
Evaluation of Software-Based Fault-Tolerant

Techniques on Embedded OS’s Components

Hosein Mohammadi Makrani
1
, Amir Mahdi Hosseini Monazzah

2
, Hamed Farbeh

3
, and Seyed Ghassem Miremadi

4

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran 1155-9517

Email: 1makrani@ce.sharif.ir, 2ahosseini@ce.sharif.edu, 3farbeh@mehr.sharif.edu, and 4miremadi@sharif.edu

Abstract—Software-based fault-tolerant techniques at the

operating system level are an effective way to enhance the

reliability of safety-critical embedded applications. This paper

provides an analysis and comparison of five well-known recovery

techniques, i.e., micro rebooting, recovery block, N-Version

Programming (NVP), micro extension, and transactional

extension for an embedded operating system’s components, from

performance point of view. These techniques are applied without

any modification on the main architecture of the operating

system. The techniques are implemented on a virtual ARM

Integrator board which is emulated by the QEMU software

(2.0.0) under the control of Embedded Linux operating system

(3.9.0). The totals of 5000 software errors are ignited using a

simulation environment. The results show that the recovery time

overhead varies between 0.17% and 0.67%, and the performance

overhead varies between 5.81% and 218.65% depending on the
techniques.

Keywords-embedded operating system; fault tolerant; recovery;
performance.

I. INTRODUCTION

Nowadays, the embedded systems are employed as crucial
control components in safety-critical and real-time areas such
as medical devices, automobile, and aviation. To maintain the
dependability of such applications, several fault tolerance
techniques have been proposed in the recent decades.

In the recent years, the improvements in the performance
of hardware devices have led to excessive attentions to
software fault tolerance techniques. The software fault
tolerance techniques can be implemented at the application
code or operating system of an embedded system. Applying
the fault tolerance techniques in an operating system allow the
designers to develop their application without worrying about
the dependability of the whole system. Hence, operating
system approaches are more frequently used in embedded
systems. However, the implementation of fault tolerance
techniques at the operating system level may have side effects
such as the impact on real-time behavior of the embedded
operating system or resource restriction. Therefore, many
constraints (especially form performance point of view)
should be considered in selecting a recovery technique.

An operating system may crash during several error
conditions including: software corruption, hardware
malfunction, memory access violation, and executing illegal
instructions. Most operating systems immediately stop their

operations as soon as they encounter crucial errors in their
hardware or software. Kernel panic in UNIX systems is a good
example for such behaviors in operating systems.

Among the vulnerable parts of operating systems,
extensions (which become widespread in commodity
operating systems such as Linux) play an important role in the
reliability of operating systems. Extensions are optional
components which are presented in the kernel address space
namely device drivers, network protocols, and file systems.
Kernel may include different extensions, and failure in each
extension may propagate to the other ones; hence, the
dependability of kernel extension is highly important.
Extensions cover up to 70% of the operating system source
codes, and their error rate is calculated as 3x to 7x more than
other source codes in operating systems [1].

Considering the above discussion, the goal of Fault
tolerance techniques which are presented in this study is to
recover from the transient errors which take place inside the
embedded operating system extensions. The common
characteristic of these methods is that they do not impose any
modification on the base architecture of operating systems.
Investigated recovery techniques are micro rebooting,
recovery block, N-Version Programming (NVP), micro
extension, and transactional extension.

The contribution of this study is the evaluation of
performance characteristics of well-known recovery methods
on the same platform and operating system. The experimental
results in this study will provide significant vision for the
embedded system designer in using these recovery techniques.
For each technique, the recovery time, the CPU utilization, the
response time, and the performance penalty are compared with
other techniques as well as the baseline operating system.

In this study, from the software point of view, Embedded
Linux is selected as a target embedded operating system. From
the hardware aspect, the modified operating system is
executed on an ARM Cortex A9 CPU, which emulated by
QEMU [2]. It is noteworthy that the investigated techniques
are generic and not architecture specific; thus the results can
be regenerated by any other configuration.

