
An Investigation of the Impact of Double Single Bit-Flip Errors
on Program Executions

Fatimah Adamu-Fika and Arshad Jhumka

Department of Computer Science
University of Warwick

Coventry, CV4 7AL UK
Email: {fatimah,arshad}@dcs.warwick.ac.uk

Abstract—This paper investigates a novel variant of the double
bit errors fault model and studies its impact on program
execution. Current works have addressed the problem of both
random bit upsets occurring in the same location (a given
memory word or register). In contrast, we randomly select
two locations and flip a single bit at each location, which we
call Double Single Bit-flip (DSB) variant. We then evaluate the
viability of this new variant in uncovering vulnerabilities in soft-
ware (SW). As a baseline for comparison, we inject traditional
single bit-flip (SBF) errors in registers. To better understand the
impact of the injected faults on SW, we classify the behaviour
of the program in five possible failure categories. Our results,
based on nearly a million fault-injection experiments, show that
(i) DSB causes a significantly higher proportion of SW failures
than SBF errors, (ii) a large proportion of those failures was
crash failure and (iii) under DSB, the proportion of silent data
corruptions (SDC) varies significantly between programs from
different application areas. The failure profile induced by DSB
is very different to other fault models, such as SBF.

Keywords–Multiple bit-flip errors; Fault injection; Failure
profile; Evaluation.

I. INTRODUCTION

With the ever-decreasing size of hardware and issues
such as temperature hotspots [1], computer systems are
being subjected to increasing rate of transient faults. These
transient faults originate from the transistor level. These
faults typically cause a corruption of the state of the pro-
gram, i.e., errors exist in the program [2]. To mimic these
errors, bit-flip errors are typically artificially injected into
the program state during a process called fault injection [3].
Traditionally, a single bit-flip error was injected in a single
run of the program. This involves selecting a variable at a
given location in the program and, when execution reaches
this location, a single bit upset (SBUs) is performed on the
selected variable. However, the increasing rate of transient
faults have limited the usefulness of SBUs in uncovering
vulnerabilities, necessitating multiple-bit upsets (MBUs) to
be injected in a single run.

Fault injection is a widely used technique for the val-
idation of dependable systems. Its importance is being in-
creasingly recognised, with its recommendation as a highly
valuable assessment method in the recently published ISO
26262 standard [4] for functional safety of road vehicles
supporting this increasing importance. It is expected that
single event upsets will likely create MBUs in forthcom-
ing hardware circuits [5][6], including those in embedded
systems. In anticipation of this problem, several work have

started investigated double-bit upsets (DBUs) fault model
[7][8]. However, these works focused on one variant of
DBUs: at a given location, two bits are randomly selected
and are subsequently inverted. There is a rareness of field
data on how these hardware errors will manifest. This is also
observed in [7][8]. In [9], it has been shown that multiple
memory errors may occur as: (i) several bit upsets within
a single location, (ii) one or more bit upsets across several
locations or (iii) several bits upsets all across the chip. In
this paper, we investigate a variant of DBUs: two locations
are selected and a SBU is injected at each location. We call
this new fault model the Double Single Bit-flip (DSB) fault
model.

The usefulness of a fault model is its ability to uncover
vulnerabilities in a system. Specifically, it is often the case
that the error sensitivity of a software system is assessed
with respect to the errors being injected according to the
proposed fault model. Error sensitivity is commonly defined
as the likelihood that a softare component will produce a
SDC, which is a type of problem that often goes undetected
by the system, as a result of a hardware error. It also
often the case that the failure profile of the system is
evaluated with respect to the fault model. Hence, we have
conducted an extensive fault injection campaign, with close
to one million fault injection experiments on five different
software modules, each with different software structures, to
validate the DSB fault model. Our contributions are: (i) we
investigate the impact of DSB on program execution, (ii) we
conduct a large-scale fault injection experiments, of close
to a million executions, to assess the usefulness of DSB,
and (iii) our results show that DSB induces very different
failure profiles in software than existing fault models, such
as SBF. We conclude that DSB is indeed useful in uncovering
vulnerabilities.

