWORDS

e |X(e)| X(e)
(0,0) 8 all x’s
(0,1) 0 -
(1,0) 4 0,1,4,5
(1,1) 4 2,3,6,7
(2,0) 4 0,2,4,6
(2,1) 4 1,3,5,7
(3,0) 4 1,2,5,6
(3,1) 4 0,3,4,7
(4,0) 0 -
(4,1) 8 all x’s
(5,0) 4 2,3,6,7
(5,1) 4 0,1,4,5
(6,0) 4 1,3,5,7
(6,1) 4 0,2,4,6
(7,0) 4 0,3,4,7
(7,1) 4 1,2,5,6

The rows of the table are written in pairs. In each pair, one
error vector is a codeword and the second is a non-codeword.
By Prop. 1, an error vector whoseX(e) contains the all-zero
word, is a codeword. It is clear from the table that the code
is partially robust since the non-zero error(4, 1) is masked
by all codewords. However, all the remaining error vectors
are either always detected or they are masked by half of the
codewords. Therefore, for uniformly distributed codewords,

Qmc(e) = 0.5. Although this paper deals with robust codes, to
simplify the presentation, we assume that the adversary cannot
induce the error(4, 1). This assumption allows us to use the
C(4, 3) partially robust PC code.

Assume now that them’s are not uniformly distributed,

p(m) =







(1− ǫ)/5 m ∈ {2, 3, 4, 6, 7}

ǫ/3 otherwise
(20)

If no mapping is used (i.e.,xi = mi), then a judicious at-
tacker would apply the error(5, 0) whose corresponding error
masking probability is the maximal,Q((5, 0)) = 4

5 (1 − ǫ).
However, a Gray code can reduce the worst case error masking
probability. A Gray code mapsm = (mk−1, . . .m0) to x =
(xk−1, . . . x0) as follows:xi = mi+1⊕mi for i = 0, . . . k−1
where mk = 0. In our case, the highly probablem’s are
mapped to the setS = {2, 3, 4, 5, 6}, and the worst case error
masking probability becomes35 (1 − ǫ). As we show next, no
better mapping can be found.

IV. CONSTRUCTIVE UPPER BOUNDS ON THE ERROR

MASKING PROBABILITY

For uniformly distributed codewords, the error masking
probability of the PC and the QS codes is upper bounded
by Qmc. Therefore, any error vector is masked by at most
2kQmc codewords. Consequently, if the size ofS, is greater
than2kQmc, then any error will be detected with probability
of at least

1− 2kQmc

|S| P (S) > 0. (21)

Obviously, if the size ofS is smaller than that, the probability
that the error will be masked increases. In what follows we
discuss the case where

|S| ≤ min
e6=0

|X(e)|, (22)

and present mappings for which any nonzero error will never
be masked.

A. Sufficient conditions forQ < 1

In cases where|S| = 2, no mapping can help; An adversary
who knows the two most probable outputs, saym1 andm2,
and the mappingϕ may choose an error

e = c(ϕ(m1))⊕ c(ϕ(m2)), (23)

for which Q(e) ≥ P (S) = 1− ǫ.
The following theorem suggests a lower bound on the size

of S for which there exists a mapping that can reduceQ(e).

Theorem 3:Let C be a PC or a QS code. Then, there exists
at least one setS of sizes,

k + 1

−log2(Qmc)
+ 1 ≤ s ≤ min(2kQmc, 2

k−2), (24)

such thatS \X(e) 6= φ for all non-zeroe.
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Example 2:Let k = 16 and r = 4. Assume that twenty
vectors (out of the216) may appear with probability1− ǫ at
the output of the device to be protected. Since there exists an
error for whichmin(|X(e)|) = 212, and 20 << 212, in the
worst case scenario the error will not be noticed. For a PC
code we have,

16 + 1

4− 1
+ 1 ≤ |S| = 20 ≤ min(213, 216−2). (25)

therefore, by Theorem 3, there exist a subsetS of twenty
vectors such that any error is detected with probability of at
least 1−ǫ

20 .
Although Th. 3 states that it is possible to find a set that

can detect any error, it does not provide an efficient way to
do so. In the following sections we introduce two mappings,
i.e., two sets, for which any non-zero error can be detected.

B. Generalized Hamming ball mapping

We define a generalized Hamming ball as follows:
Definition 2: Let V = {vi}ui=1 ⊂ F

k
2 be an arbitrary set

of u, u ≤ k, linearly independent vectors. A generalized
Hamming ballB(u,w) ⊆ F

k
2 is a set (or a coset of a set)

that consists of the vectors
{

u
∑

i=1

aivi | a = (au, . . . a1) ∈ F
u
2 , wtH(a) ≤ w

}

(26)

wherewtH(a) stands for the Hamming weight ofa.

Theorem 4:Let C be a PC or a QS code. LetS ⊆ B(u,w)

whereu ≥ k + log2(Qmc) + 1 andw is the smallest integer
such that

∑w

j=0

(

u
j

)

≥ |S|. Then, the codeC can detect all the
nonzero errors with probability greater or equal to

|S| −
∑w

j=0

(

k+log2(Qmc)
j

)

|S| . (27)

The proof of Theorem 4 follows directly from the fact that
the PC code and the QS code have the following property:

Theorem 5:Let C be a PC or a QS code. Then,X(e) is a
subspace iffe belongs toC and a coset otherwise.

Corollary 1: The minimal size of a set that can detect any
non-zero errore with Q(e) > 0 is greater than two and less
or equal tok + log2(Qmc) + 2.

