
A Fault-Injection Prototype for Safety Assessment of V2X Communication

Daniel Skarin, Benjamin Vedder, Rolf Johansson, and Henrik Eriksson

Department of Electronics

SP Technical Research Institute of Sweden

Borås, Sweden

e-mail: {daniel.skarin, benjamin.vedder, rolf.johansson, henrik.eriksson}@sp.se

Abstract— This paper describes an approach for injecting

faults in ad hoc vehicle networks. A prototype fault injector,

which makes it possible to investigate how a cooperative

vehicle system behaves in the presence of communication

errors, has been developed. The prototype shows a feasible way

to use fault injection as technique to produce evidence for a
safety case belonging to a cooperative automotive system.

Keywords-fault injection, safety assessment, IEEE 802.15.4,

V2X communication.

I. INTRODUCTION

In the past years, there has been a strong focus on
functional safety in the automotive domain. In 2011, the
standard ISO 26262 [1] was released, and currently the
industry is adopting the development procedure to the
standard. At the same time, automotive functions are getting
more and more complex; autonomous and cooperative
vehicles will soon move from prototypes to products. Safety
assessment of cooperative systems will put requirements on
evidence which show that communication failures are
handled in a safe way. This paper shows a way to inject
communication faults in cooperative systems as a technique
to produce evidence for a safety case.

Cooperative vehicle systems cover a wide range of
interdependence. Willke et al. [2] have suggested a
taxonomy defining four type levels. On type levels 1 and 2,
vehicles and infrastructure are exchanging information with-
out being dependent on it to achieve a safe behavior. On
type level 3, the functions rely on communicated informa-
tion from other vehicles about motion and actuator states to
ensure safe and/or efficient operation. On type level 4,
applications use inter-vehicle communication to reach a
common goal, e.g. driving in a road train (platooning). At
least on the type levels 3 and 4, safety requirements will be
allocated on the communication between the vehicles (V2V)
and between the cars and the infrastructure (V2I).

According to the ISO 26262 standard, safety require-
ments shall be refined from top-level safety goals to the
system components of the physical architecture. For safety-
related cooperative functions, this implies that some safety
requirements will be put on the V2V and V2I communica-
tion, respectively. Furthermore, the standard states what is
needed to argue in order to fulfil verification of the safety
requirements. For the higher integrity levels (ASIL C and
D), it is required to use fault-injection techniques to show
that safety mechanisms can handle all safety-relevant faults.

Fault injection in wireless communication used for
transfer of safety-critical information in ad hoc vehicle
networks needs further research. For computer systems
(hardware and software) communicating via wires, there is a
fairly long tradition of using fault-injection techniques and
tools [3]. Alena et al. [4] have investigated how the fault
tolerance of wireless sensor networks using IEEE 802.15.4
is affected by interference from other networks and multi-
paths. Boano et al. [5] present a solution which produce
repeatable and precise patterns of interference in wireless
sensor networks. Malicious faults (attacks) and some natural
faults in ad hoc networks can be assessed using the fault-
injection platform developed by de Andrés et al. [6].

In this paper, a fault-injection prototype is described.
The prototype is based on IEEE 802.15.4 since this standard
is used for communication in the automotive and aerospace
demonstrators of the KARYON project [7]. However, it is
straightforward to adapt the concept to other techniques to
be used in the automotive domain (IEEE 802.11p).

Section II introduces relevant fault models originating
from functional safety standards. The section also explains
how different failure modes can be emulated. Section III
describes the fault injection prototype, and Section IV
presents initial conclusions and future work.

II. FAULT INJECTION IN COMMUNICATION

A. Fault models

Standards for functional safety, such as ISO 26262 for
road vehicles and the generic IEC 61508, list failure modes
which are applicable for communication. Part 5 of ISO
26262 [1] lists failure modes for on-chip communication
and data transmission. The failure modes for data
transmission are applicable for wireless communication.
IEC 61508-2 [8] lists identical failure modes for communi-
cation. Other important failure modes for communication
are blocking access to communication channel [9] and
asymmetric information [10]. Table 1 summarizes failure
modes applicable for wireless communication.

Based on the diagnostic coverage that is claimed for a
safety mechanism, ISO 26262-5 Table D.1 [1] lists failure
modes that need to be analyzed. Failure modes for on-chip
communication are described next.

Stuck-at failures are described as a continuous low or
high signal at the pins of an element. They are applicable
for elements which have a pin-level interface for data,
control, address, and arbitration signals.

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

TABLE I. FAILURE MODES FOR COMMUNICATION

Failure mode Interpretation

Message

Corruption
The received data of a message is incorrect.

Message delay
A message is received later than expected by all, or

some, receivers.

Message loss A message is lost by all, or some, receivers.

Unintended

message

repetition

Receivers obtain two or more messages with the

same information instead of one message.