To investigate the characteristics of each technique, the
totals of 5000 software errors are ignited. The simulation
results reveal that the recovery time overhead varies between
0.17% and 0.67%, and the performance overhead varies
between 5.81% and 218.65% depending on the techniques.

The remainder of this paper is organized as follows:
Section II describes error signaling and the component

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

isolation support for error confinement. Section III provides
technical overview of the investigated techniques. The
experimental setup is presented in Section IV and the results
are presented in Section V. Finally, Section VI concludes the
paper.

II. ERROR DETECTION, CONTAINMENT AND SIGNALING

In this section, error detection, component isolation, and
error signaling support for error confinement will be
described.

A. Error Detection

An error can be detected by different mechanisms in an
embedded operating system. Virtual memory protection,
processor exceptions, code checksums, and watchdog timers
are some of the well-well known detection methods. To
improve the reliability of an embedded operating system,
besides the error detection methods, error containment
methods should be considered as well. Employing error
containment methods leads to the isolation of the erroneous
part(s) of an embedded system from the other parts. After
detection and containment of an error, as a final step, recovery
technique can be applied on the affected component if the
error is limited to its inside. The techniques which are under
evaluation in this study are placed in the final step.

B. Error Containment

In the following paragraphs, the various isolation
mechanisms are discussed in detail.

1) Isolating extensions by code:
A worthy project to isolate component in Linux is Nook

[3] [4]. The Nooks isolation mechanisms avoid errors that
occur in the extensions in order to affect the kernel. Each
kernel extension in Nooks runs in “light weight kernel
protection domain”, which is considered for each kernel
extension. Isolation mechanism can provide two main
features for a system. The first one is to protect the domain
from any manipulation. The other feature is “inter-domain”
control transfer.

2) Isolating extensions by virtual machines
“Virtual Machine” is another method which isolates the

extensions from the rest of a system [5]. In this method, when
an extension is called, the unmodified version of that
extension is run on its original operating system by a virtual
machine. This mechanism allows wide reuse of exiting
extensions, without considering the operating system. By
running each extension in a virtual machine environment, this
method isolates faults produced by faulty extensions. In
addition, [6] and [7] utilized virtualization to confine
extension in its virtual machine.

3) Isolating extensions by moving them to User-Space
 The method introduced in [8] proposes to run extensions

as unprivileged user mode. The results of this study reveal that
extensions can be isolated without considerable performance
degradation.

Besides the above methods, the Micro-Driver introduced
new architecture which maintains critical time consuming
codes in the Linux kernel and moves the reminder of the

extension code to user-mode process [9]. Furthermore, in [10],
user-level driver is implemented for Windows NT.

4) Compiler-level extension isolation
The Open Kernel Environment (OKE) project supports

fully optimized code to be loaded in the kernel [11]. The OKE
enables the restriction modification on the code executing in
the Linux kernel. The Decaf Driver is another approach to
develop drivers by modern languages such as Java [12]. In
Decaf Driver, Linux extensions are converted to Java language
and then executed in user mode.

5) Isolating extensions by changing architecture design
In a number of operating systems, a microkernel is

implemented instead of using a monolithic kernel.
Microkernel only provides simple kernel services. Other
operating system functionality is transferred to the user space
and does not execute at the privileged level. These
architectures intrinsically increase the reliability of the system
since each module can be individually controlled. MINIX3
[13], Mach 3.0 [14], Choices [15] and L4 [16] are some of the
operating systems that benefit from microkernel architecture.

C. Error Signaling

Exception handling is usually employed to signal errors in
user code. In the Linux kernel, the use of exception handling
has been explored in [17]. Hence, system designers can write
exception handlers to manage errors such as null pointers and
invalid op-codes execution in the operating system. This
allows designers to develop a flexible and robust technique to
handle errors. Generic handlers only print out an error
message and stop the operation of the system; however, local
exception handlers generate a desirable response and try to
recover from failures.

