
HiPAS: High Performance Adaptive Schema Migration

Evaluation of a Self-Optimizing Database Migration

Hendrik Müller, Andreas Prusch, Steffan Agel

Pasolfora GmbH

An der Leiten 37, 91177 Thalmässing, Germany

{hendrik.mueller|andreas.prusch|steffan.agel}@pasolfora.com

Abstract – HiPAS is a database migration method, aimed at

reducing downtime during offline migrations by automatically

adapting to available system resources. Investigating the

applicability of adaptive capabilities for database migrations,

two stages of system complexity, adaption and anticipation,

were mapped onto the requirement of utilizing a system up to

an optimal degree in order to achieve the shortest possible

transfer duration. The developed method is automated by

implementing the HiPAS software, which adapts to its

environment by continuously monitoring relevant system

information, and increasing or decreasing the current

parallelization degree whenever necessity is assumed. To

enable a flexible adaption, the total amount of migration data

is partitioned into equal sized transfer jobs being distributed

across available instances and networks. Since HiPAS is

invoked on the database layer, and controlled by a temporarily

created autonomous database user, migration metadata is

stored inside tables thus being highly integrated with the actual

migration data. HiPAS was designed and evaluated iteratively

following the IS research framework and reveals significant

downtime reduction potential compared to non-adaptive

migration approaches like Oracle “Data Pump”. Our results

serve as a contribution to all researchers and practitioners in

investigating fields of application for adaptability mechanisms.

Keywords-Adaptability; Anticipation; Database Migration;

Parallelization.

I. INTRODUCTION

The rapid technical developments inside changing
markets, as well as the need for efficiency enhancements,
mainly driven by cost pressure, require to transfer running
information systems occasionally into a new environment,
which fulfills the operational requirements in a more suitable
way. This process is referred to as software migration [1] and
meanwhile the software’s availability can be limited
depending on the chosen migration method. Regarding this,
basically two approaches can be differentiated:

 online Migration: continuous availability

 offline Migration: interrupted availability
In some critical environments, a downtime is not

acceptable, thus online migrations need to be performed.
This paper deals with the variety of cases, which do not
require a costly and complex online migration and a planned
downtime is tenable. In that case the main concern is to keep
the downtime as small as possible since the duration of

unavailability may result in opportunity costs. In particular,
we target migrations applying the “big-bang” strategy [2],
thus data is fully migrated at once in contrast to incremental
migrations. Since the legacy system (source system) is shut
down during the data transfer, starting the target system,
referred to as cut-over [3], cannot be performed before all
required data has been transferred to the target system’s
database. The length of downtime depends on the migration
approach taken. For database migrations, different system
layers can be involved determining the performance and
granularity of data selection (see Section 2). We investigated
the applicability of adaptive capabilities for database
migration software in order to reduce the necessary
downtime by parallelizing data transfer up to an optimal
parallelization degree, which will be continuously adapted to
the system’s load capacity. Prior tests indicated, that
overloading the target or source systems resources leads to a
temporary stagnation of the whole migration progress,
whereas a low utilization wastes available resources, thus
underachieving existing downtime reduction potential.

The developed approach “HiPAS” (High Performance
Adaptive Schema Migration) is intended to provide
dependability and interruptibility, since migration software
should be able to identify where to resume an interrupted
migration process instead of starting from scratch avoiding
the necessity of rescheduling a planned downtime.

Further technically conditioned features will be added in
Section 3 as consequences of the preliminary considerations.
Section 4 summarizes HiPAS´ architecture by means of
introducing adaptability challenges of the subsequent
described migration process. The adaptive capabilities are
outlined in Section 6 and 7. Finally, in Section 8, we evaluate
HiPAS, which refers to both the designed migration method
and the migration software, currently implemented in Oracle
PL/SQL syntax comprising 8,540 lines of source code.

II. PRESENT MIGRATION APPROACHES

As introduced previously, migration approaches can be
differentiated regarding the availability of the migrated
systems into online and offline migrations. For stated
reasons, we focus offline migrations, which can be further
classified concerning their own characteristics and their
applicability for certain database characteristics:

 invocation layer

 support for change of platform

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 support for change of endianness

 support for change of character set

 downtime proportionality
The divergence of the source and target database in terms

of platform, endianness and character set technically limits
the available migration methods. A critical decision criterion
for the remaining contemplable methods is the demand for
downtime shortness resulting in lower opportunity costs
during the unavailability of the database and all relying
applications. The fact, that a high throughput for data
transfer was achieved as yet by eliminating upper layers and
protocols, leads to the conflicting goals of flexibility and
performance when selecting a migration method. The lower
a layer a migration is invoked on the more flexibility is lost,
since changes of database characteristics might not be
supported and the possible granularity for migration data
selection decreases. Finally, downtime proportionality refers
to the entity, which the downtime length depends on; this can
be the amount of migration data or the data alteration rate if
incremental methods are used.

When designing HiPAS, we pursued the goal of
achieving a short downtime and at the same time providing
the flexibility of migrating between divergent databases and
selecting the data as granular as possible. This was achieved
by invoking the migration on database layer without ever
leaving this layer during the whole migration process and by
parallelizing the data transfer adaptively in respect of the
system’s resources. Therefore, we add “adaptability” as a
further decision criterion for migration software capabilities.