The remainder of the paper is structured as follows: In
Section II, we present the system and fault models we assume
in the rest of the paper. We detail the experimental setup
used in Section III. In Section IV, we present the results of
our experiments. We present an overview of related work in
Section V. We conclude the paper in Section VI.

II. MODELS

In this section, we present the system model and the fault
model we assume in the rest of the paper.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

A. System Model
In this paper, we consider modular software, i.e., software

that consists of a number of discrete software functions,
called modules, that interact to deliver the requisite func-
tionality. We consider a module as a generalised white-box,
having multiple inputs and outputs and whose codebase is
available. We do not assume knowledge of the implemen-
tation details. The codebase is needed only to enable the
software to be instrumented to enable errors to be injected.

Modules communicate with each other in some specified
way using different forms of signalling, e.g., shared memory,
parameter passing etc. This is usually down to the nature
of the software and to the chosen communication model.
A software module performs computations using the inputs
received on its input channels to generate the outputs, which
are then placed on the requisite output channels.

B. Fault Model
Our fault model is transient hardware faults that ulti-

mately affect the software modules. These faults typically
originate at the transistor level due to issues such as hardware
size and temperature hotspots. These faults affect the state of
the program by changing the content of memory and registers
(i.e., different locations), causing errors [2] to exist in the
software. These errors in software are typically mimicked by
injecting bit-flip errors in main memory words and registers.
In this paper, we focus only on errors in registers and the
total number of errors that can occur in any run is two, i.e,,
we randomly select two registers and flip one bit in each.
We specifically corrupt the contents of registers immediately
before they are written into main memory.

III. FAULT-INJECTION EXPERIMENTS

In this section, we empirically study how DSB and DBF
affect program executions. In section III-A, we describe
the target programs, the modules that are instrumented in
each target program and the input sets that are processed
by the programs during injection. We then describe how
the modules are instrumented and how the fault injection
experiments are done in III-B.

A. Target Programs
We select five different modules from two different

software systems for instrumentation. The first system is
an image recognition package, SUSAN (Smallest Univalue
Segment Assimilating Nucleus) [10], developed for noise
filtering and for recognising corners and edges in Magnetic
Resonance Image (MRI) of the brain. The second software
system is the Mathwork’s implementation of a flight control
system for the longitudinal motion of an aircraft [11]. We
target five different modules within these systems, three from
SUSAN and two from the flight control systems.

The three different modules we use in SUSAN are for
corners detection, edges detection and noise filtering, which
we refer to as corners, edges and smoothing, respectively, in
the rest of the paper. We select two modules within the flight
control system, (i) the module for updating derivatives for the
root system and (ii) the module for updating model step. We
refer to these modules as derivatives and step, respectively.
Details are provided in Table I for description of input set.

TABLE I. SIZES OF TARGET MODULES AND DESCRIPTION OF THEIR
INPUT SET.

Module Size
(bytes) Input description

Corners 7975 PGM files:
A simple four-sided geometric shape (7292 bytes)
Multiple geometric shapes of various shapes and sizes (65551 bytes)
An image (111666 bytes)

Edges 6053
Smoothing 3488

Derivatives 2915 Pilot Frequency in rads/secs:
Variable of type unsigned long long
between 0.030000000000000000 to 0.1199999999999999Step 10249

B. Experimental Setup

In this section, we provide details about the experimental
setup and the fault injection experiments that we conducted.

1) System platform: The experiments were executed on a
3 GHz Intel Core i7 machine, with 16 GB, 1600 MHz DDR3
and 500 GB solid state drive. The machine was running
Darwin OS version 14.0.0.

2) Target system: For our faullt injection experiments,
we used a variant of LLVM fault injection tool (LLFI)
[12], which we refer to as Fault-Rate LLFI (or FR-LLFI)
[13]. LLFI works at the LLVM [14] compiler’s intermediate
representation (IR) level. FR-LLFI allows the injection of
faults using a fixed probability, which is called fault rate,
rather than a single fault per execution. We extended FR-
LLFI to allow for multiple bit flips in specific points, we
also added the functionality of allowing the selection of what
bit(s) to flip at specific points.