Example 3:Let k = 16 and r = 4. Assume that650
output vectors (out of the216 possible combinations) occur
with probability of 1− ǫ. Since for a PC code,

|X(e)| ≥ 2k−r = 212 > 650, (28)

in the worst case scenario, there may be an error that will
be masked with probability greater than1 − ǫ. However, for
w = 3 andu = 16 we have

|B(16,3)| =
3

∑

j=0

(

16

j

)

= 697. (29)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
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Fig. 5. The probability that a random mapping for a QS code with k = 6
and r = 3 will provide a maximal error masking probability smaller than
Q(e) for ten probability distributions having|S| = 7. The red dots denote
Q(e) achieved by Const. 3

Therefore, by mapping these650 m’s to a setS ⊂ B(16,3) that
consists of binary vectors of Hamming weight less or equal
to three, one can reduce the error masking probability to

Q(e) ≤ |S ∩X(e)|
|S| ≤

∑3
j=0

(

k−r+1
j

)

|S| = 0.58. (30)

Note that if|S| > k, then the size ofS∩X(e) decreases as
the number of linearly independent vectorsu increases. More-
over, as|S| increases, the requiredw increases. The following
construction, presented in [9], is not optimal, however, since it
uses binary vectors of weight one, it is simple to implement.

Construction 3 ( [9]): Let p(m1) ≥ p(m2) ≥ · · · ≥
p(m2k) Assign to eachmi a binary vectorxi such that the
Hamming weight ofxi is smaller or equal to the Hamming
weight of xj for all i < j.

Note that if, for example,k = 6, r = 3 and |S| = 7 with
the probability distribution

p(m) =

{

1−ǫ
|S| 0 ≤ m ≤ 6

ǫ
2k−|S|

m > 6
, (31)

then there exist other mappings, which achieve smallerQ(e)’s
than [9]:

S = {0, 1, 2, 4, 8, 16, 32} [9] → Q(e) ≤ 0.5714,
S = {0, 10, 21, 27, 50, 55, 62} → Q(e) ≤ 0.4286.

(32)
Although the mapping in [9] is not optimal, it is much
better than a random mapping. Fig. 5 shows, for ten different
probability distributions having|S| = 7, the probability that
a random mapping will provide a maximal error masking
probability smaller thanQ(e). The red dots in the figure denote
the error masking probabilityQ(e) achieved by the suggested
mapping. Refer only to thex-coordinate of the dots. They-
coordinate has no meaning, the star is placed on the graph just
for convenience. On average this mapping hasQ(e) = 0.39.
The probability that a random mapping will provide error
masking probability smaller than that is0.18.
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C. Robust-code based mapping

The following theorem states that if the elements ofS are
the codewords of a robust code, then a nonzero error is never
masked.

Theorem 6:Let C be a PC or a QS code of dimensionk,
r redundancy bits, and error masking probabilityQmc. Let S
be a robust code of lengtĥn = k, dimensionk̂ = u and error
masking probabilityQ̂mc. Then, the error masking probability
of C is

Q(e) ≤
√

2Q̂mcQmc2k−u. (33)

Corollary 2: Let C be a PC or a QS code of dimension
k, r redundancy bits, and error masking probabilityQmc. Let
S be a subset of a robust code of lengthk, dimensionu =
⌈log2(|S|)⌉ and error masking probabilitŷQmc. Then,

Q(e) ≤

√

Qmc2k(Q̂mc2u + 1)

|S| . (34)

Corollary 3: Let C be a PC or a QS code of dimensionk,
r redundancy bits. LetS be a QS code of dimensionu and
k − u redundancy bits. Then we have,

Q(e) ≤
√

2 · 2−(k−u) · 2−r+1 · 2k−u ≤ 2
−r+2

2 . (35)

Example 4:As before, letk = 16, r = 4 and assume that
400 output vectors may appear with probability1 − ǫ. Here
again, in the worst case scenario we haveQ(e) ≥ 1−ǫ. Define
S to be a subset of aC(n̂ = k = 16, k̂ = u = 9, r̂ = k−u = 5)
PC code withQ̂mc = 2−5+1. Then,

Q(e) ≤
√
2 · 2−4 · 2−3 · 25 = 0.707. (36)

Note that in this case, the construction suggested in Th. 4
providesQ(e) ≤ 378

400 = 0.945.

The following example shows the relation between the
three upper bounds on the error masking probability when
a mapping is applied.

Example 5 (Concluding example):Consider a PC code of
dimensionk = 16 and r = 4 redundancy bits. Assume that
the |S| most probable words are mapped to a setS, and that

p(x) =

{

1−ǫ
|S| x ∈ S

ǫ
2k−|S|

x /∈ S
. (37)

The efficiency of the mapping, i.e., the error masking
probabilities that can be achieved by using the suggested
mappings, is shown in Fig. 6.

The X-axis is the size of S and the Y -axis is
maxe6=0(Q(e)). The black line represents a lower bound on
worst case scenario (Lemma 1). The other lines represent
upper bounds onQ(e). The red line is the bound presented in
Theorem 4, the blue line is the bound presented in Theorem
3, and the green line is the bound in Corollary 2.
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Fig. 6. Error masking probability of punctured cubic code with k = 16 and
r = 4 as a function of|S|.

V. CONCLUSIONS

The Punctured-Cubic code and the Quadratic-Sum code are
systematic robust codes designed for uniformly distributed
codewords. The codes can detect any error with non-zero
probability regardless its multiplicity. In cases where the
codewords are not equally likely to appear, the performance
of the codes degrades significantly and the robustness may
vanish. The paper addresses this problem. It is shown that by
mapping the most probable data patterns to a predefined set
before the encoding, it is possible to significantly reduce the
error masking probability and maintain the robustness of the
codes.
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