Resequencing
Messages are received with incorrect sequence

numbering.

Insertion of

message
Receivers obtain a message that they did not expect

Masquerading

(or incorrect

addressing)

A sender transmit messages using an id of a

different sender

Asymmetric

information

Information from a single sender is received

differently by receivers. It can also be that

information from a sender is only received by a

subset of the receivers

Blocking

access to a

communication

channel

Prevents nodes from accessing the communication

channel, similar to a babbling idiot.

The direct current fault model extends stuck-at failures

with stuck-open, open, or high impedance outputs, and short
circuits between signal lines. The analysis of the fault model
is applicable for data, control, address and arbitration
signals, but is mainly intended for main signals or on highly
coupled interconnections.

When several devices are connected to a bus, arbitration
is used to determine which device that controls the bus. No
arbitration and continuous arbitration are mentioned as
failure modes for on-chip communication in ISO 26262-5
[1]. Time out is mentioned in both IEC 61508 and ISO
26262, but neither standard describes the failure mode in
more detail.

Soft errors are caused by ionizing particles, supply
voltage noise, or cross-coupling between signal lines. The
consequence is one or several bit-flips in memories or bus
signals.

B. Emulating the Effects of Faults

The failure modes for wireless data communication can
be emulated using a combination of jamming, packet
injection, and packet sniffing. Jamming [5][11] is used to
prevent one or several nodes from receiving or sending
packets. Packet injection is used to insert additional,
duplicated or corrupted messages in the wireless network.
Packet sniffing allows the fault injection module to
eavesdrop the wireless traffic in a non-intrusive manner.
This is useful for logging and for triggering the injection of
different failure modes.

Table 2 shows how different failure modes can be
implemented by combining jamming and packet injection.
For example, the effects of a message delay can be emulated
by jamming to prevent nodes from receiving the original
message, and then resending the original message with a

delay. This assumes that we have a priori knowledge of the
content of the message. Message losses are emulated by
activating jamming when specific messages are being trans-
mitted by a node.

Figure 1 and Figure 2 illustrate how failure modes for
on-chip communication are emulated. The signal between
two elements passes through a fault injection module which
has the capability to modify the transmitted signal value.
For most failure modes, such as soft errors, a faulty signal
only relies on the value of the non-faulty signal as shown in
Figure 1. For short-circuits between signals, however, the
values of two or more signals are needed, as shown in
Figure 2.

TABLE II. EMULATING FAILURE MODES USING JAMMING AND

PACKET INJECTION

Failure mode Jamming
Packet

Injection

Message Corruption x x

Message delay x x

Message loss x

Unintended message repetition x

Resequencing x

Insertion of message x

Masquerading

(or incorrect addressing)
 x

Asymmetric information x x

Blocking access to a communication

channel
x

Element

Fault injection module

Signal
SignalFI

0/1
Element

Figure 1. Injection of stuck-at faults in a signal.

Element Element

Fault injection module

Signal 1

Signal 2 Signal 2FI

Signal 1FI

Figure 2. Injection of short-circuit failures between two signals.

C. Controlling When to Inject Faults

Figure 1 shows a state machine for controlling the fault
injection. The idle state has an internal counter to keep track
of the currently evaluated trigger. When all triggers have
been evaluated to true in the correct order, fault injection is
activated in the state “Start FI”. Following that, the “FI”
state is immediately entered.

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Idle Start FI FI Stop FI Done

start_triggerN stop_triggerN !intermittent

intermittent

Figure 3. State machine to control the fault injection.

Initial

trigger1

Trigger1 ... TriggerN

trigger2 triggerN

!trigger2

!triggerN

TriggerN-1

triggerN-1

Figure 4. State machine to handle start and stop triggers for fault injection.

The “FI” state is exited when all stop triggers have been
fulfilled. Unless an intermittent fault is emulated, the fault
injection is stopped. For intermittent faults, there is a return
to the idle state and another wait for start trigger fulfillment.
Fault injection is activated using triggers which can be
based on: elapsed time, probability per received packet,
sender or receiver address of a packet, or data in the payload
of a packet. Several triggers can be combined so that fault
injection is started or stopped by a chain of events, as shown
in Figure 2. Using this approach, well-known packet loss
models such as Bernoulli and Gilbert-Elliot [12] can be
supported, as well as simple triggers based on, e.g., elapsed
time.

III. FAULT INJECTION PROTOTYPE

The fault injection concept described in the previous
section has been implemented for vehicle demonstrators in
the KARYON project [7]. The fault injection prototype can
be used for injecting failures in IEEE 802.15.4 data
communication, and in the on-chip communication. Figure
5 shows a picture of the fault injection node, which uses the
STM32F4 microcontroller from ST and the CC2520
communication chip from Texas Instruments. The node is
based on layout and hardware schematics which are freely
available from [13].

