
Modeling and Analysis of State/Event Fault Trees
using ESSaRel

Kavyashree Jamboti∗, Michael Roth∗, Robin Brandstädter∗, Peter Liggesmeyer†
∗Technical University of Kaiserslautern, Dept. Software Engineering: Dependability

Building 32, Paul-Ehrlich-Straße, 67663 Kaiserslautern, Germany
{jamboti, michael.roth, r_brands}@cs.uni-kl.de

†Scientific Director
Fraunhofer, Institute for Experimental Software Engineering

Kaiserslautern, Germany
Peter.Liggesmeyer@iese.fraunhofer.de

Abstract—Fault Trees (FTs) have been a popular tool used
in the industry and academia to model safety related failure
scenarios of systems. However, since FTs are incapable of mod-
eling certain type of scenarios involving stochastic dependency,
timing and sequencing properties, they need to be extended or
modified to handle such scenarios. A State/Event Fault Tree
(SEFT) is one such tool for developing and analyzing systems with
dynamic behavior involving sequencing, timing and priorities of
events that cannot be modeled by ordinary fault trees. SEFTs
encompass dynamic behavior in the form of state charts for
constituent components of a system where failure propagation
between components is made possible by outports and inports.
Conceptually, SEFTs borrow the notion of components from
Component Fault Trees (CFTs). CFTs are nothing but fault
trees which encompass boolean logic related to failure within
the corresponding component boundaries. The ESSaRel tool was
initially built to model CFTs. In this paper, we describe our
experiences with the implementation of an editor for SEFTs by
extending the ESSaRel tool. We describe the concepts behind the
design decisions of the tool and the challenges that were addressed
in order to reduce the burden on the user to develop ’correct’
SEFTs. We also give some insights and tips for engineers who
would like to use SEFTs as modeling correct SEFTs requires a
good understanding of the semantics of its modeling elements.

Keywords—Fault trees, Reliability tool, Safety tool, State/Event
Fault Tress, ESSaRel

I. INTRODUCTION

Fault Trees (FTs) are an established method for conducting
safety analysis of systems due to their ability to provide both
qualitative and quantitative analysis results. They are able to
capture those combinations of events that lead to a compromise
in safety of systems which might not have been captured by
other safety techniques. With the advent of component-based
development, it became important to be able to create models
for individual components, which can be combined to create
a system model. However FTs have no notion of components,
a functional/structural change made to one component implies
that the entire FT has to be reconstructed, or at least it has to
be ensured that there is no need to make further changes to the
FT after making changes to the corresponding part of the FT.
This can be a time consuming task considering that FTs can
run into several pages depending on the size of the system.
Component Fault Trees (CFTs) [1] combat this problem very
elegantly by introducing component boundaries around failures

and gates where failure propagation between components is
facilitated using outports and inports. This makes it very easy
to identify where the changes in the CFT has to be made while
the rest of the CFT remains unchanged. Although one can
easily modify existing CFTs and combine CFTs for constituent
components to obtain a CFT for the whole system, they are just
an extension of FTs and still have the inherent shortcomings
of the fault trees’ inabilities to model timing and sequencing
of failure events. Also, there is no difference between states
which refer to a persistent condition of a component and an
event which refers to an occurrence without a temporal expan-
sion. State/Event Fault Trees(SEFTs) [2] go one step further
by extending CFTs to include the above mentioned features
by introducing state-charts in components. These state-charts
capture failure related behavior of components. Events and
states can influence and be influenced by the behavior of
other components through ports. SEFTs offer a wide range
of gates that render it a powerful tool to model a variety of
safety scenarios. Furthermore, any other specialized gate can
be modeled by the user as a component that can be reused
whenever it is required. Please note that unlike gates in a FT,
which are capable of only enclosing boolean logic, gates in
SEFTs can be thought of as components with an internal state-
chart of their own which are capable of modeling sequencing,
timing and memory. ESSaRel (Embedded Systems Safety and
Reliability Analyzer) is a tool that was initially designed to
provide an editor to model and analyze CFTs. It was then later
extended to enable modeling and analysis of SEFTs. SEFTs
have to be transformed to extended Deterministic Stochastic
Petri Nets (eDSPNs) in order to be analyzed. The extended
version of ESSaRel provides an editor for modeling SEFTs
and also implements the translation algorithm that converts an
SEFT to an eDSPN in a format compatible with the TimeNET
tool [3], which can be used to analyze the translated petri nets.