III. PRELIMINARY CONSIDERATIONS

The performance of migration software highly depends
on how well its design fits to the operating environment and
the intended range of functions. Previous system and data
analyses are necessary to conclude with a migration design,
which has been aligned to the findings in multiple iterations
following the guidelines of design science in information
system research [4]. Figure 1 shows, how the designed
artefact HiPAS is related to its environment and
knowledgebase base inside the information systems research
framework.

People
Usability

Organizations
License Costs

Platform Change
Downtime Shortness

Technology
Compatibility

Reliability
Interruptibility

No temporary storage

Developed Artefact
HiPAS

Utilizing Adaption for
Database Migrations

Evaluation
Multiple Test Runs

Varying Storage Systems
Varying Networks

Foundations
Law of Adaption
Utilization Law

Little´s Law
Implementation

Methodologies
Data Analyses

KPI based Measures

Environment IS Research Knowledge Base

Assess Refine

Application in the
Environment

Additions to the
Knowledgebase

B
u

si
n

es
s

N
ee

d
s

A
p

p
lic

ab
le

 K
n

o
w

le
d

ge

Figure 1. HiPAS as an IS Research Artefact (Adapted from Information

Systems Research Framework [2]).

HiPAS was intended to be built upon findings of
preliminary analyses (Knowledgebase) described in this
Section as well as business requirements (Environment) and
from then on has been improved continuously, based on
evaluation runs performed in a variety of different
environments provided generously by customers.

A. Enterprise Data Structures

When moving existing data files to the target system, as
migration approaches invoked on storage and database layer
do (see Section 2), the valuable downtime is partly spent
migrating unnecessary or useless data. The allocated size of a
data file implies unused space and indexes. To gain an
overview of typical storage occupancies, we analyzed 41
SAP systems productively running at a German public
authority by querying the allocated disk space, the used disk
space and the space used for indexes with a result shown in
Figure 2.

Figure 2. Average Structure of Allocated Data.

For these 41 SAP Systems, we identified an overall
amount of 93.08 TB allocated data. From this amount, about
28 TB (30 %) represented allocated space, which was not yet
filled with data. From the used space of 65 TB, about 22 TB
(24% of the overall amount) were filled with indexes. The
remaining 43 TB (46% of the overall amount) represent the
actual relevant data, which necessarily needs to be
transferred into the target database within a migration.
Indexes can be created at the target system and do not have
to be transferred, thus saving network bandwidth. Depending
on the layer the migration is invoked on, unused but
allocated data can be excluded as well.

In this case, if all of the analyzed SAP systems needed to
be migrated, migration tools not supporting data selection
would utilize all involved system resources for transferring
data, of which approximately 54% is useless on the target
system. Invoking a migration method on software layer
enables both excluding useless data autonomously and
implementing self-adaptability.

B. Endianness

When performing a database migration, the byte order in
which the source and target system store bytes into memory
needs to be considered. This byte order is referred to as
endianness and data is stored into data files accordingly, so
the endianness can affect the amount of available migration
methods and the overall needed downtime.

A major part of migration demanding customers served
by the authors of this paper currently initiate migration
projects due to licensing and maintenance costs, this amount

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

is strongly influenced by an increasing number of platform
migrations from Solaris to Linux, requiring subsequent
migrations on upper layers such as the databases tier. The
latest International Data Corporation (IDC) report on
worldwide server market revenues substantiates this
observation by stating, that Linux server revenue raised from
17% in Q4 2010 to 23.2% in Q2 2013 compared to Unix
decreasing from 25.6% down to 15.1% [5]. The Unix-based
Solaris operates on processors following Oracle´s SPARC
architecture, whereas Linux distributions can be used on
systems based on Intel processors. When migrating from
Solaris to Linux accordingly the endianness changes from
big endian to little endian, so the data files cannot simply be
moved without converting them before or after the transfer.

Alternatively to converting data files, the database
migration can be invoked on a layer, which supports saving
the data into new files on the target system such as export-
import-tools as well as HiPAS do. In this case, migration
performance can be enhanced by means of adaptive
capabilities.

C. Storage I/O Controller

As a consequence of the requirement for downtimes as
short as possible, a utilization degree of the underlying
storage systems has to be achieved, which enables short
response times. The overall amount of requests inside a
system (N) equals the product of arrival rate (a) and average
response time (R) as expressed by Little´s Law [6]:

 (1)

In addition the Utilization Law [7] defines the utilization
(U) of the I/O controller as the product of arrival rate and
average processing time (RS):

 (2)

By combining these relations, it becomes clear that the
response time depends on the I/O controller’s utilization as
described within the following formula: [8]

 (3)

The relation shows, that the response time does not
change linearly to the utilization. At higher utilizations, the
response time grows exponentially as clarified in Figure 3.

R
es

p
on

se
 T

im
e

70% 100%0%

Figure 3. Relation of Utilization and Response Time.

By adapting to the source and target system resources,
HiPAS continuously changes the utilization of the I/O
controller in order to achieve an optimal relation of response
time and utilization supporting the shortest possible overall
duration. The storage manufacturer EMC generally describes
an average utilization of 70% as optimal [8].

IV. HIPAS ARCHITECTURE

Following the goals introduced in Section 1, we designed
the HiPAS migration method as describes in the following.