III. RECOVERY TECHNIQUES

The techniques which are introduced in this study can be
implemented simply through software approaches on the
operating system components. All these techniques are dealing
with transient failures. In the following subsection, the
architecture of these techniques and how they are
implemented in our evaluation will be explored.

A. Micro Rebooting

Considering the terminology of micro rebooting, re-
execution of the specific part(s) of an application (not the
whole application) is called micro-rebooting. As expected, this
technique uses time redundancy to recover errors. Micro
rebooting can be applied in both application programs and/or
operating system. For the first time, micro-rebooting was
employed to recover faulty application components in [18].
The evaluation presented in [18] shows that employing micro-
reboot increases the availability by reducing recovery time.
This technique also can be used at operating system to recover
faulty components [4]. In [15], it is shown that performing
micro rebooting on faulty extensions is a simple and effective
technique to enhance dependability of operating system.

In our implementation, micro-rebooting mechanism has
two parts. The goal of first part is to bring the system and its
extensions back into clean state. In this part, we insure that

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

resources are not taken after they released. In the second part,
recovery mechanism runs user-mode recovery agent, which
can set recovery policies for extensions before reloading them.
Those policies can be written by users in the configuration
files. The main task of recovery is to unload extension and
load it again. When an error is detected by the detection
mechanism, it signals to recovery agent and it runs recovery
routine. After reloading the faulty extension by the agent, it
signals the application to send its request again.

B. Transactional extension

Transactional extension is another approach to recover
systems by using time redundancy. In database expressions, a
transaction is a set of operations, which donate a unit of
consistency and recovery. Features provided by transactions
are isolation, failure atomicity and recoverability [19].
Transactional extension performs transactional operations with
four features “ACID”. These features are atomicity,
consistency, isolation and durability [20]. Durability can
frequently be ignored to simplify implementation.

In MARS project, a transactional model was exploited to
define the activities of a real-time system [21]. The VINO
kernel also used this technique to protect the kernel against
misbehaved kernel extensions [22]. In addition, transactional
component and micro rebooting are both used in the Choices.
The Quicksilver distributed system is another project which
exploits transactions [20].

In our transactional extension, before performing any
operation, the state of the extension has to be saved. If an error
occurs during the transactional operation, the state can be
rolled back and the transaction will be aborted. Subsequently,
the operation is re-executed. Applying transactional model on
extensions leads to performance and space overheads. The
need to save extension states before the operation commitment
causes space overhead. Moreover, the time overhead is due to
perform extra operations. Therefore, the overhead of this
technique depends on the granularity of the operations.

There is a main difference between micro rebooting and
transactional extension. The micro rebooting reloads extension
and re-initializes its internal state. However, the transactional
component only rolls back current transaction. Each of these
techniques can be used depending on the extension. In general,
if an extension has a large volume of data and many internal
states, it is more efficient to use transactional techniques since
occurring an error may harm the amount of data in micro
rebooting; moreover the recovery process impose noticeable
overhead. If data loss is not highly important, micro rebooting
is a suitable candidate for recovery technique in terms of
reducing overhead.

C. Recovery Block

The main recovery block structure is diverse software fault
tolerance technique, which is categorized as dynamic
techniques. The hardware fault tolerant technique related to
the recovery block is stand-by sparing. This technique uses
backward strategy to achieve fault tolerance.

In general, recovery block consists of two variants and one
acceptance test. The first variant is called primary alternate or
primary try block. Another variant called secondary alternates.
These blocks are located in the series. In addition, real-time

implementation of recovery block includes a software
watchdog timer.

In the implementation of recovery block in this paper, the
following extension and procedure are implemented:

 Primary extension, Secondary extension (it is
equal to the primary), Manager Procedure, Save
procedure, Restore procedure, Acceptance test
procedure, and Send result procedure.

