
Self-Recovery Technology in Distributed Service-Oriented Mission Critical Systems

for Fault Tolerance

Raymundo García-Gómez, Juan Sebastián Guadalupe Godínez-Borja, Pedro Josué Hernández-Torres, Carlos

Pérez-Leguízamo
Central Bank of Mexico (Banco de México)

Av. 5de Mayo #2, Mexico City, 06059, MEXICO

E-mail: {rgarciag, jgodinez, pjhernan, cperez}@banxico.org.mx

Abstract—Mission Critical Systems (MCS) require continuous

operation since a failure might cause economic or human

losses. Autonomous Decentralized Service Oriented

Architecture (ADSOA) is a proposal to design and develop

MCS in which the system functionality is divided into service

units in order to provide functional reliability and load

balancing; on the other hand, it offers high availability

through distributed replicas. A fault detection technology has

been proposed for ADSOA. In this technology, an operational

service level degradation can be detected autonomously by the

service units at a point in which the continuity of the service

may be compromised. However, this technology is limited

because it requires human supervision for recovery. In this

paper, we propose an autonomous recovering technology,

which detects and instructs to service units to be gradually

cloned in order to recover the operational service level. A

prototype has been developed in order to verify the feasibility

of this technology.

Keywords-Service continuity; fault tolerance; service-

oriented architecture; autonomous decentralized systems; fault

detection; fault recovery

I. INTRODUCTION AND MOTIVATION

In the presence of a failure, most of the conventional
systems implement reactive fault detection and recover
mechanisms either automatically or manually. In both cases,
the aim is to switch to a redundant or standby computer
server upon the failure or abnormal termination of the
previously active system. In some cases, the Mean Time to
Recovery (MTTR) [15] of these technologies may represent
a low risk for the service that the system offers. However,
since a failure in MCS may provoke fatal consequences, it is
important to reduce the MTTR to a value near to zero

In this paper, we briefly present ADSOA [4][5][6], which
has been proposed as a service-oriented architecture for
designing MCS, and it has been mainly utilized in financial
sector applications. This architecture provides high
functional reliability since it is possible to distribute and
replicate the functionality of a system in specialized service
units. One of the main technologies of ADSOA, called
Loosely Coupled Delivery Transaction and Synchronization
Technology [6], allows the system to detect when the
provision of a service has reached a point in which the
continuity of the service may be compromised and it sends a
signal alarm to a monitor. This approach may represent a risk

for a MCS since it depends on human intervention for taking
the necessary actions to repair the system.

This has motivated this paper which presents a
technology to autonomously detect and recover gradually all
the unit services required for the operational service level in
ADSOA. This technology is based on a cloning mechanism
that is activated once the operational service level has been
compromised due to some failed services units. We describe
the protocol and algorithms that the healthy services units
utilize in this cloning mechanism and show how they
coordinate among them in order to avoid a massive creation
of replicas. We developed a prototype in order to illustrate
this approach.

The rest of this paper is organized as follows: In Section
II, we show the related work. In Section III, we give a view
of ADSOA concept and architecture. In Section IV, we
present the proposed technology. In Section V, we show a
prototype, and finally, in Section VI, the conclusion and
future work.

II. RELATED WORK

Cloning technologies have been widely used in different

technological areas for providing high reliability to the

system in which it is applied. In Optical Burst Switching

(OBS) Networks, burst cloning has been proposed as a

proactive loss recovery mechanism that attempts to prevent

burst loss by sending two copies of the same burst, if the first

copy is lost, the second copy may still be able to reach the

destination [9][10]. When designing cloning technologies

one relevant issue that has to be considered is the resource

utilization by the new clones. In this sense, in OBS Networks

some technologies have been proposed for optimizing such

resource utilization and maintaining a QoS [11][12]. In Multi

Agents Systems (MAS), a frequently proposed solution to

avoid performance bottlenecks due to insufficient resources

is cloning an agent and migrate it to remote hosts [13][14].
Our approach is also comparable to the existing work on

cloning technologies in terms of concept and objectives but
applied to a novel service-oriented architecture for MCS.
The main contribution of the proposed cloning technology
are the protocol and algorithms that services units utilize to
detect some failures in the service provision and the way
they coordinate themselves to recover gradually the
operation of that damaged part of the system.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

III. AUTONOMOUS DECENTRALIZED SERVICE ORIENTED

ARCHITECTURE

A. ADSOA Concept

A proposal used to implement MCS in financial sector is
ADSOA [4][5][6], it provides load balancing and
functionality, high availability and service-oriented
modeling. ADSOA is based on Autonomous Decentralized
Systems (ADS) [1][2][3] and Service Oriented Architecture
(SOA)[7][8].