A. Everything is a Tuple

When performing an automated and controllable
migration, a number of interim results arise, e.g., during the
analysis of source data. Keeping these information as well as
logging and status information is necessary for the
administrator to manage and verify the migration and for the
software itself to handle parallel job executions
autonomously. The necessity for saving and querying
migration metadata leads to HiPAS’s design paradigm of not
leaving the database layer during the whole migration
process. Interim results such as generated DDL and DML
Statements for later execution are represented by tuples of
tables inside a temporary migration schema enjoying
advantages of the databases transactional control
mechanisms. The paradigm of everything being a tuple is
emphasized by the following list:

 objects to create are tuples (table “cr_sql”)

 data to transfer are tuples (table “transfer_job_list”)

 running jobs are tuples (table “mig_control”)

 parameters are tuples (table “param”)

 logs are tuples (table “logging”)
After a migration has been performed, its success and the

transferred data´s integrity have to be verified. Since logging
information was stored during the whole process inside the
logging table, SQL can be leveraged to query for certain
transferred objects or states or both. Sorting, calculating and
analytical capabilities of SQL are utilized as well for
optimizing the migration process, thus there is no need for
any other migration application on operating system level
then the database management system (DBMS) itself.

B. Adaptability and Dependability Problems

When designing the migration method and

implementing the related software, several challenges had to

be faced. In this Section, we will briefly introduce some of

the most interesting problems and their intended solutions:

 Utilization Problem

 Knapsack Problem

 Distribution Problem

 Dependency Problem

 Index Problem

Subsequently described solution approaches for the above

listed problems will provide an overview of the conceived

migration method. In-depth Sections are referenced.

1) Utilization Problem: Utilization cannot be planned

generally since systems behave differently depending on

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

their resources and further running processes. During the

evaluation phase performed migration test runs having a

preliminary defined static parallelization degree, verify this

statement, which leads to the risk of both overloading a

system and on the other, hand not utilizing idle resources.

Derived from the relationship between utilization and

response time described in Section 3-C, Figure 4 shows how

the overall performance, in terms of response time, behaves

at increasing parallelization degrees:

R
es

p
on

se
 T

im
e

Figure 4. Expansion when Overloading the Storage System.

By choosing the currently optimal parallelization degree

adaptively at any time, HiPAS targets an optimal and

dynamic utilization and, in this way, reduces the risk of

utilizing the systems too much or not enough.

Parallelization is implemented by means of background jobs

started through the database scheduler. In this way, the yet

manual task of finding the optimal parallelization degree for

the respective system environment is intended to be done by

HiPAS automatically and adaptively, implicating the ability

to change this value dynamically during the whole transfer

process.

2) Knapsack Problem: From an amount of objects,

defined by their weights and values, a subset with limited

weight and maximum total value has to be chosen [9]. This

knapsack problem reflects the challenge of choosing optimal

combinations of different sized tables to transfer in parallel,

since the available computing resources are limited. Large

tables should be preferred in a way of starting their transfer

at the beginning of the migration process, because a possible

failure can require a restart of the table transfer thus delaying

the whole migration when started too late. HiPAS

circumvents the knapsack problem by dividing large tables

into equal sized partitions, which can be transferred in

parallel. This offers flexibility in scheduling the data transfer

and dynamically adapting the current parallelization degree.

3) Distribution Problem: Depending on the migration

environment, the accruing work load can be distributed on

multiple instances of a cluster. In terms of network

bandwidth, multiple database links can be created on

different physical network connections between the source

and target system. In this case, HiPAS will distribute data to

be transferred equally on the available database links in order

to utilize the total available bandwidths. In case of a real

application cluster (RAC), HiPAS distributes running

transfer jobs on the available instances. Then the fact of the

previously mentioned partitioning of large tables needs to be

considered. We optimized the data buffers of the instances

by distributing transfer jobs, which continue a large table, to

the instance, which already transferred previous parts of the

same table to avoid reloading the table into multiple buffers

of different instances. The corresponding algorithm is

explained in Section 7-D.

4) Dependency Problem: When invoking the migration

on database layer, dependencies among the transferred

objects need to be considered for the transfer order. Surely,

users need to exist before importing data into created tables

and granting permissions found in the source schema.

Constraints like foreign keys have to be disabled temporary,

so HiPAS does not have to spend time for calculate a strict

and inflexible transfer order. If reference partitioning was

used inside the source schema, a parent table needs to exist

before the child table can be created following the same

partitions. For considering such dependencies, HiPAS

calculates a transfer schedule in the first place. Since

possible existing triggers will be transferred as well, they

need to be disabled during the migration process in order to

avoid unexpected operations on the target system, e.g.,

invoked by an insert trigger.

5) Index Problem: Indexes can either be created directly

after table creation or after the table has been filled with data.

When creating the index before data load, they will be built

“on the fly” during the transfer phase, in contrast, after data

load, an additional index buildup phase would need to be

scheduled. The right time for indexing depends on the target

storage system and network bandwidths. In case of a highly

powerful storage system, it might be reasonable to build the

indexes directly during data import since the network

represents the bottleneck of the whole migration and the

storage system would idle otherwise. On the other hand,

storage systems can be overloaded when indexes have to be

created at import time. Consequently, the decision about the

indexing time is another use case for the adaptive capabilities

of HiPAS explained in Section 7-C.

V. COMPONENTS AND MIGRATION PROCESS

Assuming, that both source and target database system
have been physically connected preliminary and are
configured to be accessible by each other, the migration
process consists of three main phases invoked on the target
system, which are briefly described subsequently:

1. Installation and Pre-Transfer (Step 1-3)
2. Adaptive Data Transfer (Step 4-6)
3. Post-Transfer and Uninstallation (Step 7)
Figure 6 on the next page shows the steps of these

phases, which are invoked on the target system.

