
Agents for Fault Detection and Fault Tolerance in Component-based Systems

Meriem Zaiter
Larbi Ben M’hidi University of Oum El-Bouaghi,

LIRE Laboratory at the University of Constantine 2,
Constantine, Algeria

meriem.zaiter@gmail.com

Salima Hacini and Zizette Boufaida
LIRE Laboratory at the University of Constantine 2,

Constantine, Algeria
{salimahacini, zboufaida}@gmail.com

Abstract— In recent years, the use of component-based systems
has become increasingly large in the daily life such as domestic
applications. In addition, the diversity and the dynamic
components that can build them make this type of system very
awareness. For this reason, the assurance of dependability and
safety execution are required in order to propose a better
system performance and the best user satisfaction by providing
services continuity which consequently leads to reliability. That
is really a challenge problem. Our goal in this paper is to
propose an adaptation mechanism, based on the mirror
services, to make such a system more efficient, and thus, more
and more operational, even the existence of faults in it. To this
end, the fault tolerance is a good solution. So, the contribution
in this paper is based on a set of algorithms that will be
employed by a set of local agents controllers and one global
agent controller.

Keywords-dependability; agent; fault detection; fault
tolerance.

I. INTRODUCTION

Multi component system is composed of many different
components, each of which is an individual system. The
complete system has a set of fixed functionalities. Every
component may have a varied composition and
implementation. As an example, we find the domestic
applications, which use a computer component in the home
environments. In this space, the wireless communication
between the components and the sensors devices are
generally used. So, that system is very awareness and
dysfunction error localization is a delicate task. Indeed, an
abnormal execution in this kind of system can be caused by
the failure of any component, which can imperatively causes
a dysfunction of the overall system. So, it is indispensable to
detect such situation before the crash of the overall system.
One way to insure dependability of systems is to allow
continuity of execution in the case of fault occurrence, which
is the aim of this paper. A promising technique to do this; is
the fault tolerance, which is defined as the ability of system
to continue normal operation despite the presence of faults.

Our fault detection mechanism [1] focuses on the use of a
global controller and a set of local controllers, which aims
first to detect the fault whatever its nature then applies the
algorithms to support it automatically, and adapt the
execution to the suitable context. In this paper, our goal is to
enhance the mechanism with the use of both the agents and
the replication advantages. The replication is considered as
one of the basic tools in a fault tolerance technique [2].

Moreover, the agent technology has been largely used
and gives an interesting proposition to various problems such
as e-commerce, distributed computing telecommunication
networks services, monitoring and notification [3], etc. They
provide several advantages, in the dependability area, the
fact that an agent [4]:

• Has the ability to communicate
• Can migrate from a defective component to another

in order to continue its execution, by the weak or
the strong mobility characteristics.

• Can keep track of the execution follow.
• Can be duplicated and cloned as needed, or killed

for example in a case of its failure
• Uses of low-cost and a low-power requirements

when it is executed on an equipment
• Etc.

Also we find that the interaction agent-agent is
exclusively via message-passing communication and the
asynchronous message-passing have good scalability
characteristics.

The remainder of the paper is devoted to the details of
our agents based fault detection mechanism. Section 2 gives
a state of the art of the fault detection techniques. Section3
presents an overview of faults’ types that may affect the
normal function. Section 4 details all the algorithms that
handle the detected faults. Finally, a conclusion achieves this
paper.

II. RELATED WORK

Fault tolerance is an indispensable characteristic required
by different types of computer systems and specifically
distributed systems. The latter can fail due to the failure of its
components; why researchers are still trying to find a way to
ensure dependability by fault tolerance. In some studies, [5,
6] the authors propose a service migration from one
component to another to ensure a permanent presence of
service despite it is being required; this can be insured
through three mechanisms, the first is used to manage the
context of interaction among the system components; the
second is employed to specify the rules according to the
current context and the changes that may occur, and the third
one identifies the migrated service. This approach has some
disadvantages:

• It is only applied in a context where all components of
the system have the same architecture on which
mobile service can migrate.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

• Regardless to the state of the component the service
should automatically migrate (even if the component
was in a good state). So, unnecessary transmissions
can be realized. In addition this technique is
ineffective in case of a sudden fault (there is no fault
detection) [5].