ADS is based in the concept of analogizing living things.
The living body is built of numerous cells, each growing up
independently, maintaining by body metabolism, and going
on living. Depending on concept of perceiving the system
that it is consisted by autonomous controllability and
autonomous coordinability, ADS technology achieves fault
tolerance, on-line maintenance and on-line expansion of the
computer system. On the other hand, SOA offers a system
modeling oriented to services and allows composition and
reusability. ADSOA is the combination of SOA concept with
ADS characteristics.

The ADSOA conceptual model, shown in Figure 1, is
composed of autonomous entities that offers or requests
services via messages. Each entity is formed by several
instances fully independent. Each instance has the same
functionality that its entity represents. A subsystem can be
formed by a group of entities and in the same sense a
business may be formed by a group of subsystems. This is
similar to a living organism where an instance is like a cell, a
subsystem could be an organ and the business is like a living
organism.

In order to model a MCS using ADSOA, it is necessary
to have a service-oriented thinking. At the beginning the
system architect identifies the businesses involved in the
process and then models the sub-systems in a business
according to their responsibility. Finally, entities are
modeled according to their atomic functionality. This
modeling will allow to the system to grow, evolve, do
composition and reuse the components. The next phase is to
develop the services entities.

All the systems immersed in ADSOA are able to
configure according to physical resources and criticality
level. To offer high service availability, it is necessary to
have a distributed environment and put on replicated entities.
On the other hand, for load balancing it is necessary to divide
the functionality in the entities, in such a way that the work
be split without a coordinator. The challenge is to provide
auto-coordination and auto-control to the system. In this
sense, the Autonomous Processing Entity (APE) was
proposed; it implements the communication protocol,
manages the control instance messages and the services
execution. Also, it is possible to define in each service
(offered or requested) of the APE its criticality. All these
elements form a technology denominated “Loosely Coupling
Synchronization and Transactional Delivery Technology”.

Figure 1. ADSOA Conceptual Model

B. Loosely Coupling Synchronization and Transactional

Delivery Technology

In this technology, we define the concept of transaction

in the scenario in which an entity requests a service to

another and requires knowing if it has been received. The

requesting entity must maintain this request in pending

processing state until it receives an acknowledgement from

receiving entity. Also, we define sequential order in the

sense that the entity requester must receive a minimum

number of acknowledgments from receiving entities in order

to send the next service request, for example, a X+1 request

should not be sent until it receives the minimum number of

acknowledgments of the X request.

The service request information structure should include

the following elements: Content Code, Foliated Structure

and Request Information.
The Content Code specifies the content and defines the
requested service.

The foliated structure identifies the transaction. This

structure is based on:

1. requester id,

2. specialized task id for that request (Pivot),

3. a sequence number,

4. a generated id based on the original request

information (event number) and

5. a dynamic and unique id for the instance of the

entity (instprintid).

With these elements the identification of

acknowledgments received by the entity is guaranteed. We

can also ensure the sequence of multiple requests, as shown

in Figure 2.

If an instance receives a service request with a sequence

number greater than expected, then by the principle of

sequential order, knows that another instance of its entity

will have the missing messages. In this case, the receiver

instance asks to his entity the missed messages, that is, the

other instances of the same entity. This idea is represented

in Figure 3.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

Figure 2. Sequentiality and Transactionality

Figure 3. Synchronization with other Instances

On the other hand, if an entity receives several times the

same service request, this can be distinguished by the

instprintid if this request belongs to the same requester

instance or from a different instance of the same entity.

According to this, the receiver entity can determine whether

requests received are in accordance with the minimum

number of requests that the requester entity are required to

send, as shown in Figure 4.

Figure 4. Receiving Multiple Requests from an Entity

In resume, the communication among the elements and
its instances is based on an asynchronous and event-driven

message protocol. This technology detects if an entity does
not provide the service level required. It occurs when an
instance sends a service request to an entity and each entity
instance receives it and send back an acknowledge message,
then sender registers how many acknowledges have received
and evaluates if it covers the criticality level, if it is not
proper, the sender repeats the sending process. E.g. consider
a service with a criticality level equals to 3, its means that
this business requires at least three distributed instances;
when another instance requests a service to them, it expects
at least three acknowledges to satisfy the criticality level, if it
is not satisfied the entity will send the request of service
again. When the sender detects that the maximum number of
retries has reached, it triggers the alert process, which
consists in sending an alert message that could be processed
by a monitor element. This monitor alerts ADSOA
infrastructure managers to perform the necessary activities
and recover service continuity (creating new instances
required to reach the criticality level). Unfortunately, this
goes against MCS’s principles since manual intervention is
required thereby MTTR becomes dependent on operator’s
reaction.

In the next section, we present a technology that allows
ADSOA subsystems to autonomously detect and recover for
a failure in a replicated entity by cloning one by one an
operational entity until the system reaches the criticality level
required.