Our acceptance test is implemented as an application-
dependent error detection mechanism such as reasonable
check. The acceptance test is unique for two extensions and it
includes no fault tolerance approach as it should be simple and
quick. Watchdog timer procedure is used to detect irregular
behavior such as infinite loop. The manager takes request
from application program and saves state and request. Then, it
sends request to primary extension. Simultaneously, it also
starts a timer. If the response is not returned from primary
extension, manager waits until timer trigs an exception. If the
deadline is missed, manager unloads the primary extension,
restores the state and issue a request. If the deadline is not
missed, the manager sends request to acceptance test.
According to the result of acceptance test, the manager
decides to send the result to application or sends it to
secondary extension (in the case of receiving error signals
from acceptance test unit). If none of the extensions give
correct response, the manager has to send error code to the
application program.

D. N-Version Programming

The NVP is one of the well-known design diverse software
fault tolerance techniques. The NVP is a static technique in
comparison of recovery block. Since a task is executed by
some programs, the result is selected among programs results
via a majority vote.

 In this paper, the NVP is implemented the same as Three
Modular Redundancy (TMR). It means that we use three
different versions of an extension. The difference of TMR
with NVP is that, TMR cannot cover programming mistakes
or bugs, because it uses three copies of a program, which are
equal, but it can mask other types of errors as well as NVP.
The benefit of NVP (with three version of a program) is that it
can transparently recover or mask one error. If an error occurs
and the detection mechanism detects it during execution of an
extension, it sends a signal to voter, and then the voter omits
the result of faulty extension. Like recovery block, NVP has a
manager procedure which reloads faulty extension. The
manager is responsible to take a request from applications and
send the result back to them. Thus the application only
interacts with one module.

E. Micro Extension

Micro extension is a combinational technique which
includes: micro rebooting, transactional extension and user-
level isolation mechanism.

The main goal of micro extension is to reduce kernel
extension size, and increase reliability of operating system.
This is done by moving some parts of extension to user space.
In addition, its objective is to recover faulty extensions with
the minimum overhead. To reach the goal, new approach is
proposed which recovers only some parts of extension. This

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

technique neither is as fast as micro rebooting nor as slow as a
technique which their whole extensions are fully in user space.

It was shown that 65% of extension operation can be
moved to the user space [9]. Moving some parts of extension
to user space is a kind of isolation mechanism. Micro
extension also saves internal state of extension, before doing
user space operations, just similar to transactions. At last, it
should be noted that recovery of user level application which
performs extension operations is similar to micro rebooting.

The difference between micro extensions recovery
mechanism and micro rebooting is that micro rebooting
unloads and reloads the whole extension without any restoring
information; however, micro extension recovery mechanism
only destroys and recreates the application which performs
user-level operations on behalf of the extension. It should be
noted that the extension is not changed any longer.
Furthermore, this recovery is transparent from applications
which have sent requests for extension. Additionally, this
mechanism can restore internal state of extension (which is
saved before invoking the extension operation from
application) after application failure.

IV. EXPERIMENTAL SETUP

In this section, the experimental setup used in our
implementations is presented.

A. Experimental Testbed

1) Operating system
Today, Linux is one of the most employed operating

systems in embedded applications which deliver its service
through GPL license. The ability to change the kernel in
Linux-based operating systems made it possible for developers
to customize the kernel by considering customer’s demands. A
noticeable portion of the introduced techniques is that they use
a feature of Linux kernel called Loadable Kernel Module
(LKM). According to the above discussion, Embedded Linux
is selected as a target embedded operating system in this
study. The source code of Embedded Linux is available at
[23].

2) Hardware configuration
QEMU as an open source machine emulator [2] is

considered in the evaluation. In this paper, Cortex-A9 CPU
(ARMv7) and Vexpress-a9 machine are chosen to emulate a
system with 128MB of memory. This configuration provides a
virtual ARM environment that runs Embedded Linux.

B. Error Activation

In this study, evaluation platform of recovery techniques
requires error activation and detection units in order to signal
error to error handler. Afterwards, the handler deploys
appropriate technique to recover from the errors.