To perform a fault injection, we first compiled the source
files into a single IR file. The compiled IR file together with a
fault injection configuration script (written in PyYaml format
[15]) are then fed to the extended FR-LLFI instrumentor
(instrumentor) for instrumentation. The instrumentor outputs
executables (IR and C/C++ object files) to be passed to
the extended FR-LLFI Profiler (profiler) for profiling and
the extended FR-LLFI fault-injector (fault-injector) for fault
injection.

Extended	
 FR-­‐LLFI	

profiler	

Source	

files	

LLVM	
 Compiler	

Extended	
 FR-­‐LLFI	

instrumentor	

IR	
 File	
 PyYaml	
 	
 FI	

Configura@on	
 file	

FI	
 executable	

files	

FI	
 setup	
 text	
 files	
 Golden	
 Run	

output	

Extended	
 FR-­‐LLFI	
 	

fault-­‐injector	

Profiling	
 executable	

files	

FI	
 experiments	

program	
 output	

FI	
 experiments	
 stat	

&	
 log	
 file	

Figure 1. Extended FR-LLFI fault-injection (FI) workflow.

We then passed the executables generated for profiling
into the profiler. The profiler then generates the setup files
(text files) to be used by the fault-injector for the fault
injection phase. In addition, the profiler executes a fault-

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

free execution of program. This fault-free execution is called
golden run.

Finally, we fed the setup files generated by the profiler,
the fault injection executables generated by the instrumentor
and the fault-injection configuration script into the fault-
injector.

The fault-injector selects an instance of the places of
interest specified in the fault injection IR file generated by
the instrumentor and then inject fault into it at runtime
(execution of the fault injection C/C++ object file generated
by the instrumentor). The output of the fault-injector is the
fault injection experiments, consisting of program output, log
and stat files. Figure 1 depicts the workflow of extended FR-
LLFI.

TABLE II. VARIABLES SELECTED FOR FAULT INJECTIONS IN DIFFERENT
BLOCK LOCATIONS.

Target
Program Module Variable Size

(bits)
Location
(Block) Alias

SUSAN

Corners

x size 32 early SC A
y size 32 early SC B
n 32 central SC C
c 8 central SC D
xx 32 late SC E
yy 32 late SC F

Edges

x size 32 early SE A
y size 32 early SE B
n 32 central SE C
m 32 central SE D
c 8 central SE E
w 32 late SE F
x 32 late SE G
y 32 late SE H

Smoothing

x size 32 early SS A
y size 32 early SS B
n max 32 early SS C
x 32 central SS D
center 32 central SS E
area 32 late SS F
tmp 32 late SS G

Flight
Longitudinal
Controller

Derivatives

Integrate CSTATE 64 early FD A
ActuatorModel STATE 64 early FD B
Integrategdot CSTATE 64 early FD C
Wgustmodel CSTATE 64 central FD D
Qgustmodel CSTATE 64 central FD E
AlphaSendorLowPassFilter CSTATE 64 central FD F
StickPrefilter 64 late FD G
PitchRateLeadFilter 64 late FD H

Step

Integrate 64 early FS A
ActuatorModel 64 early FS B
Integrateqdot 64 early FS C
Wgustmodel 64 central FS D
Qgustmodel 64 central FS E
PitchRateLeadFilter 64 central FS F
Gain3 h 64 late FS G
Sum2 g 64 late FS H
Sum1 m 64 late FS I

3) Experimental Procedure: To achieve the goals of the
study, we run a number of fault injection experiments into a
number of different variables (or combinations of variables)
in five different modules. We run each target module on three
input sets, one from each of three input categories, namely
small, medium and large. Before running these experiments,
we partition the source code of the program into three parts,
namely (i) early, (ii) central and (iii) late. For each part,
we choose two or three variables at random, i.e., variables
are partitioned and selected according to their placement in
the source code of the program. These variables are shown
in Table II, with the part of the program source code they
belong to. We define a target location (or location for short)
as a given register used by the program. When a single bit-
flip error is injected, a single location is selected. On the
other hand, two locations are selected for DSB errors. A
fault injection experiment is the injection of a an error under
the assumed fault model in a given target location. A fault
injection campaign for a fault model is a set of experiments
for a given input set.