IV. SELF-RECOVERY TECHNOLOGY IN DISTRIBUTED

SERVICE-ORIENTED MISSION CRITICAL SYSTEMS FOR

FAULT-TOLERANCE

This technology is created to allow an MSC that uses an
ADSOA infrastructure to self-recover automatically. This
basic operation is to use the current self-monitoring scheme
and instead of sending alerts to the operator when the service
level is not appropriate, it instructs one entity of the degraded
group to clone itself (functionality and state). An important
challenge in the cloning process is to avoid the generation of
multiple indiscriminate copies, which in a living organism
would be a cancer. To ensure the healthy recovery, the entity
selected to recover the system, generates a cloning-key with
information of the times it has been cloned, its id, its
instprintid and the requested entity id; this information is
introduced into the algorithm to generate the cloning-key,
that will be unique to only one cloning process between this
entity and the requested id.

In this architecture, all the entities offer and request
services, one of this services is the recovering by cloning an
entity. In self-recovering technology at least two entities are
involved; to explain the protocol let’s imagine a group of
entities (“A subsystem”), which request a service to other
group of entities (“B subsystem”). In Figure 5, “A
subsystem” is requesting a service to “B subsystem”, the
message exchange is carried out in compliance with ADSOA
Loosely Coupling Synchronization and Transaction Delivery
Technology, with the number of acknowledgments needed to
ensure that the level of service is appropriate for. In this
example, the “A subsystem”, requires 3 acknowledgments by
“B subsystem”, and the “B subsystem” needs 2 service

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

requests by “A subsystem”; when the number of
acknowledgments is complying, “B subsystem” attends “A
subsystem”.

Figure 5. Normal Operation Cycle

If the number of the entities of the “B subsystem” is
decreased because of a failure in the process or the server,
the “A entities” detects that the service level is not
complying within “B subsystem”, since the minimum
number of acknowledgments, 3 for this example, cannot be
reached within a specific period of time. Thus, the “A
entities” starts the recovery mechanism instead of sending
alerts.

Figure 6 shows the first steps in the recovery protocol.
Firstly, the “A subsystem“ receives the acknowledgments
from “B subsystem”. Secondly, based in the lowest “B”’s
instprintid all the “A entities” select one healthy entity,
which will be responsible for cloning itself. Thirdly, all the
“A entities” request the "Auto-Cloning Service (reqidclon)",
with the instprintid of the “B entity” selected for auto-
cloning. In this example the “Bi entity” will be the
responsible for cloning itself; although the “Bn entity”
received the same request, only the “Bi entity” will clone.
Fourthly, when the “Bi entity” receives the reqidclon request,
it generates a cloning-key and sends both this cloning–key
and its instprintid as a “Send the key (sendkey)” request
service message. By sending its instprintid it can be ensured
that the “A subsystem” will instruct to only the selected “B
entity” to continue with the cloning process. Fifthly, when
the “A subsystem” receives the sendkey service request, it
takes the cloning-key in the message and sends it by the
“Automatic recovery (autrecov)” request service message to
the “B subsystem”, it also attaches to this message the
instprintid selected in the second step of this protocol.

Figure 6. Start up the cloning mechanism

Figure 7 shows the final step of the protocol. When the
“B subsystem” receives the autrecov request service
message, as it occurs in the third step of this protocol, only

the “Bi entity” will attend it, since its instprintid is in the
received service message. “Bi entity” will validate if the
cloning-key in the message is still valid and if so it will make
a cloning of itself. During this process, “Bi entity” will close
all the communication with outside and generate a new
element in the same state like itself; once the cloning process
is finished, it will open the communication again. Otherwise,
if the cloning-key is not longer valid because the cloning
process has already been completed, the message is ignored.
It is important to notice, that the others “A entities” also send
this final request service message, but only the first message
which reaches “Bi entity” will be processed.

Figure 7. Cloning phase

In this sense, this technology will autonomously maintain
the operational service level without human intervention.

V. PROTOTYPE

A prototype which implements this technology has been

developed, as shown in Figure 8. This prototype consists of

two subsystems with one entity each one, the Requester

subsystem/entity, which is shown in blue color, and the

Counter subsystem/entity, which is shown in orange color.

The Requester demands a service to the Counter for

providing a number which later it will be displayed in its

screen. When the Counter receives this service request, it

will increase by one the previous sent number and send it

into a service request message to the Requester. For this

example, the service level operation was set to 1 to the

Requester and 3 to the Counter; it means that there will be

only 1 instance of the Requester and 3 instances of the

Counter. On the other hand, the Requester will send its next

service request only if it receives from the Counter instances

3 acknowledges for the current request. In order to simulate

a failure in a Counter instance, a PAUSE button has been

implemented.