For the evaluation of recovery techniques, 1000 Software
error activating experiments were performed for each of the
five techniques. Fault model considered in this study to active
errors are pointer dereferences, invalid arguments, and bad
parameters which randomly injected in the extension. Table 1,
depicts the faults model which were injected in the extension

and their detection latency. Moreover, the response of system
is reported when there is no fault tolerant technique.

C. Test Methodology

The goal of this study is to perform a fair comparison
among operating system-based fault tolerance techniques. To
achieve this goal, a common workload should be considered
for all the five techniques. Hence, an arbitrary extension with
full controllability is written to explore the techniques
considered in this study. Meanwhile, these five techniques can
be applied to the real extensions.

The main task considered for the extension is arithmetical
operation on matrixes. Three reasons can be enumerated in
order to choose such task for extension. The first reason is that
in several device drivers in order to increase computation
speed, most computations are performed in the driver which is
executed with high privilege and at the highest speed. For
example, if a driver needs to calculate a parameter, there is no
need to perform it at user level. Therefore, our extension can
model these behaviors in a proper manner. The second reason
is that the vulnerable part of the drivers is their computational
part. The last reason is that blocks of data usually are
transferred between an extension and an application as in
network drivers. In this case, our extension can exchange large
matrix with an application. Sorting algorithm is considered for
extension task. Because NVP and recovery block need three
and two different versions. The Bubble sort, the Insertion sort,
and the Selection sort were selected. The primary task for
micro rebooting, micro extension, and transactional extension
is bubble sort.

To use this extension, a workload is needed to perform
computation on matrix and work with them. Therefore, a data
intensive application which can work with the extension and
perform many computations on matrixes is constructed. This
application is considered as the workload to evaluate the
techniques. If the extension and the workload are changed, the
comparative results cannot be changed a great deal. Hence, we
try to report the comparative results (which expressed with
percentage).

For measuring time, two mechanisms are used. “Jiffies” is
used for measuring execution time, which is provided by
Linux operating system. In the experiment, one “jiffies” is

TABLE I. FAULT TYPE

Fault location Response of System Detection Latency

Command’s

parameter of System

Call

Error code 40960 clock cycle

Address’s pointer of

System Call
Error code 46336 clock cycle

Pointer of extension’s

internal function
Kernel panic 77632 clock cycle

Data structure of

extension

Application

termination and

exception

177280 clock cycle

Computation of

extension (to create

infinite loop)

Kernel hang 200 ms

 The application’s

data which is under

control of extension

No signal ---

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

equal to one millisecond. For precise measurement, the ARM
cycle counter register (CCNT) which is provided by the
processor is considered as well.

MR, TR, RB, NVP and ME are abbreviations which stand
for micro rebooting, transactional extension, recovery block,
N-version programming and micro extension, respectively. In
addition WFT shows the average execution time of the
application without considering any fault tolerant technique on
the operating system.

In this paper, the performance overhead, the recovery
overhead, the response time overhead, and the CPU utilization
is reported. These parameters allow conducting deeper
comparison from performance point of view.

V. EVALUATION RESULTS

In this section, the results of employing recovery
techniques on the operating system are explored.

Before applying any fault tolerant techniques, the
execution time of the application is measured. Moreover in
this situation, the response time of the application request is
measured. It should be note that these two values are the
baseline values and any other result taken from the modified
operating system will be compared with these values. It is
evident that the QEMU has an impact on the performance, but
it can be connived because its affect on all techniques is equal.
Table 2 shows the application’s execution time in different
scenarios.

As Figure 1 shows, the NVP has the maximum
performance overhead, but it is not a bad feature. Since one
request has to run on three extensions and after voting, the
result is returned. Except the NVP, the result of Micro
Extension seems incredible. This amount of overhead is
related to operating system changing mode for each operation
in one request. In fact, for each operation, the kernel extension
runs an application in user space by means of API. This result
reveals that it is inefficient to use Micro Extension technique
when the extension is very computational. Therefore if the
role of extension is changed, this can be expected that the
performance overhead of Micro Extension technique will be
changed as well. It means that the performance overhead is
depended on the amount of extension’s computational part in
this technique. The minimum performance overhead belongs

to Micro Rebooting. Transactional Extension has more
overhead in contrast to Micro Rebooting and Recovery Block,
because it has to save internal state before each transaction.