A. Installation and Pre-Transfer

Following the paradigm of not leaving the database layer, an

additional and temporary schema is created inside both

source and target database during an automated installation

phase. All subsequent operations will be done by the owner

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

logging

transfer_job_list

mig_control

cr_sql

Temporary Migration Schema: MIG_ADM

Target Schema:
 e.g. SAPSR3

Source Schema:
e.g. SAPSR3

cr_sql_remote

logging

other

Temporary Migration

Schema: MIG_ADM

copy_table(_range)

build_transfer_schedule

get_schemas

_and_tables

paramexecute_next_

tab_job

Create schemas,

create_tables

otherS
o

u
rc

e
 D

a
ta

b
a

s
e

T
a

rg
e

t D
a
ta

b
a

s
e

1

2

3

4

5 optimizer6 migration_report7

Figure 6. HiPAS Architecture.

of this schema. Creating this user as well as creating and

compiling a PL/SQL package, needed for performing the

migration, is part of an automated installation process. Prior

to the data transfer phase, the source schemas need to be

analyzed and accordingly created inside the target database.

For this purpose, SQL statements for creating the identified

objects will be generated and stored inside the table

“cr_sql_remote”. This table will be copied to the target site

and contains information regarding the objects to be created

and its creation status. In addition, every operation

performed causes status information to be written into the

table “logging” (see Figure 5), enabling the database

administrator to perform any necessary analysis, e.g., by

querying for possible errors during or after the migration:

select logdate, loginfo from logging where info_level
= ‘ERROR’;

After the initial analyses of the source schema, all

identified objects have the status “init” and will therefore be

created by HiPAS at the target site. All objects containing

“created” inside their corresponding status column will be

ignored, enabling the whole migration process to be paused

and continued at any time. The table “param” (see Figure 5)

serves as a user interface for parameterizing HiPAS

manually beforehand, in case certain adaptive capabilities

shall not be utilized.

Techniques like reference partitioning inside the source

schema have to be considered and will determine the order

of creation, since child tables will not be created and

partitioned unless the related parent table exists. The Index

creation is either part of the pre-transfer or will be initiated

after all tables are filled with data. HiPAS decides

automatically for the most suitable approach depending on

the storage system and network bandwidth as described in

Section 7-C.

B. Adaptive Data Transfer

The data transfer is based on two simple SQL statements:

 Insert into a table as selecting from a source table

 Querying remote tables through a database link

The combination of these statements makes it possible to

fill local tables with remotely selected data. The resulting

command is generated and parameterized at runtime:

sql_stmt := 'insert /*+ APPEND */ into "' || schema ||

'"."' || table_name || '" select * from "' || schema

|| '"."' || table_name || '"@' || db_link;

This statement is generated and executed by transfer

jobs. The number of transfer jobs running in background is

adapted continuously and depends on the resource

utilization. As a pre-transfer stage, metadata of all objects

stored in the source schema has been inserted into a table

named “transfer_job_list”. Tables to be transferred,

exceeding a defined size, will be partitioned and, thus,

transferred by multiple transfer jobs. In this case, the job

type changes from “table” to “table_range” and row IDs

mark the range’s start and end (see Figure 5).

TRANSFER_JOB_LIST

OWNERPS

ROW_ID_START

ROW_ID_END

OBJECT_NAMEPS

OBJECT_TYPEPS

PARTITION_IDPS

BLOCKS

STATUS

MIG_CONTROL

JOB_IDPS

COMMAND

STATUS

STARTED

ENDED

STATUS_UPD

JOB_ID
PS
FK

LOGGING

LOGDATEPS

LOGINFOPS

SQLPS

MODULE

INFO_LEVEL

PARAM

PARAM_NAMEPS

PARAM_VALUE

PARAM_COMMENT

Figure 5. Metadata Entities for the Adaptive Data Transfer Phase.

Through partitioning, HiPAS can adapt more flexible to the

current utilization, since the number of parallel jobs can be

reduced or increased more frequently. HiPAS’ table

“mig_control” (see Figure 5) lists all background jobs

transferring the objects stored in “transfer_job_list”. In this

respect the column “command” inside “mig_control” serves

as an interface for controlling the transfer process, either

autonomously by HiPAS or manually by the database

administrator. When overwriting its content with keywords

like “stop” or “continue”, individual jobs will be stopped

after finishing or continued, causing timestamps to be written

into the column “status_upd” and if necessary into “ended”.

By this means, HiPAS is able to reduce or increase the

number of parallel running transfer jobs transparently in

respect of the optimizer’s decision, which is described in

Section 7. For the migration time, all constraints will be

disabled temporary by HiPAS, enabling the table

“transfer_job_list” to be ordered by blocks instead of

considering key dependencies. Existing database triggers

will also be disabled avoiding any unintended execution

during the database migration.

C. Post-Transfer

After all source data has been transferred into the target

schemas, the data has to be validated. Documenting data

consistency and integrity is mission critical both for target

database operation and for legal reasons. Only after verifying

the equality of source and target data, the migration can be

declared as successful, requiring HiPAS to not only

compare source and target sizes, but also counting the rows

of all tables. Finally, the disabled constraints and triggers

will be enabled again.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

VI. ENABLING PARALLELIZATION

In order to control the degree of HiPAS utilizing the
available hardware resources the migration data transferred
at the same time must be limitable. Restricting the number of
parallel processed tables would be inappropriate since it
required similar sized tables. Instead a defined number of
blocks form a pack of data and a certain number of packs can
be processed at the same time. That is, each pack has the
same size and will be transferred by a single transfer job.
Thus, adding or removing a transfer job burdens respectively
disburdens the source and target system. HiPAS adapts to the
underlying system resources by deciding autonomously how
many transfer jobs are possible at any time.