 There are also some mathematical methods for fault
detection. For example, in [7,8] the approach is rule-based. It
requires first a definition of a fault model that categorizes the
occurred fault as short, constant or noise, then based on the
standard deviation between the later model and the current
system state a fault can be detected. These methods [7][8]
require a knowledge on the domain to identify the faults’
type and a careful specification of the standard deviation
threshold.

The method used in [9] also requires the definition of the
types of faults that can occur in order to detect them on run-
time. Some other software techniques [10][11][12] add a set
of instructions to control the flow of execution, and thus
detect the existence of fault by comparing for example a
duplicated variables values with the variables themselves
[12]. Generally, these techniques rely on external equipment
to handle the fault that will certainly cause a significant
perturbation treatment.

Some techniques incorporate exceptional behaviors
during the entire development of fault tolerant distributed
systems implemented within component [13]. Other model
introduced in [14][15], specify the normal and exceptional
behaviors of system components; so while exceptional
responses, errors are detected.

In spite of the number of solutions to insure fault
tolerance, the fault problems’ detection and support persist
and not treated definitely. On the other side, the requirement
of safety running of systems and the availability of delivered
services is very required.

III. THE FAULTS’S CATEGORIES

An error is the manifestation of a fault in the system, and
a failure is the manifestation of an error on the provided
service by the system [16]. The fault type plays a very
important role if we want to get a fault tolerance. Moreover,
faults can be categorized according to several criteria, like
the degree of severity, degree of permanence and their
nature.

The based component systems are considered as context-
aware systems because a communication context varies from
one moment to another. So, in order to classify faults, we
exploit, in this section, the following definition of context [1]
“Context is any internal or external information, related to
an entity, could be used and have an impact on the future
state of the application. This information can be linked to
one or more entities. The latter, regardless of their nature
(hardware / software / human), can trigger events that affect
the global state system. To this end, the occurrence of a fault
causes certainly an immediate dysfunction to the global
system” .

So, we suggest classify the faults on the base of the
faults’s sources, their manifestations and their persistence.
One component in a component-based system may announce

a dysfunction on behalf of another component, if the latter
did not satisfy the needed request.
Also, failures can be a result of an improper use of the
system by the user or due to:

• Software errors: that can be an arbitrary deviations
related to the code,

• Materials errors: that can be the shutdown of a
component or its internal constituents, or

• Transmission errors: such as the omission of
sending or receiving messages or even to malicious
attack (citing as an example an injection of a code
into the system, by a malicious user, can cause a
deviation of the normal execution flow).

In Table 1, the source of the fault is related to the element
of context. The persistence of a fault means its duration; it
may be transient or permanent. A permanent fault is a fault
which requires a software maintenance or human
intervention.

TABLE I. THE FAULTS’ CATEGORIES

Elements of
context

Categories of faults
external fault internal Fault

Entity Hardware
/ user

An error of
interaction (such
as error
identification, or
an input mistake
...)

/

(transient /
permanent) fault

Hardware

/

− Error referencing of
an internal
component
(processor,
memory…)
− internal hardware
failure
permanent fault

Software/
user

An entry outside
the domain
specification of
the application

/

(transient/
permanent) fault

Software
/

Design fault in the
application itself
permanent fault

Temporal aspects
(date, time)

Fault in
scheduling and
synchronization of
messages among
system
components

− the local Clock is
not synchronized
− physical error

due to a transmission
problem

transient fault (transient/
permanent) fault

Location Localization
problem of
neighboring
entities (effect of
fog in the
environment)

Fault in the physical
controllers of
component

transient fault permanent fault

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

After the presentation of the proposed faults’ categories,
the next section details our proposition that aims to describe
how the presented kind of faults are detected and supported.

IV. THE DETAILS OF OUR PROPOSITION

Dependability of our system is associated with the
dependability of its components. It can be provided by
insuring the availability of the exchanged events and services
among the system components (each component will be
called entity “ei”) (Figure 1).

Figure 1. the dynamic exchange of events in the system.

To ensure a high dependability of the system and its
entities, we focus, as it is explained in the introduction, on
the advantages of agents as well as the replication. To this
end, some tools (local and the global agents controllers (see
the next sub section)) and the next constraints must be set:
• Each entity (ei) proposes a set of services OS (ei) that

can be provided in the form of quadruplet:
OS (ei)={(s0, child(s0), c0 , a0),(s1, child (s1),
c1,a1),(s2, child (s2), c2,a2)…} where child (si) are all
sub-services managed by the service "si" ,” ci” and “ai”
denote respectively the cost and the availability of the
service (the latter takes the value available or busy).
These quadruplets are sent to the global agent controller
by the entity.