Once a location (or pairs of locations) have been selected,
we then injected bit-flip errors exhaustively in the locations
to cover all possible combination. For each selected location,
fault is injected only once during the execution of the
program. For the SBU fault model, we ran n experiment
in each target location, n being the length of the register.
We injected a total 5136 SBUs in the various modules. For
the DSB model, for each location pair and a given input,
we ran n × m experiments, m,n being the length of the
target locations. Overall, we injected a total of 955392 DSB
errors in the software modules. More details can be found
in Table II for the size of target locations.

To better understand the profile of the program, we
classify the outcome of each fault injection experiment as
(i) a Safe Run, if the program terminates normally and with
an output identical to that of the golden run’s, (ii) as a No
Output failure, if the program terminates normally but fails to
produce an output, (iii) as a Silent Data Corruption (SDC), if
the program terminates normally but with an output different
to that of the golden run’s, (iv) as a Program Hang, if the
program fails to terminate within a predefined time (we set
this to 15 times larger than the execution time of the golden
run), and (iv) as a Crash failure, if the program is terminated
due to an exception by the either the program or the operating
system.

IV. EXPERIMENTAL RESULTS

We now analyse the results of the various FI experiments,
as presented in Tables III – IV and Figures 2 – 4.

A. Impact of DSB vs Impact of Single bit-Flip Error
The first goal of the paper was to evaluate the impact

of DSB errors on programs compared to that of single
bit-flip (SBF) errors in the same variables. The results for
each module are summarised in Table III, while an overall
summary is presented in Figure 2.

TABLE III. AVERAGE OUTCOME DISTRIBUTIONS FOR DIFFERENT
MODULES.

Module Fault
Model

Outcome

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners SBF 29.4% 18.3% 8.5% 0.0% 43.8%
DSB 12.5% 13.8% 15.2% 0.1% 58.4%

Edges SBF 41.5% 0.0% 3.7% 0.0% 54.7%
DSB 22.0% 0.0% 3.6% 0.1% 74.3%

Smoothing SBF 14.3% 0.6% 40.0% 0.0% 45.1%
DSB 6.7% 1.2% 16.4% 10.8% 64.8%

Derivatives SBF 0.0% 7.1% 0.0% 0.0% 92.9%
DSB 0.0% 0.5% 0.0% 0.0% 99.5%

Step SBF 0.0% 25.6% 0.0% 0.0% 74.4%
DSB 0.0% 6.7% 0.0% 0.0% 93.2%

1) Overall observations: The first observation to be made
is that there is marked difference between the failure profile
induced by DSB errors compared to that of single-bit flip
errors. Further, the proportion of safe run (i.e., no impact)
under DSB errors is halved when compared to the proportion
of safe runs under SBF errors (see Figure 2). On the other
hand, the proportion of crash failure is considerably higher
(≈ 16%) under DSB errors than under SBF errors. Also,
we observe a reduction in the occurrence of SDCs under
DSB errors than under SBF errors. We conjecture that this
result is due to the fact DSB errors induce more severe crash

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

failures, which cause the programs to prematurely exit, and
hence such executions cannot display SDCs.

As a matter of contrast, previous work on double bit-flip
errors, where two-bit errors are injected into a given location,
concluded that single and double bit-flip errors induce very
similar proportions of SDCs. We conclude that DSB errors
induce a failure profile different to that induced by the double
bit-flip errors. As such, we conclude that DSB errors uncover
new vulnerabilities in the system and, hence, need to be
considered when validating dependable software systems.

2) Module-level observations: From Table III, we ob-
serve that the failure profile is dependent on the given target
program. For example, we notice the proportion of safe runs
under SBF errors in the SUSAN modules is twice as much as
that observed under DSB errors. Further, we observe that all
faulty runs, irrespective of fault model, in the modules from
the control system end in either no output or crash failure.
Additionally, we also notice that only the SUSAN modules
suffer from SDCs and program hangs under both SBF and
DSB errors.