The response time overhead chart is similar to
performance overhead one. It is clear that performance
overhead of a workload which is created of several requests is
directly related to response time of each request. Figure 2
shows response time overhead.

MR TR RB NVP ME

Performance
overhead 5.8% 17.2% 6.4% 218.7% 169.5%

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

Figure 3 illustrates the recovery overhead of each

technique. It is expected when a technique forces extra
performance overhead, it provides better recovery overhead.
The NVP has the best recovery overhead because nothing
more is done by the technique when an error occurs. The NVP
always masks one error. Since Micro Extension performs an
operation in user mode, its recovery overhead is a little more
than Transaction Extension. Regarding the CPU utilization, all
techniques increase CPU utilization except Micro Extension,
which is shown by Figure 4. It also decreases the CPU
utilization. It happens because in the Micro Extension, some
portion of time is devoted to context switch and transferring
data between kernel and user-level part of extension.

MR TR RB NVP ME

Response time
overhead 7.5% 22.8% 3.0% 207.1% 168.6%

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

Fig. 1. Performance overhead

Fig. 2. Response time overhead

 Techniques

WFT MR TR RB NVP ME

Execution

Time(ms)
7423 7855 8702 7897 23654 20004

Standard

Deviation
17.0 21.4 41.9 22.1 18.8 21.9

(a) Average execution time without error activation

 Techniques

WFT MR TR RB NVP ME

Execution

Time(ms)
7423 7908 8734 7948 23695 20093

Standard

Deviation
17.0 62.3 88.1 35.1 13.8 20.6

(b) Average execution time with error activation

TABLE II. APPLICATION’S EXECUTION TIME

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

MR TR RB NVP ME

Recovery overhead 0.67% 0.37% 0.65% 0.17% 0.45%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

MR TR RB NVP ME WFT

CPU utilization 74.8% 77.2% 74.9% 74.3% 54.6% 73.6%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

At last, the NVP has the best recovery time and the worst
performance overhead. Furthermore, the Recovery block has
the best response time and the Micro extension has the
minimum CPU utilization.

VI. CONCLUSION

An analysis and comparison of five well-known recovery
techniques, i.e., micro rebooting, recovery block, N-Version
Programming (NVP), micro extension, and transactional
extension for an embedded operating system are provided in
this paper. These techniques are applied on the operating
system extensions without any modification on the
architecture of the operating system. This study investigates
and compares the characteristic of those techniques on the
same platform and operating system from performance point
of view. This characteristic leads to an accurate and fair
comparison among these methods.

The techniques are implemented on a virtual ARM
machine which is emulated by the QEMU under the control of
Embedded Linux operating system. The totals of 5000
experiments are made. The experiments results reveal that

micro rebooting has the best performance overhead;
otherwise, NVP has the worst performance overhead. In
addition, the NVP has the best recovery overhead but micro
rebooting has the worst one.

The simulation results are as follow: the recovery time
overhead varies between 0.17% and 0.67%, and the
performance penalty varies between 5.82% and 218.66%
depending on the techniques. Additionally, extensions
response time, in comparison with the base system, increases
between 2.98% and 207.088%. Depending on the techniques,
the CPU utilization is confined between 54.63% and 77.24%.

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical

study of operating system errors,” Proc. ACM Symp. Operating
Systems, vol. 35, Dec. 2001, pp. 73- 88, doi:10.1145/502034.502042.

[2] F. Bellard, “QEMU, a fast and portable dynamic translator,” Proc.

USENIX Annual Technical Conference, April 2005, pp. 41-46.

[3] M. Swift, M. Annamalai, B. Bershad, and H. Levy, “Recovering device

drivers,” ACM Trans. on Computer Systems, vol. 24, Nov. 2006, pp.
333-360.