SEFTs, although powerful, require a thorough understand-
ing for their proper usage. In this paper, we describe how
ESSaRel assists a user in creating SEFTs without syntactic
errors. We describe our experiences of extending ESSaRel for
modeling SEFTs. We also provide pointers regarding how to
use SEFTs in the real world in order to create meaningful and
semantically correct models.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

�

�
�����������

������	
����

Fig. 1: Event Inlet and Outlet

������������

�������

�

Fig. 2: State Outlet

II. MODELING ELEMENTS OF SEFTS

In this section, we describe the modeling elements of
SEFTs, their semantics and constraints associated with them.
We first list out the modeling elements defined in [2] for SEFTs
and then describe the modeling elements that we added to
SEFTs to be able to create them using a tool. The conceptual
modeling elements are:

(a) Component which encompasses the behavior of the mod-
eled component in the form of state charts.

(b) State charts that contain state changes facilitated via
events. States and events are connected using temporal
connections which are represented by arrows with unfilled
arrowheads.

(c) Inports and Outports that allow propagation of failures
in and out of components. These ports are further typed
as ’state’ or ’event’ ports which are connected to other
elements in the state chart or gates by causal connections
represented by arrows with filled arrowheads.

(d) Gates are connected to one or more inputs leading to
an output that combine states and events using boolean
logic, priorities and may have parameters such as delays
associated with them. As mentioned earlier, gates in SEFTs
are not just boolean gates like the ones used in traditional
FTs, but have internal state charts associated with them.

(e) Once an SEFT interface consisting of outports and inports
has been created for a component type, it can be instanti-
ated in other components of which it is a part. This can be
done by dragging and dropping a component or by creating
a proxy from the palette and then choosing the component
type in the ESSaReL tool. Both methods result in creation
of a component instance with its interface consisting of
the inports and outports which we refer to as Proxy State
Inlets/Outlets and Proxy Event Inlets/Outlets.

In addition to the above mentioned elements, we add a few
modeling elements to the tool which are described below:

(a) Event inlet and Event outlet for triggered or triggering

action of events (Fig. 1).
(b) State outlet for connecting outgoing causal edges from

states (Fig.2).

A state does not have a state inlet as states cannot be triggered
from other components, only events can be triggered which can
cause the corresponding state transitions.

III. DESIGN DECISIONS FOR ESSAREL

As the use of Component Fault Trees increased in the
industry and in research, it became clear that the first version
of the tool [4] needed to be rewritten. The reason for this was
that the existing version was not flexible enough. With the
increasing use of CFTs in the academic/research field, new
ideas were implemented in different tools and there was need
to integrate ESSaRel with these other tools. For example, CFTs
created in different front-ends such as Magicdraw [5] needed
to be analyzed using ESSaRel. Also multiple back-ends such
as Fault Tree+ and Zusim could be used for analysing CFTs.
To address this issue, there is a common data model was
introduced for both CFTs and SEFTs on which ESSaRel is
based. This serves as an intermediate model between ESSaRel
and other tools. In addition, for SEFTs, there is a common
data model for DSPNs as well so that once an SEFT is
translated to a DSPN, different backends capable of analysing
DSPNs can be used. Fig. 3, 4 and 5 show a fire alarm system
described in [4] modeled in the new version of ESSaRel. In the
repository explorer of Fig. 3, we can see the three components:
FireScenario (which represents the system under study), Fire-
AlarmUnit and Watchdog. The FireAlarmUnit was modeled
just once (Fig.3) but instantiated twice as FireAlarmUnit1 and
FireAlarmUnit2 in the FireScenario component. Watchdog has
been modeled (Fig.4) and instantiated once in FireScenario, its
outport has been connected to inports of both instances of the
FireAlarmUnit.

One can notice that there are no outports or inports in the
palette in Fig.3. This is because the canvas that is visible is
that of the realization of the FireAlarmUnit. There is another
canvas for the interface (which has not been shown) whose
palette contains the inports and outports. Once a port is
added or deleted from the interface, ESSaRel automatically
synchronizes the interface and the realization by making the
corresponding change in the realization. This ensures consis-
tency by making sure that the only way to add or remove ports
in the realization is by modifying the interface. The reason for
this kind of separation between the interface and realization
is to allow a user to have the flexibility to choose between
different realizations for a component. For example, the values
at the outports of a component may come from an underlying
SEFT or a MATLAB/Simulink model. The realizations for the
Watchdog and the FireAlarmUnit are shown in Fig. 4 and 5
respectively.

In the remainder of this section, we describe the design
features of the tool to make it easier for users to create
syntactically correct SEFTs. Tables I and II below show the
constraints associated with causal and temporal connections
respectively. We have omitted those modeling elements that
cannot be sources on the first column and those that cannot
be targets on the first row in order to reduce the size of
the tables. The entries with a check mark (!) indicate the

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

Fig. 3: Fire Scenario modeled in ESSaRel

valid connections and entries with a cross mark (%) are
prohibited. We can see that there are a large number of rules
for connecting modeling elements which increase the chances
for a user to unknowingly create wrong connections. ESSaRel
prevents such errors by inhibiting the creation of prohibited
connections.