The fault injector uses ChibiOS/RT [14] as its operating
system, and implements the state machine described in
Section II.C. The following fault injection triggers are sup-
ported:

 Time – Enabled after a specified time has elapsed.

 Packet probability – Enabled with a specified
probability for each received packet.

 Packet destination address – Enabled when a
packet with a matching source address is received.

 Packet source address – Enabled when a packet
with a matching destination address is received

 Packet data – Enabled when the specified data
matches the received data

 The fault injector is configured using USB
commands, or by sending configuration packets via
IEEE 802.15.4.

Figure 5. RF board with STM32F4 and CC2520 based on [Vedder].

The prototype fault injector also provides packet logging

capabilities, which are useful for debugging purposes. The
CC2520 communication chip provides hardware support for
packet sniffing, which can be used as a non-intrusive
method of observing wireless traffic. The fault injector can
output captured packets in the packet capture (pcap) format
using a named pipe. The logged traffic can then be analyzed
in real-time using tools such as Wireshark which is an open
source network protocol analyzer. Figure 6 shows an
example of logged traffic in Wireshark.

The following failure modes are currently supported by
the fault injection prototype: message corruption, delay,
loss, insertion, unintended message repetition, masquerad-
ing, and blocking access.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Figure 6. Packet sniffing using the fault injection node and Wireshark.

For some of the failure modes, e.g. message delay,

message payload need to be known a priori. Proof-of-
concept fault injections have been successfully performed,
but no complete fault-injection campaigns have been run
yet.

IV. CONCLUSIONS AND FUTURE WORK

A prototype fault injector for digital communication, in
particular wireless communication, has been described. One
limitation with the approach is that communication chips
require some time to switch between receiving and sending.
For the CC2520 chip, the RX/TX turnaround time is 192µs.
For packets with a small payload, it might therefore not be
possible to trigger the fault injection and jam the packet
currently being received. This is something which will be
investigated in the near future.

The prototype has been tested on IEEE 802.15.4
communication, but the concept is straightforward to adapt
to other communication techniques, such as IEEE 802.11p.

The prototype shows that it is feasible to inject most
faults needed in a safety assessment according to the
requirements in functional safety standards.

ACKNOWLEDGMENT

This work has been supported by the EU under the FP7-
ICT program, through project 288195 Kernel-based
ARchitecture for safetY-critical cONtrol (KARYON).

REFERENCES

[1] ISO26262-5, “Road vehicles – Functional safety – Part 5: Product
development at the hardware level”, 2011.

[2] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A survey of

inter-vehicle communication protocols and their applications”, IEEE
Communications Surveys & Tutorials, vol. 11(2) , pp. 3-20, 2009.

[3] H. Mei-Chen, T. K.Tsai, and R. K. Iyer, “Fault injection techniques

and tools”, IEEE Computer, vol. 30(4), pp. 75-82, 1997.

[4] R. Alena, R. Gilstrap, J. Baldwin, T. Stone, and P. Wilson, “Fault
tolerance in ZigBee wireless sensor networks”, Proc. 2011 IEEE

Aerospace Conference, March 2011, pp. 1-15.

[5] C. A. Boano et al., “Controllable radio interference for experimental
and testing purposes in wireless sensor networks,” Proc. IEEE 34th

Conference on Local Computer Networks, Oct. 2009, pp. 865-872.

[6] D. de Andrés, J. Friginal, J.-C. Ruiz, and P. Gil, ”An attack injection
approach to evaluate the robustness of ad hoc networks”, Proc. 15

th

IEEE Pacific Rim International Symposium on Dependable
Computing, Nov. 2009, pp. 228-233.

[7] Homepage of Kernel-Based ARchitecture for safetY-critical cONtrol,

http://www.karyon-project.eu/, accessed on 25
th
 of June 2014.

[8] IEC 61508-2, “Functional safety of electrical/electronic/program-

mable electronic safety-related systems – Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems”,

2010.

[9] H. Kopetz, “Real-time systems”, Kluwer, 1997.

[10] F. Cristian, “Understanding fault-tolerant distributed systems”,
Communications of the ACM, vol. 34, pp. 56-78, 1991.

[11] A. D. Wood, J. A. Stankovic, and G. Zhou, "DEEJAM: Defeating

energy-efficient jamming in IEEE 802.15. 4-based wireless
networks," Proc. 4th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON'07), June 2007, pp. 60-69.

[12] J.-P. Ebert and A. Willig, “A Gilbert-Elliot bit error model and the

efficient use in packet level simulation”, Technical Report, TKN-99-
002, Technical University of Berlin, 1999.

[13] Homepage of B. Vedder “CC2520 and STM32 RF boards”,

http://vedder.se/2013/04/cc2520-and-stm32-rf-boards/, accessed on
25

th
 of June 2014.

[14] Homepage of ChibiOS/RT, http://www.chibios.org, accessed on 25
th

of June 2014.

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