• For each connection of an entity (ei) to the system, two
tasks will be performed:

• An entity sends its request.
• Upon receiving the entire answers, the entity

defines all the functional dependencies D (ei) and sent
them to the global agent controller. The Functional
dependencies D (ei) are defined by a set of pairs, as an
example (D (ei) = {(ej, sk) ...} where sk is the delivered
service by ej to ei.

• Each exchanged message must be double signed
(through an hash function) by both the entity and its
agent controller that helps in the control task of the local
agent controller operation itself. So, if an agent
controller does not sign its message a “Raise not-
signed” event will be reported.

• A duplicated global agent controller is set and updated
periodically in order to take the control task if the
principal global agent controller fails.

• Each agent is supported by an entity and it (the agent)
will be killed if this entity fails or disconnects; except
the global agent controller and its cloned agent
(duplicated agent) which will migrate, if the entities
where the agents are running fail.

A. The global agent controller

The global controller is seen as an agent. It provides a set
of functionalities:

• Manages the faults’ detection and,
• Takes charge the occurrence of faults.

 So, switch the kind of the received event the agent
performs the suitable action. To do this, the global agent
controller (Gac) must has a set of information in database
knowledge. That contains an entry for each entity composed
of (see, table 2):

• the identity of the entity noted ei,
• its state as a set of pairs (ss, state) where each pair

represents a name “ss” and the state (that can has
the value “good” or “bad”) of every its provided
service.

• a description of the list of the offered services of the
current entity and all its functional dependencies

• The execution state “ESi” which represents the
status of the executing operation, on the entity,
which is periodically updated.

TABLE II. THE REPRESENTATION OF THE INFORMATION THAT
CHARACTERIZES AN ENTITY AT GAC.

The
entity

state offered Service Dependence Execution
state

e1 (s1, good)
(s2, bad)…

(s1, child (s1), c1,
a1) …

(e2, s4)
……

ES1

1) The global agent Controller as a manager of a fault

detection
The operations of the global agent controller are detailed

through a set of algorithms (see Figure 2), some of them
used to manage events flowing through the system, as the
indication of a fault of an entity ei:

• By its local agent controller (see Figure 2,
instruction 10) or,

• By another local agent controller (other than its own
agent controller) (see Figure 2, instruction 15).

 Upon receipt of the entire functional dependencies of a
given entity (ei) the global agent controller exploits them to
update the availability of services (instruction 9 in Figure.2)
from “available” to “busy”.
The other types of events are detailing in the next algorithm:

1 Input: event

2 Begin
3 Repeat
4 case (event) of:
5 nw_elt:
6 Creat and send the local agent controller Laci

7 Load _DB (ei)
8 D(ei):
9 Update availability (D (ei))

10 alert (Laci , ei,ss) :
11 P� takecharge(ei,ss)

12 Send fault (ei, Gac,ss) to every element of P

13 For every controller element of (P) do: Research (E,S)

14 For every controller element of (P) do: Send Mirror

(Gac, em, em)

15 alert (Laci , ej,ss) or good_state(Lacj ,ej,ss) :
16 Check_state (ej,ss),

17 Raise not-signed (i): preparing and send a new Laci

18Until (false)
19End

Figure 2. the global agent Controller algorithm.

ei ej Events

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

− Terminology
nw_elt: means that a new entity is connected to the

overall system.
Research (E, S): allow proposing a set of mirror services

(ms) to the entity affected by the fault.
Load _DB (ei): adds to the database an entry contains the

information concerning the entity (ei) (state (ei), D (ei) ...)
(see Table 2).

Extract_state (ej, ss): This function enables the
recuperation of the service state ss (ej) from the database (see
Table 2).

Raise not-signed (i): this event means that there is a
dysfunction on the Laci, so a substitution of the defective
Lac must be done. Therefore, the new agent takes the needed
information like (the most recent value of the execution state
ESi) and continues the control of its entity.

Check_state (ej,ss) is a verification function (see Figure 3)
for testing the entity state.
All the other instructions will be carefully explained in their
appropriate context.

Figure 3. Check_state function.

Rv (Gac, ej, ss) is a verification request sent by the global
agent controller to (ej) in order to test its state.