[4] M. Swift, B. Bershad, and H. Levy, “Improving the reliability of

commodity operating systems,” Proc. ACM Symp. on Operating
systems principles, vol. 35, no. 7, Dec. 2003, pp.207-222,

doi:10.1145/945445.945466.

[5] J. LeVasseur, V. Uhlig, J. Stoess and S. Gotz, “Unmodified device
driver reuse and improved system dependability via virtual machines,”

Proc. Symp. on Operating System Design and Implementation, Dec.
2004, pp. 17-30.

[6] L. Tan, et al., “iKernel: Isolating buggy and malicious device drivers

using hardware virtualization support,” Proc. IEEE Symp. on
Dependable Autonomic and Secure Computing, Sept. 2007, pp. 134-

144.

[7] T. Katori, L. Sun, D. K. Nilsson, and T. Nakajima, “Building a self-
healing embedded system in a multi-OS environment,” Proc. ACM

Symp. on Applied Computing, March 2009, pp. 293–298.

[8] B. Leslie, et al., “User-Level device drivers: achieved performance,”
Journal of Computer Science and technology, vol. 20, no. 5, Sept. 2005,

pp. 654-664.

[9] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and

Somesh Jha, “The design and implementation of microdrivers,” Proc. of
the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, March 2008, pp. 168-
178.

[10] G. C. Hunt, “Creating user-mode device drivers with a proxy,” Proc. of

the 1st USENIX Windows NT WS, 1997.

[11] H. Bos and B. Samwel, “Safe kernel programming in the OKE,” Proc.
IEEE Conference on Open Architectures and Network Programming,

June 2002, pp. 141-152.

[12] M. J. Renzelmann and M. M. Swift, “Decaf: moving device drivers to a
modern language,” Proc. USENIX Annual Technical Conference, June

2009.

[13] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a highly dependable operating system,” Proc. IEEE

European Dependable Computing Conference, October 2006, pp. 3-12.

[14] F. M. David, and R. H. Campbell, “Building a self-healing operating
system”, in Proc. IEEE International Symp. on Dependable, Autonomic

and Secure Computing, Sept. 2007, pp. 3-10.

[15] H. H¨artig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter, “The

performance of μ-kernel-based systems,” Proc. ACM Symp. on
Operating System Principle October 1997, pp. 66-77.

[16] A. Forin, D. Golub, and B. Bershad, “An I/O system for Mach 3.0,”

Proc. USENIX Mach Symp., 1991, pp. 163-176.

Fig. 3. Recovery overhead

Fig. 4. CPU utilization

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

http://dx.doi.org/10.1145/502034.502042
http://dx.doi.org/10.1145/945445.945466

[17] H. I. Glyfason, and G. Hjalmtysson, “Exceptional kernel: using C++

Exceptions in the Linux Kernel,” October 2004. Available at:
http://netlab.ru.is/exception/KernelExceptions.pdf

[18] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot – a technique for cheap recovery,” Symp. on Operating

Systems Design and Implementation, vol. 4, Dec. 2004, pp. 31-44.

[19] J.N. Gray. “Notes on database operating systems,” In R. Bayer, R.M.
Graham, and G. Seegmueller, editors, Operating Systems: An Advanced

Course, Springer-Verlag, 1979, pp. 393-481.

[20] F. Schmuck, and J. Wylie, “Experience with transactions in
QuickSilver,” Proc. ACM Symp. on Operating Systems Principles,

October 1991, pp. 239-253.

[21] A. Damm, J. Reisinger, W. Schnakel, and H. Kopetz, “The real-time
operating system of Mars,” Operating System Rev. July 1989, pp 141-

157.

[22] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith, “Dealing with
disaster: surviving misbehaved kernel extensions,” Proc. USENIX

Symp. on Operating Systems Design and Implementation, October 1996,
pp. 213-227.

[23] Embedded Linux source code, Available at:

https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.tar.xz

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

http://netlab.ru.is/exception/KernelExceptions.pdf