We also observe that the modules from the control system
experience mostly crash failures in the presence of DSB
errors. Further, we also notice for the control system modules
the proportion of no output failure is significantly higher
for SBF errors. We also observe a higher proportion of
crash failure for DSB errors than that for SBF errors in the
SUSAN modules. Given the nature of control systems, which
are at the heart of several safety-critical embedded systems,
the fact that a high proportion of the DSB errors leads to
failures implies that the control systems will not provide
reliable service. SDCs have the property that they have not
been detected by the system and, thus, provide a potential
vulnerability to the system. Also, we observe that DSB errors
induce different failure profiles in different modules.

B. Impact of injection location of failure profile
Figures 3 and 4 show the results of the impact injection

location has on the failure profile.
1) SBF errors: From Figure 3, the highest proportion,

100%, of safe runs observed in the presence of SBFs is in
location SE D (Figure 3b) and the lowest proportion, 0.0%,
is observed in all target locations in derivatives (Figure 3d)
and step (Figure 3e).

As can be observed from Figure 3, the two modules
from the control software suffer a high proportion of crash
failures, irrespective of injection location. The other failure
type suffered by these two modules are the “no output
failure” type. We also observe that, in general, the earlier
the injection is performed, the higher the likelihood of a
crash failure to happen, i.e., when SBF error is injected in
the early part of the modules, the crash failure is more likely
to result. On the other hand, crash failure is very likely to
happen in the modules of the control software, irrespective
of injection location.

2) DSB errors: To understand the impact of injection
locations under the DSB errors, we focus on Figure 4 and
Table IV

From Figure 4, we observe that failure profiles of the
different modules differ from one another. This shows that
DSB errors cause these modules to fail differently, thereby

17.0%	

10.3%	

10.5%	

0.0%	

62.2%	

Safe	
 Run	

No	
 Output	
 Failure	

SDC	

Program	
 Hang	

Crash	
 Failure	

a. Single bit-flip

8.3%	

4.4%	

7.1%	

2.2%	

78.1%	

Safe	
 Run	

No	
 Output	
 Failure	

SDC	

Program	
 Hang	

Crash	
 Failure	

b. Double single bit-flip

Figure 2. Average outcome distributions over all modules.

inducing different failure profiles in these modules and also
that injection locations do affect the failure profiles of these
modules.

For the two control software modules, any combination
of injection locations mostly lead to a crash failure, where
the step module suffer a small proportion of the “no output”
failure. Focusing on the SUSAN modules, it can be observed
that, in general, the earlier an injection is done, the higher the
likelihood the failure is a crash failure. On the other hand, it
can also be observed that the later an injection is done, the
likelihood of a safe run is non-negligible. We now perform a
step-by-step comparison between different pairs of injection
locations and their respective impact of the software module.

3) DSBs in early blocks vs DSBs in central blocks: We
first compare the difference in the impact of DSB errors
in early blocks against DSB errors in central blocks, which
are shown in Table IV(a) and Table IV(b), respectively. For
example, the highest safe run rate observed in early blocks
is 0%, whereas the highest safe run rate observed for central
blocks is 49.0% (smoothing). The highest proportion of DSB
errors in early blocks resulting in crash failure is 99.4%
(derivatives) and the lowest is 55.4% (corners), while the
highest proportion of SBFs that resulted in crash failure is
99.5% (derivatives) and the lowest, 33.6% (corners).

Comparing the results for the different modules, we
observe that there is a higher proportion of crash failure,
SDCs and program hang when DSB errors are injected in
early blocks while, when DSB errors are injected in central
block, this results in higher rate of safe run and no output
failure.