2) The agent global Controller as a responsible of the

fault tolerance
Upon the confirmation of the detection of a fault the global
agent controller performs the two following tasks to support
the fault:
• Declares the entity (ei) as partially defective, in service

s, by following the algorithm in Figure 4, which may
indicate the fault of the service provided by an entity to
all its dependencies (see Figure 2 instruction 11and 12;
Figure 3 instruction 12 and 13):

Figure 4. Algorithm of the takecharge function.

NE: indicates the number of entities in the system
The procedure update_state aims to update the operational
state, by “ bad”, of the defective service “s” and its child(s).

• The second sub-task of the global controller is to make

sure the continuity of system and the service deliverance
by following the algorithm (in Figure 5) that aims to
research the similar services (see Figure 2, Instruction
13; Figure 3, Instruction 14)

(es, ec, ae) : corresponds to the elected service

Figure 5. The function Research

1 Input : (ei, s)

2 Output : list of pair P of (entity e, service s)

3 Begin

4 ae � busy// the availability of service

5 State e� bad // the operational state of service

6 es�s
7 ss�es

8 ec�max (c)
9 elect�i

10 For j=1 to NE do
11 if ((ss = es) and (ae =available)

 and (sc <= ec) and (state s = good)) then
12 (es, ec, ae) � (ss, sc, ae)
13 elect� j

14 End if
15 (ss, sc, ae) � extract an offered services from the table

16 State e � state (ss)
 17 End For
18 if (State e = bad) then
19 return (Φ , Φ)
20 else
21 return (e elect , es)
22 End if
23 End

1 Input : entity : ej, service ss

2 Output: state of ej

3 Begin

4 State (ej,ss) �Extract_state (ej,ss);

5 if (state (ej,ss) =bad) then

6 send fault (ej,Gac,ss) to Laci

7 else

8 send Rv (Gac,ej,ss) to Lacj

9 if (Rep (ej,ss)) then
10 send good_state (Gac, ej,ss) to Laci

11 else
12 P� takecharge(ei,ss)

13 send fault (ej, Gac,ss) to every element of P

14 For every element of (P) do research (E,S)

15 For every element of (P) do Send Mirror(Gac, em, em)

16 End if

17 End if
18End

1 Input : (ei, s)
2 Output : list of pair P of (entity e, service s)
3 Begin
4 For j=1 to NE do
5 repeat
6 Dt(ej)� D(ej)
7 (en,sn) � extract an element from Dt(ej)
8 if (en = ei) and sn belong to {s} U {child (s)} then
9 insert P(ej,sn)
10 update_state (ei,s)
11 End if
12 until Dt(ej)= Φ
13 End For
14 return (p)
15 End

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

B. The local agent controller

To insure our control a set of a local controllers have
been used; these controllers are seen as a local agents noted
(Lac), one for each entity. Our suggestion of implementing
an agent controller is based on the idea of self-testing, which
allows individual control of each entity. This local controller
executes a set of tasks that allows it to control the operational
state of the entity. Faults are declared if an entity deviates
from this normal operation:
• the entity sends and saves a simple request (RS (ei, ej,

ss), (save (RS (ei, ej, ss))), waiting for answers (waiting
(RP (ej, ss))) (see Figure 6 instructions 7 thru 9), and a
possible definition of functional dependencies (see
Figure 6 instructions 7 thru 9),

So, the abnormal functional of an entity is represented as
events sent by the agent. Such as sending an alert (alert
(Laci, ej, ss)) if an entity ej has promised the entity ei to
ensure the service ss and it has not responded, or if it
returned a wrong result. Indeed, each controller provides the
following tasks:
1) Keeping track of execution in order to capture the

execution state, this will be used in a fault recovery (see
Figure 6, instruction 42).

2) Receiving the external events coming into the entity ei.
In this case an external event can be:

• a simple request from an entity ej (Figure 6, instruction
5);

• a negative feedback from the Lacj, the controller of an
entity ej, that is resulting from an eventual previous
interaction with the entity ei;

• An inquiry concerning the entity ei, or an information
failure of an entity ej if ei depends functionally from the
defective entity ej (this event is raised by the global
agent controller) (Figure 6, instruction 10…);

3) Informing the failure of its entity ei (see Figure 6,
instruction 18, 22,…); in the case of a no-response to the
periodical test of inspection performed by the agent
controller Laci itself,

The clarification of the terminology used in the next
algorithms (in Figure 6 and Figure 7) is explained bellow:

RS (ei, ej,ss): it is a simple request send by ei to ej
requesting the service ss.