To enable the amount of data to be partitioned into equal
packs, a so called block split range defines their size. Since
the tables on the target system are filled by generated “insert
as select”-statements, its scope can be limited to a range
between two row IDs, which represent the beginning and the
end of each data pack. During the source schema analysis,
these row IDs are identified by an analytical function. In this
manner, large tables are partitioned into groups with row ID
boundaries as Figure 7 shows exemplary.

Figure 7. Assigning Row IDs as Group Boundaries.

The identified IDs will be used during the transfer phase
to limit the data of a single transfer job to the given block
split range by adding a “where rowid between”-clause when
selecting from the remote database:

insert into schema.table_name select * from
schema.table_name@db_link where rowid
between MIN_RID and MAX_RID;

Having partitioned the full amount of migration data into

parts of a maximum defined size (block split range), HiPAS

creates equally treatable transfer entities. These entities can

be parallelized up to a degree defined by an adaptive

transfer optimizer.

VII. ADAPTIVE CAPABILITIES

For parallelizing the data transfer during phase 2 of the
migration process (see Section 5-B) with an optimal
parallelization degree, we target an adaptive migration
software. Adaptivity in general describes the capability of
adjusting to an environment. In biology, the term is often
used to describe physiological and behavioral changes of
organisms in process of evolution. In informatics, the term is
transferred to systems or components, which adapt to their
available resources. However, here not to increase
reproduction chances but often in order to achieve an optimal
system performance. Adaption improves the resource
efficiency and flexibility of software-intensive systems and
means that a system adapts to changes of its environment, its
requirements and its resources [11]. According to Martíin

et.al. [12], adaption can also be seen as the first of three
stages of the currently conceivable system complexity extent.
Anticipation and rationality follow as further stages (see
Figure 8).

System Complexity

Adaption Anticipation Rationality

Figure 8. Levels of System Complexity (Adapted from [12]).

Thus, adaption describes the interaction of two elements:
A control system and its environment. The goal is, to reach a
defined state of the environment by means of actions
initiated by the control system [13]. The control system then
reacts on the self-precipitated changes of the environment
with initiating new changes. It has been defined that an
adaptive system is present, if the probability of a change of a
system S triggered by an event E is higher than the
probability of the system to change independently from the
event:

 [12] (4)

Furthermore, the condition has to apply, that the system
reaches the desired state after a non-defined duration. This
implies the convergence of the mentioned probabilities
towards infinite:

 [12] (5)

This law of adaption [12] requires the control system to
know for each modification of its environment a sufficiently
granulated attribute, which contributes to the desired state´s
achievement allowing the adaption to end. For the first stage
of complexity, the direction and the extent of modifications
are built upon each other, thus, enabling the system to reach
the desired state incrementally. If the modifications are not
steps of a targeted adjustment process, but based on
knowledge, predictions [14] or intuition, the process can be
defined, in terms of system complexity, as anticipation. The
third stage “rationality” implies intelligence; those systems
are able to react to unpredictable changes of their
environment and to balance contradictory objectives against
each other [12]. This stage exceeds the objective of this
paper and therefor was not scoped. Applying this
differentiation on the design of an adaptive migration
software, two approaches emerge for parallelizing the data
transfer:

 A solely adaptive system, based on an incremental
adjustment process, until changes do not evoke
further improvements, thus, reaching the state of an
optimal parallelization degree.

 An anticipatory system, which makes
continuously new modification decisions
independently of each other, based on knowledge
about used and monitored resources.

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

These two approaches have been designed and
implemented as described subsequently and evaluated as
described in Section 8. Due to HiPAS’ scalable architecture,
the respective procedures could be implemented as plugins
and additionally started for evaluation. Both plugins control
the data transfer via values inside the table “mig_control”
(see Section 5-B) serving as an interface.

A. Adaption

The solely adaptive approach will successively increase
the parallelization degree and therefor the source and target
systems utilization. After each enhancement its
consequences on the system environment meaning the
migration performance is measured in terms of inserted
megabytes per time unit. The adaption can be started by
running an additional procedure “calibrate”, which invokes
either the procedure “increase” or “decrease” for modifying
the parallelization degree, starting from one transfer job per
database link at the same time. The number of jobs to be
added or deducted will be reduced after each time a change
in direction was required, by this means the algorithm brings
the number of parallel jobs closer to the optimum. After
reaching a defined modification count (number of jobs to add
or deduct) the algorithm assumes having approximated the
optimal parallelization degree and the adaption ends,
representing the finiteness requirement of adaptive systems.

The variable “diff_level” describes the current
modification extent, meaning the number of jobs to start
additionally or to stop after finishing. To reach a required
level of flexibility for changing the number of jobs shortly,
the size of a transfer job is limited to the introduced
block_split_range. The following code example shows how
the number of jobs is reduced by the value of the variable
“diff_level”:

update mig_control set command = 'STOP' where job =
'loop_while_jobs_todo' and command = 'continue' and
rownum <= diff_level; commit;

Since the tuples inside “mig_control” represent
background jobs and each tuple has a row number, jobs can
be stopped for each row number being smaller than
“diff_level”. The mentioned value “loop_while_jobs_todo”
is the name of the procedure every background job runs for
processing all defined transfer jobs listed inside the table
“transfer_job_list”. If a background job is marked with the
command “STOP”, it will be deleted after finishing the
current transfer job and afterwards marked with the keyword
“ended”.