Figure 8. Normal Operation Cycle I (Prototype)

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

In Figure 9, it is shown that when the entity

“2124777859” is stopped, the cloning-mechanism detects

such failure and selects entity “1313675445” to repair the

system. The reqidclon service request message is sent from

the Requester to the Counter with instprintid “1313675445”.

This entity generates the cloning-key and then it sends the

sendkey service request message to the Requester.

Figure 9. Start up the cloning mechanism (Prototype)

In Figure 10, the final part of the mechanism is shown.

The Requester processes the sendkey service request

message and sends to the selected entity the autrecov service

request message. The “1313675445” entity starts the

cloning process; firstly it closes the communication with

outside, then it clones itself, and when the entity

“191232582” is started, the “1313675445” entity finally

opens the communication. In this sense, the system has

repaired autonomously the damaged part and it can continue

its normal operation.

Figure 10. Normal Operation Cycle II (Prototype)

VI. CONCLUSION AND FUTURE WORK

In this paper, we briefly presented ADSOA, which has
been proposed as a service-oriented architecture for
designing MCS, which has been mainly utilized in financial
sector applications. We have proposed a cloning mechanism
to recover quickly and efficiently the operational service
level when a decrease on it is detected. We have built a
prototype to verify the feasibility of this technology.

Besides the ongoing development efforts to complete the

cloning prototype implementation, future work in this area

focuses on get some metrics about resource utilization,

network partition and multiple clones’ coexistence. We will

also compare the proposed technology with others such as

those mentioned in Section II.

REFERENCES

[1] K. Mori, S. Miyamoto, and H. Ihara, "Proposition of Autonomous
Decentralized Concept", Journal of IEEE Japan, vol. 104, no. 12, pp.
303-310, 1994.

[2] H. Ihara and K. Mori, “Autonomous Decentralized Computer Control
Systems”, IEEE Computer, vol. 17, no. 8, pp. 57-66, 1984.

[3] K. Mori, “Autonomous Decentralized Computer Control Systems”,
First International Symposium on Autonomous Decentralized
Systems (ISADS’93), Kawasaki, Japan, pp. 28-34, 1993.

[4] L.C. Coronado-García and C. Pérez-Leguízamo, “A Mission-Critical
Certification Authority Architecture for High Reliability and
Response Time”, IJCCBS Special Issue on Autonomous
Decentralized Systems in Web Computing, vol. 2, no. 1, pp. 6-24,
2011.

[5] L.C. Coronado-García, P.J. Hernández-Torres, and C. Pérez-
Leguízamo, “An Autonomous Decentralized System Architecture
using a Software-Based Secure Data Field”, The 10th International
Symposium on Autonomous Decentralized Systems (ISADS’11),
Kobe, Japan, 2011.

[6] L.C. Coronado-García, P.J. Hernández-Torres, and C. Pérez-
Leguízamo, “An Autonomous Decentralized Service Oriented
Architecture for High Reliable Service Provision”, The 10th
International Symposium on Autonomous Decentralized Systems
(ISADS’11), Kobe, Japan, 2011.

[7] Thomas Erl, 2005, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design”, Ed. Prentice Hall.

[8] Nicolai M. Josuttis, 2007, “SOA in Practice: The Art of Distributed
System Design”, Ed. O'Reilly Media.

[9] H. Xiaodong, V.M. Vokkarane, and J.P. Jue, “Burst cloning: a
proactive scheme to reduce data loss in optical burst switched
networks”, IEEE International Conference on Communications
(ICC’05), Seoul, Korea, 2005.

[10] S. Riadi and V-A. Mohammed, “A decision algorithm for efficient
hybrid burst retransmission and burst cloning scheme over star OBS
networks”, Second International Conference on Innovating
Computing Technology (INTECH’12), Casablanca, Morocco, 2012.

[11] L. Ji and K.L. Yeung, “Burst cloning with load balancing”, Optical
Fiber Communication Conference (OFC’06), Anaheim, California,
2006.

[12] S. Askar, G. Zervas, D.K. Hunter, and D. Simeonidou, “Classified
cloning for QoS provisioning in OBS networks”, The 36th European
Conference and Exhibition on Optical Communication (ECOC’10),
Turin, Italy, 2010.

[13] O. Shehory, K. Sycara, P. Chalasani, and S. Jha, “Agent cloning: an
approach to agent mobility and resource allocation”, IEEE
Communications, vol. 36, no. 7, pp. 63-67, 1998.

[14] D. Ye, M. Zhang, and D. Sutanto, “Cloning, Resource Exchange and
Relation Adaptation: An Integrative Self-Organisation Mechanism in
a Distributed Agent Network”, IEEE Transactions on Parallel and
Distributed Systems, vol. PP, no. 99, pp. 1, 2013.

[15] P.A. Laplant and S.J. Ovaska, 2011, “Real Time Systems Design and
Analysis“, Ed. Wiley-IEEE Press.

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