RP(ei,ss/Gac): it is an answer for a request sent by the
entity (ei) (or Gac).

Fault (ej, Gac,ss): it indicates a failure of an entity ej, at
the service ss, reported by the global agent controller.

Rep (ei,ss): this is a Boolean function. It represents the
answer or not of ei to the local test relating to the service ss,
triggered by the local agent controller Laci .

Check_ local _state (ei,ss, t): it is a function that
represents the local test triggered after a time t. This function
has a value 0 if the service ss of the entity ei did not answer,
and 1 otherwise (see Figure 9).

Time: it represents the duration between two periodical
tests.

Alert (Laci , ei,ss): It denotes a failure of a service ss of
the entity ei reported by the agent controller Laci .

good_state (Laci , ei,ss): it is an event emanated from
the local agent controller Laci. It shows that the service ss of
it entity ei is in a good state.

good_state (Gac, ei,ss) it is an event emanated from the
global controller. It shows that the entity ei is in correct state.

fd (ej,ss): denotes a promise from the entity ej to perform
the service ss (functional dependency in the service ss).

Verify _Rq (ei, ej,ss): the role of this function is to check
if a request emitted by an entity ei is being processed by an
entity ej or not.

 Save (RS(ei ,ej,ss)) : its role is to save the request (sends
by the entity (ei)) that will be processed by the entity (ej)

Wait (RP(ej,ss)): it aims to start the control of the
duration of the response of an entity ej to the ei request’s.
Mirror (Gac, em, sm): indicating the elected service mirror
“ sm” and the identity of the entity that provides them. In
order to ensure the continuity of operation of the overall
system.

1 Input: even t;
2 Begin
3 Repeat
4 case (event) of:
5 RS(ej ,ei ,ss) :
6 save (RS(ei,e j,ss)) ;
7 Send fd((e i,ss) to Lacj
8 Treat (R S(ei, ej,ss)) ;
9 send (R P(ei ,ss)) ;
10 fau lt (e j ,Gac) OR alert(Lacj, e j,ss) :
11 If (Verify_Rq (ei , e j,ss)) then
12 C ancel (R S(ei ,ej,ss))
13 el se
14 s tate (ej)� bad
15 End if
16 aler t (L acj, e i,ss):
17 if (st ate (ei,s s)=bad) then
18 send alert (Laci ,ei ,ss) to Gac
19 send alert(Laci ,ei ,ss) to Lacj
20 el se
21 if ((check_ local _ state (e i,ss,0))=0) then
22 send alert(Laci, ei , ss) to Gac
23 send alert(Laci ,ei ,ss) to Lacj
24 el se
25 send good_state(Laci ,e i,ss) to Lacj
26 send good_state(Laci ,e i,ss) to Gac
27 End if
28 End if
29 fd (ej,ss):
30 update dependence D (ei)
31 Send D(ei) to Gac
32 good_sta te(Lacj , ej,ss) and not RP(ej,ss):
33 send RS(ei,ej,ss) to Lacj
34 good_sta te(Gac, ej,ss) and not RP(ej,ss):
35 send RS(ei,ej,ss) to Lacj
36 save (RS(ei ,ej,ss)) ;
37 wait (RP(ej, ss));
38 Mirror (Gac, em , em)
39 send RS(ei,em,sm) to Cm
40 save (RS(ei ,em,ss)) ;
41 wait (RP(mj,ss));
42 cont inue the execut ion from the current state
43 good_sta te(Lacj,ej,ss) and not RP(Gac):
44 send RS(ei ,ej,ss) to Lacj
45 raise degraded mode
46 activate the d upl icated Gac
47 until (fa lse)
48End;

Figure 6. The agent local controller algorithm.

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

The periodical test is performed by the execution of the
“check_ local _ state” function (see Figure 7) that will be
performed by the local agent controller, every a given time t
or in any other necessary moment like in the case of the
instruction 21 in Figure 6.

Figure 7. The function check_ local _state.

This last function (Figure 7) is used by the agent Lac(i) to
control the operational state of entity ei and all its offered
services.