B. Anticipation

If the adaption is based on predictions, we call it
anticipation as the next level of complexity [12]. In contrast
to the solely adaptive approach, HiPAS now optimizes the
parallelization degree continuously and based on a different
algorithm. For mapping the described theoretical insights to
our migration use case, we implemented an optimizer
package, which predicts the optimal amount of parallel
running jobs for the upcoming period. This decision is based
on a combination of the following relevant system

information, which is continuously monitored by the DBMS
across all involved database instances:

 Concurrency events on target system

 Concurrency events on source system

 Average write time on target system

 Average read time on source system

 Average read time on target system

 Average write time on source system

 Redo log buffer size

 Available memory size
An important concurrency event, for instance, occurs

when the high water mark of a segment needs to be
increased, since new blocks are inserted into the same table
by multiple and competing processes, this is known as high
water mark enqueue contention [15]. The optimizer analyzes
the above listed values and calculates a fail indicator as well
as the number of additionally possible jobs according to the
measured available resources like memory size and disk
utilization. In contrary the fail indicator indicates possible
bottlenecks and can prompt the optimizer to reduce the
amount of currently running jobs. The introduced
components form a feedback loop according to the MAPE-K
(Monitor-Analyze-Plan-Execute-Knowledge) loop reference
model developed by IBM [16] as shown in Figure 9.

DBMS

Monitor Analyse & Plan

optimizer()
loop_while_
jobs_todo()

Performance Views mig_control

Execute

 logging

Figure 9. MAPE-K [16] Based Adaptive Feedback Loop.

Typical indicators for possibly arising bottlenecks are
increasing concurrency events while the redo log buffer size
decreases. If such a situation has been monitored, the
optimizer will reduce the number of parallel jobs based on a
high failure indicator. Whenever the optimizer acts, a log
string is written to the logging table as in the following
example:

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 # Read Avg:
3.32(20-40) # Write Avg: 105.9(100-200) # R_Read Avg:
.12(20-40) # R_Write Avg: .3(20-40) # R Fail Ind: 3
conc:3026(2607) redo:5720763732(5776886904)
r_conc:5157(5069) # numjobs > 0 # Jobs being stopped:
0 # (Resource Overload) and numjobs > minjobs and
jobs_being_stopped = 0 # Running: 20/Stopping: 5 on
inst:1 # Running: 20/Stopping: 5 on inst:2”

In the above extracted example, 40 jobs are running in
parallel. Due to increasing concurrency events, the optimizer
detects a possible overload of the target system and decides
to stop 5 running jobs on each instance. The jobs will
terminate after they completed transferring their current
objects. This is implemented by writing “stop” commands
into the table “mig_control”, which the procedure
“loop_while_jobs_to_do()” will carry out (see Figure 9). The
next log string will start with the information “Prev Jobs: 40/
Jobs: 30” accordingly. Additionally, not only the overall
amount of jobs is measured, but also the memory each server
process allocates. This value highly depends on the data

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

types of the currently transferred data. If too much memory
is allocated, the number of jobs will be reduced as well. In
order to avoid downward or upward spirals, e.g., due to the
reducing redo log buffer size when stopping jobs, bottom
lines and limits are defined. Hence the optimizer decides on
the basis of a branched search for indicating relations
between the monitored information. Surely, these are only
indicators not to be seen as evidence, so the algorithm
follows a heuristic approach. In contrary to the solely
adaptive approach and to a statically parallelized transfer, the
optimizer is able to dynamically react to unexpected events
and predict a possibly optimum level of system utilization
during the whole migration process. In the following
Sections and for the evaluation, when mentioning the
adaptive capabilities, we always refer to the anticipatory
approach as it was performing more efficient during
preliminary tests.

C. Time of Indexing

As previously termed as the “index problem”, the right
time for indexing the data depends on the combination of
storage system performance and network bandwidth. If not
manually parameterized inside the “param” table, HiPAS
therefore decides by means of test tables filled with random
data and having indexes on multiple columns, if it creates the
indexes before or after data loading. For the two possibilities
of index creation, the time for performing the respective
steps is measured and compared to each other. After
comparing the two measurements, HiPAS updates the
parameter “index_while_transfer” inside the “param” table
autonomously by inserting “true” or “false”. This test can be
performed during a common migration test run on the actual
system environment and excluded for the productive
migration reusing the “param” table.

D. Transfer Order and Instance Affinity

The table “transfer_job_list” contains all objects, which
need to be transferred to the target. When selecting the next
object for transfer, this table needs to be ordered by blocks
since large objects are preferred by HiPAS. Furthermore, an
instance prefers table partitions of tables, which already have
been started to be transferred by this instance. Accordingly
the next table or table range to be transferred is always
selected as follow:

select * from transfer_job_list where status =
'PENDING' and object_type = 'TABLE' and (instance = 0
OR instance = sys_context('USERENV', 'INSTANCE'))
order by instance desc, blocks desc, partition_name;

If an instance starts transferring a table range of a large
table, it marks all other table ranges of the same table by
inserting the instance number into all tuples related to this
table. By this means, instances reserve tables in order to
avoid loading the same table into data buffers of other
instances. For this reason, instances prefer tuples marked by
themselves and tuples not reserved by any other instance,
which has been implemented by means of the above
displayed “where clause”. In addition, the actual block split
range, defining the limit for the size of all table ranges, is
identified partly adaptively. For a given maximum block

split range, HiPAS calculates the optimal block split range
by counting tables and their sizes resulting in an optimal
ratio of a ranges size and its total count.