It may be useful for users to note that only outgoing
causal edges are allowed for states through state outlets, but
states cannot have incoming causal edges. States can occur
only by the triggering of a preceding event connected to the
state through a temporal connection. This implies that states
cannot be ’propagated’; only events can facilitate propagation
by triggering events in other components. States, on the other
hand can act as guards for an event so that the event can only
be triggered when the guarding state is true. As mentioned in
the previous section, this is the reason why a state does not
have a state inlet.

From Table 2 for temporal connections, we can see that a
state can only be connected to events and vice-versa, i.e., there
is a strict alternation between states and events connected by
temporal edges. A state can have two or more outgoing and
incoming edges, but an event can have only one incoming and
one outgoing edge.

Apart from the above constraints, the tool ensures that
there is not more than one incoming causal edge for a target.
This is necessary to ensure that there is no ambiguity in the
cause of an event or state. The tool also ensures prevention
of shallow cycles where a component references itself by
preventing proxies of a component to be created in its own
realization.

IV. PRACTICAL MODELING TIPS FOR USERS

Often, it can be confusing for users as to which is a good
way to model a given scenario as the same scenario can be
represented in multiple ways. For example, let us consider
a situation where an intermediate failure can be represented
as either the output of n-state-AND gate or as the output of
the History-AND gate for events. In such a situation, it is
important to understand well the difference between states and
events. States have a persistent nature, but a component is also
capable of changing its state. On the other hand, events do not
have any temporal expansion and once they occur, the only
way to record their occurrence is through the use of a History-
AND gate. Therefore, in a situation where we want to model
a scenario where two or more components are required to be
present in a certain state for an event to occur, we can use
the n-state-AND gate and when we want to model a scenario

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

Fig. 4: Realization for Watchdog

where the occurrence of some events cause an intermediate
event even when the components may no longer be in the
states resulting from those events, we can use a History-AND
gate.

As another example, let us consider the situation for
modeling state chart interaction in SEFTs where there are two
possibilities. The components can interact with each other via
state ports or event ports. As input ports both possibilities have
to be connected to events, either as a triggered event or as a
guard function of a state. But we are of the opinion that the
event based communication is better because triggered events
are much more intuitive compared to guard functions. It is
indeed possible to transform every state based communication
into an event based one by using a Flip-Flop gate. To do this,
the ’Set’ port of a Flip-Flop gate has to be connected to all
incoming transient arcs of the state and the Reset port with all
outgoing arcs. But it is not advisable to do so unless necessary
as the complexity of the transformed state-chart (into Petri Nets
for analysis) increases and the advantages of a more intuitive
SEFT are nullified. In this case a state-based communication
is preferable.

A. Nomenclature Scheme for SEFTs

SEFTs, like fault trees, are constructed by humans who
may give arbitrary names to failure ports. This may lead
to miscalculations during quantitative or qualitative analysis.
More information on consequences of wrong or ambiguous
nomenclature has been documented in [6], [7], [8], [9]. Here,
the authors recommend the use of two fields to construct FT
event names:

(a) Component Name, which is the fully qualified name of the
component given by the system decomposition hierarchy.

(b) Failure Mode, which describes the nature of the failure.

But since SEFTs are specialized FTs, the above two fields
are not sufficient for unambiguous nomenclature of its events.
Hence, to ensure unambiguity, we recommend to users to
construct names with the following two additional fields along
with the ones mentioned above:

(a) Environment Condition, which depends on the context in
which the component is deployed.

(b) System Condition, which depends on the configuration

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

Fig. 5: Realization for Fire Alarm Unit

peculiar to the component itself. This field is useful to
distinguish between two or more events that are sources
for temporal edges leading to a common target state.

These fields help to distinguish names of failure modes of the
same component the working conditions, which depends on the
context of deployment and the configuration of the component.
For more information on the description and usage of the above
fields, users are suggested to read [10].

B. Analysis

This subsection explains the evaluation functions of
TimeNET. SEFTs can be component-wise translated into
eDSPNs. This operation transforms events into transitions
and states into places where the initial state is expressed as
the initial marking of the resulting net. Deterministic and
exponentially distributed events can directly transfer into the
equivalent Petri Net transitions. For triggered events, however,
a pattern exists to connect different Petri Nets with each other.
According to the gate dictionary [4], for every gate an equiva-
lent eDSPN is available. By the usage of these transformation

functions, a Petri Net can easily be built out of every SEFT.
In addition to normal DSPNs, eDSPNs support probabilistic
values as well as priorities to avoid conflicting situations. The
probabilistic functions specify a value which stands for the
likelihood that a transition fires after its activation. Further it
provides textual elements such as the so called performance
measures. These measures represent the asked questions such
as "What is the probability for a certain marking of a specific
place?" A special grammar has to be used for defining the
measures which can be found in [3]. An example of such a
performance measure for the probability that place P1 contains
more than one token is P{#1>1}.