V. CONCLUSION

This paper contains an effective contribution in fault
tolerance area applied to component-based systems. First,
some faults’ categories have been established by giving an
overview of the errors’ types, then this paper describes our
reflection to insure a high dependability by a fault tolerance,
which is based on a global agent controller and a set of local
agents controllers. Diverse situations (theoretical scenario)
have been treated: (1) even a fault, insuring the continuity of
delivering services, in a right way, by exploiting the agent
ability of keeping tack to capture the recent execution
context. (2) Insuring continuity of control even a dysfunction
at the global agent controller itself or at one or more local
agent controllers, through the use of the following features:
the replication and the migration ability, etc. In order to
validate the proposed mechanism, a simulation of a domestic
application is on the way with the purpose of giving some
statistics; and improving our theoretical. We have chosen an
application for monitoring a patient at home, on which we
have selected a set of adequate components, some
components are strongly coupled and other are not, to inject
faults and test how the system react, etc.

REFERENCES

[1] M. Zaiter, S. Hacini, and Z. Boufaida “Towards a Functional
Control of a Context-Aware Systems”, Information Studies:
Online ISSN: 1911-8414, vol. 4, no.1
January 2012, pp, 9-17.

[2] C. Leangsuksun, T. Liu, L. Shen, and S. L. Scott. “Building
high availability and performance clusters with ha-oscar
toolkits”. Proc. the High Availability and Performance
Workshop, Santa Fe, NM, October, 2003.

[3] D. B. Lange and M. Oshima, “Seven Good Reasons for
Mobile Agents”. Communications of the ACM, vol. 42, no.3,
March. 1999.

[4] H. Paulino “An Overview of Mobile Agent Systems’”,
Technical Report Series: DCC-02-1. February. 2002.

[5] O. Riva, J. Nzouonta, and C. Borcea. “Context-Aware Fault
Tolerance in Migratory Services”, MobiQuitous 2008, Dublin,
Ireland, July 21- 25, 2008.

[6] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman.
“Context Aware Session Management for Services in Ad Hoc
Networks”. Proc. IEEE International Conference on Services
Computing (SCC’05), July, 2005, pp, 113–120.

[7] Ramanathan et al. “The Final Frontier: Embedding Networked
Sensors in the Soil”, Tech. Rep. 68, CENS. November. 2006.

[8] A. B. Sharma, L. Golubchik, and R. Govindan “Sensor faults:
Detection methods and prevalence in real-world datasets”
Journal ACM Trans. on Sensor Networks TOSN Vol. 6, Issue. 3,
A23, ACM New York, NY, USA, June. 2010.

[9] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J.
Widom,. “Declarative Support for Sensor Data Cleaning”. Proc.
4th International Conference. Dublin, Ireland,, pervasive
2006.May 7-10. 2006, pp, 83-100.

[10] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Control Flow
Checking by Software Signature” IEEE Trans. on Reliability,
vol. 51, no. 1, 2002, pp, 111–122.

[11] Cheynet, et al. “Experimentally Evaluating an Automatic
Approach for Generating Safety-Critical Software with Respect
to Transient Errors,” IEEE Trans. on Nuclear Science, vol. 47,
no. 6, 2000, pp, 2231–2236.

[12] M. Rebaudengo, M. Sonza reorda, and M. Violante “A New
Approach to Software-Implemented Fault Tolerance”. journal of
electronic testing: Theory and Applications 20, Kluwer
Academic Publishers. United States. 2004, pp, 433–437.

[13] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. C.
Filho. “ Exception handling in the development of dependable
component-based systems” . Softw. Pract. Exper., 35(3): ,
2005,pp,195–236.

[14] P. Lee and T. Anderson. “Fault Tolerance: Principles and
Practice”, Second Edition. Prentice-Hall, 1990.

[15] A. Bucchiarone “Architecting Fault-tolerant
Component-based Systems: from requirements to testing”;
Electronic Notes in Theoretical Computer Science 168
Elsevie, 2007, pp, 77–90.

[16] J.P. Blanquart “Sûreté de Fonctionnement des systèmes
embarqués critiques Les enjeux industriels (Domaine Spatial)
(Astrium Satellites)” ETR’09 Ecole d’Eté Temps Réel,
TELECOM ParisTech, Aug 31-Sept 4, 2009 (in
French).

1 Input: entity ei,ss, time t;
2 Begin
3 if (not (Rep (ei))) then
4 state (ei,ss)� bad
5 send alert(Ci ,ei,ss) to Gac
6 t�time
7 Return (0)
8 else
9 state (ei)� good
10 t�time
11 Return (1)
12 End if
13End

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