VIII. EVALUATION

The migration method has been tested in several
customer environments with differently powerful server,
storage systems and networks. Following the design science
approach, HiPAS has been improved in multiple iterations
based on test results.

A. Experiment Setup

For this paper, we set up a test environment consisting of
a source and target system installed on physically separated
virtual machines, each having 4 CPUs and 16 GB of main
memory. Both the source and target database are real
application cluster (RAC) environments running Oracle
Database 11g Enterprise Edition Release 11.2.0.3.0. On each
side two instances are available connected to the other side
through a 1 Gigabit Ethernet. The source system reads from
solid state drives and the target system writes on common
SATA disks. For evaluation, we performed multiple test runs
belonging to the following three different main tests:

(1) Function test with a 300 GB schema (Test A)
(2) Performance test with a 16 GB schema (Test B.1)
(3) Performance test with a 32 GB schema (Test B.2)

To create the different database schemata, we
implemented a software package, which generates database
schemata filled with random data and including all special
cases we could imagine HiPAS to encounter at productive
customer environments. By means of this software, we
created different sized test schemata inside the source
database for test migrations. For the function test (Test A),
the schema included characteristics like foreign key
constraints, a variety of character, numeric and binary data
types, reference partitioning, indexes, table clusters, views as
well as different rights and roles. In this manner we were
able to test the compatibility of HiPAS with different data
types, objects and complex data structures. The used schema
has an overall size of 300 GB, which was large enough to
analyze HiPAS adaptive behavior during the migration run.
To compare HiPAS migration performance with the current
Oracle standard migration tool for exports and imports “Data
Pump” [17], [10], we reduced the size for being able to
perform multiple test runs and to average out performance
values across all performed runs. These performance focused
migration runs are referred to as test B. After each migration,
we fully deleted the migrated schema and rebooted the whole
server in order to have the same initial cache situation for all
runs. The results of all tests are shown subsequently.

B. Results

In the following the results of the function test (A) and
the performance tests (B) are presented.

1) Function Test (Test A): As described in Section 6-A,

“Test A” aims at analyzing HiPAS adaptive behavior and

compatibility. We implemented a package, which compares

the created target schema with the original source schema by

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

counting rows and columns. We verified that all data objects

were created inside the target schema successfully. The

optimizer, providing the adaptive capabilities of HiPAS,

writes log information whenever an adaption is needed. An

example of such a single log string has been introduced in

Section 7-B. Analyzing all tuples, written into the logging

table during a migration run, leads to the migration process

shown in Figure 10. The transfer started at 12:08 pm and

ended at 12:47 pm. HiPAS transferred the created test

schema, filled with 300 GB of random data, starting with 20

background jobs running in parallel meaning 10 jobs per

instance, since HiPAS identified two available instances on

the target system for job distribution. After 39 minutes, the

transfer ended with a current total number of 116 parallel

running jobs. The “block split range” was 25120 blocks, so,

with a configured data block size of 8 KB, each job

transferred a maximum amount of approximately 200 MB.

Figure 10. Adaptive Migration Process with HiPAS.

Tables, smaller than the split range, were not partitioned
and transferred at the end of the migration, since large tables
are preferred by the data selection algorithm. If a job
transfers less data (small table), more parallel jobs are
possible, so HiPAS raised the number of running jobs as the
migration time goes by, which explains the slope of the
graph shown in Figure 10.

2) Performance Test (Test B.1): For the first

performance test, we created a schema of 16 GB including

the mentioned data types in Section 8-A. The different test

runs of test B.1 are described as follows:

(1) Migration by means of HiPAS adaptively and with

enabled partitioning of large tables

(2) Migration by means of HiPAS with a static

parallelization degree of 20 running jobs and enabled

partitioning of large tables

(3) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and enabled

partitioning of large tables

(4) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and disabled

partitioning of large tables

(5) Migration by means of HiPAS without parallelization

(sequential) and with disabled partitioning of large

tables

(6) Migration by means of Oracle Data Pump

We performed the described test runs three times in order

to compensate statistical outliers, possibly caused by

uninfluenceable events of the database management system

or the operating system. This was necessary because the test

runs had to be performed successively to provide the same

environment for all tested methods. Afterwards, we

calculated for each method the average total duration of the

three runs. The final result is shown in Figure 11. The small

test schema of 16 GB has been transferred by HiPAS

averagely within 11 minutes, enabling adaptive capabilities

(more precisely “anticipation”) and partitioning of large

tables. Transferring the same schema by means of the Oracle

tool Data Pump, using the number of available CPUs as the

“parallel” parameter [17], took averagely 53 minutes, which

means a deceleration of approximately 382% compared to

HiPAS. Comparing the different HiPAS migration runs with

each other, it can be stated that parallelizing in general

noticeably reduces the transfer duration, which is indicative

for our assumption of utilizing the available resources more

efficiently by parallelizing. Comparing test run 3 and 4

shows that partitioning large tables for the transfer barely

improves the overall performance, since the partitioning

feature was implemented to improve the flexibility of HiPAS

when its optimizer needs to adapt quickly to changing

resource availabilities. Thus, the adaptive migration run with

enabled partitioning of large tables performed best in terms

of downtime shortness.

Figure 11. Transfer Performance for a 16GB Schema (B.1).