In TimeNET, there are different evaluation methods for
the analyzing these performance measures. The categories
are divided into (1) analysis and (2) simulation techniques.
To run an evaluation, at least one performance measure has
to be specified. The first evaluation category gives an exact
numerical result by computation of the reachability graph.
Therefore, the reachability graph has to be finite. In case
of a transformed SEFT this precondition is always fulfilled
because all converted Petri Nets are bounded. This type of

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

TABLE I: Constraints for Causal Connections

XXXXXXXSource
Target Proxy State

Outport
Proxy Event

Outport
State
Inport

Event
Inport

Event
Inlet

Gate State
Inlet

Gate Event
Inlet

Proxy State Inport ! % ! % ! ! %

Proxy Event Inport % ! % ! ! % !

State Outport ! % ! % ! ! %

Event Outport % ! % ! ! % !

Event Outlet % ! % ! % % %

Gate State Outlet ! % ! % % ! %

Gate Event Outlet % ! % ! ! % !

TABLE II: Constraints for Temporal Connections
XXXXXXXSource

Target State Event

State % !(incoming edges = 1)
Event !(outgoing edges = 1) %

evaluation technique can be further subdivided into transient
and stationary analysis, also called steady-state analysis. The
transient evaluation can analyze the net from the point of
initial marking during a given time period. The result can
be shown as a curve which represents the defined measure
for the complete interval or as a point which represents the
measure only at the end of the interval. Steady-state evaluation
is able to find a result without specifying such a time period.
It could be seen as a transient analysis with an infinite
time period. For getting a steady-state result it is necessary
that the eDSPN is designed without deadlocks. This means
that the reachability graph may not have any nodes where
no transition is enabled. An additional precondition for the
analysis of eDSPNs in TimeNET is the existence of at most
one deterministic transition. If this precondition is fulfilled then
these evaluation methods can be used to calculate the result
for the measures depending on the required time period (finite
or infinite).

The second category of evaluation techniques is the sim-
ulation methods. These methods estimate the measures by
the use of a modified Monte Carlo simulation and can also
subdivided into a stationary and a transient method. Because of
the inaccuracy, simulation should only be used if there is more
than one deterministic transition in the eDSPN. Apart from
that, simulation methods need to fulfill the same preconditions
as analysis methods. More information can be found in [3].

V. CONCLUSION AND FUTURE WORK

ESSaRel has been designed to be a user-friendly tool that
aids engineers to create syntactically correct SEFT models.
Based on our experience, we have also described some aspects
of SEFTs to provide tips to a user to build semantically
correct SEFT models. It is possible to perform quantitative
analysis on SEFTs, but it is not possible to perform qualitative
analysis on SEFTs as not much research has been carried out
with respect to this aspect. We intend to integrate qualitative

analysis such as minimal cut set generation. We would like
to integrate mechanisms for qualitative analysis when they
become available. In the future, we would like to extend
the functionality of ESSaRel to be able to directly display
analysis results for SEFTs directly in ESSaRel without having
to manually run the TimeNET tool.

ACKNOWLEDGMENT

This work was funded by the VIERforES project supported
by BMBF, Germany.

REFERENCES

[1] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept
for fault trees,” in SCS, 2003, pp. 37–46.

[2] B. Kaiser, “State event fault trees: a safety and reliability analysis tech-
nique for software controlled systems,” Ph.D. dissertation, Technische
Universität Kaiserslautern, 2006.

[3] A. Zimmermann and M. Knoke, “TimeNET 4.0 user manual,” Technis-
che Universität Berlin, Faculty of EE&CS, Tech. Rep. 2007-13, 2007.

[4] B. Kaiser and C. Gramlich, “State-event-fault-trees - a safety analysis
model for software controlled systems,” in SAFECOMP, 2004, pp. 195–
209.

[5] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn, J.-P. Schwinn,
and M. Trapp, “Integration of component fault trees into the uml,” in
MoDELS Workshops, 2010, pp. 312–327.

[6] C. A. Ericson, “Fault tree analysis by design,” in Proceedings of The
16th International System Safety Conference, 1998.

[7] A. Long, “Variants of classical cutset characterization,” in 21st Inter-
national System Safety Conference, 2003.

[8] Y. Papadopoulos and U. Petersen, “Combining ship machinery system
design and first principle safety analysis,” in IMDC 03, 8th Intl Marine
Design Conf, Athens, May 2003, pp. 1:415–426.

[9] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. M. III, and J. Rails-
back, Fault Tree Handbook with Aerospace Applications. NASA, 2002.

[10] K. Jamboti, C. Gomez, O. Mackel, and P. Liggesmeyer, “Improved
nomenclature schemes for component fault trees and state/event
fault trees,” in Annual European Safety and Reliability (ESREL)
Conference(In-Press), 2013.

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