3) Performance Test (Test B.2): In addition to the 16 GB

schema, we performed the same test runs with a schema size

of 32 GB to evaluate how the adaptive capabilities work for

a longer period of transfer time. The static parallelized runs

have been performed as well and showed results proportional

to test B.1, so we excluded them from Figure 12 on the next

page.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Figure 12. Transfer Performance for a 32GB Schema (B.2).

HiPAS, with enabled partitioning, adaptively transferred the

schema within 51 minutes, compared to 2.23 hours needed

by Data Pump, meaning this time HiPAS took 38% of Data

Pump’s transfer duration, whereas the single threaded

configured HiPAS took about 75%. As a consequence, we

assume, that non-adaptive sequential and Data Pump

migrations leave useful resources idle or need to be tuned

manually. In addition to the introduced test runs for

evaluation within the scope of this paper, we performed

several further tests in customer environments achieving

considerable results, especially for schemata storing large

objects. In terms of network bandwidth, we reached transfer

rates of 120 MB/s for each database link created on a 1

Gigabit Ethernet.

IX. CONCLUSION AND FUTURE WORK

The target conflict of flexibility and performance, when
choosing an offline database migration method, has been
addressed by designing HiPAS. Through implementing an
adaptive transfer algorithm, which continuously optimizes
the source and target system utilization, significant
performance gains have been achieved comparing the test
results to non-adaptive migration methods. The paradigm of
saving all migration metadata inside the database allows a
clear and highly reliable architecture and appeared to support
an efficient interaction of all HiPAS migration components
and the actual migration data. We state, that implementing
anticipatory capabilities into migration software significantly
improve the performance of migrations invoked on database
layer. Anticipation is more suitable than sole adaption, since
database systems provide varied performance indicators,
which need to be monitored during the whole progress.

Statically parallelized test runs did not adapt to changing
utilization requirements, thus, performed less efficiently. The
implementation as a stored object leads to the disadvantage
of having to develop separate implementations for different
database systems. As HiPAS currently has been
implemented only for Oracle, we plan to build and evaluate
further versions supporting different types of source and
target systems. We encourage interested researchers to get in
touch with us and share experiences in interconnecting
adaptive components and databases.

ACKNOWLEDGMENT

We strongly like to thank all members of the Pasolfora
Performance Research and Innovation Group (PPRG) for the
support and possibility of performing the countless number
of demo migrations during the development and evaluation
of HiPAS. Furthermore, we thank Prof. Dr. Michael Höding
of the Brandenburg University of Applied Sciences for
giving scientific relevant input when mapping adaptive
insights to the requirements of offline database migrations.

REFERENCES

[1] H.M. Sneed, E. Wolf, and H. Heilmann. Software Migration
in Praxis. Dpunkt, 2010.

[2] M. Brodie and M. Stonebraker, Migrating Legacy Systems
Gateways, Interfaces and the Incremental Approach. Morgan
Kaufmann, 1995.

[3] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy
Information Systems: Issues and Directions”.
http://csis.pace.edu/~marchese/CS775/Proj1/legacyinfosys_di
rections.pdf, IEEE, 1999, p. 107.

[4] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
Science in Information Systems Research”. MIS Quarterly
Vol. 28 No.1., 2004, p. 80.

[5] M. Eastwood, J. Scaramella, K. Stolarski, and M. Shirer,
Worldwide Server Market Revenues Decline -6.2% in Second
Quarter as Market Demand Remains Weak, According to
IDC.
http://www.idc.com/getdoc.jsp?containerId=prUS24285213,
2013 .

[6] J. D. C. Little, “A Proof for the Queuing Formula: L= λ W,
In: Operations Research”, Cleveland, 1961.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Fundamental Laws.
http://homes.cs.washington.edu/~lazowska/qsp/Images/Chap_
03.pdf, p. 42.

[8] G. Somasundarum and A. Shrivastava, Information Storage
and Management - Storing, Managing, and Protecting Digital
Information. EMC Education Services, Wiley Publishing Inc.
Inianapolis 2009, p. 35.

[9] R.M. Karp, Reducibility Among Combinatorial Problems. In:
Miller, R. E. and Thatcher, J. W. Complexity of Computer
Computations. Plenum Press, New York 1972, 93.

[10] Oracle. Oracle Database Utilities 11g Release 2. 2014, p. 1

[11] Fraunhofer. Adaptive Systems. Fraunhofer Institute for
Embedded Systems and Communication Technologies,
http://www.esk.fraunhofer.de/de/kompetenzen/adaptive_syste
me.html.

[12] J. A. Martin Hernandez, J. de Lope and D. Maravall,
“Adaptation, anticipation and rationality in natural and
artificial systems: computational paradigms mimicking
nature.”, Natural Computing, Volume 8, Issue 4, Springer
Netherlands, 2009, pp. 758-765.

[13] N. Wiener, Kybernetik. Econ-Verlag, Düsseldorf 1963.

[14] R. Rosen, Anticipatory systems. Pergamon Press, Oxford 1985.

[15] Oracle. Enqueue: HW, Segment High Water Mark -
contention.
http://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/or
acle_database_help/oracle_database_wait_bottlenecks_enque
ue_hw_pct.html, 2009.

[16] IBM. An architectural blueprint for autonomic computing.
Tech. rep., IBM. 2003.

[17] Oracle. Data Pump in Oracle Database 11g Release 2: Foun-
dation for Ultra High-Speed Data Movement Utilities, p.2-27.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