4) DSBs in early blocks vs DSBs in late blocks: Here,
we compare the results of DSB errors in early block with
DSB errors in late blocks, as captured in Table IV(a) and

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SC_A	
 SC_B	
 SC_C	
 SC_D	
 SC_E	
 SC_F	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

a. Corners

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_A	
 SS_B	
 SS_C	
 SS_D	
 SS_E	
 SS_F	
 SS_G	
 SS_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

b. Edges

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_A	
 SS_B	
 SS_C	
 SS_D	
 SS_E	
 SS_F	
 SS_G	
 SS_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

c. Smoothing

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FD_A	
 FD_B	
 FD_C	
 FD_D	
 FD_E	
 FD_F	
 FD_G	
 FD_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

d. Derivatives

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FS_A	
 FS_B	
 FS_C	
 FS_D	
 FS_E	
 FS_F	
 FS_G	
 FS_H	
 FS_I	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

e. Step

Figure 3. Average outcome distributions for SBF experiments for different
modules.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SC
_A
/SC

_B
	

SC
_A
/SC

_C
	

SC
_A
/SC

_D
	

SC
_A
/SC

_E
	

SC
_A
/SC

_F
	

SC
_B
/SC

_C
	

SC
_B
/SC

_D
	

SC
_B
/SC

_E
	

SC
_B
/SC

_F
	

SC
_C
/SC

_D
	

SC
_C
/SC

_E
	

SC
_C
/SC

_F
	

SC
_D
/SC

_E
	

SC
_D
/SC

_F
	

SC
_E
/SC

_F
	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

a. Corners

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SE
_A

/S
E_
B	

SE
_A

/S
E_
C	

SE
_A

/S
E_
D	

SE
_A

/S
E_
E	

SE
_A

/S
E_
F	

SE
_A

/S
E_
G	

SE
_A

/S
E_
H	

SE
_B

/S
E_
C	

SE
_B

/S
E_
D	

SE
_B

/S
E_
E	

SE
_B

/S
E_
F	

SE
_B

/S
E_
G	

SE
_B

/S
E_
H	

SE
_C

/S
E_
D	

SE
_C

/S
E_
E	

SE
_C

/S
E_
F	

SE
_C

/S
E_
G	

SE
_C

/S
E_
H	

SE
_D

/S
E_
E	

SE
_D

/S
E_
F	

SE
_D

/S
E_
G	

SE
_D

/S
E_
H	

SE
_E
/S
E_
F	

SE
_E
/S
E_
G	

SE
_E
/S
E_
H	

SE
_F
/S
E_
G	

SE
_F
/S
E_
H	

SE
_G

/S
E_
H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

b. Edges

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_
A/
SS_

B	

SS_
A/
SS_

C	

SS_
A/
SS_

D	

SS_
A/
SS_

E	

SS_
A/
SS_

F	

SS_
A/
SS_

G	

SS_
B/S

S_
C	

SS_
B/S

S_
D	

SS_
B/S

S_
E	

SS_
B/S

S_
F	

SS_
B/S

S_
G	

SS_
C/S

S_
D	

SS_
C/S

S_
E	

SS_
C/S

S_
F	

SS_
C/S

S_
G	

SS_
D/
SS_

E	

SS_
D/
SS_

F	

SS_
D/
SS_

G	

SS_
E/S
S_
F	

SS_
E/S
S_
G	

SS_
F/S
S_
G	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

c. Smoothing

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FD
_A

/F
D_

B	

FD

_A
/F
D_

C	

FD

_A
/F
D_

D	

FD

_A
/F
D_

E	

FD

_A
/F
D_

F	

FD

_A
/F
D_

G	

FD

_A
/F
D_

H	

FD

_B
/F
D_

C	

FD

_B
/F
D_

D	

FD

_B
/F
D_

E	

FD

_B
/F
D_

F	

FD

_B
/F
D_

G	

FD

_B
/F
D_

H	

FD

_C
/F
D_

D	

FD

_C
/F
D_

E	

FD

_C
/F
D_

F	

FD

_C
/F
D_

G	

FD

_C
/F
D_

H	

FD

_D
/F
D_

E	

FD

_D
/F
D_

F	

FD

_D
/F
D_

G	

FD

_D
/F
D_

H	

FD

_E
/F
D_

F	

FD

_E
/F
D_

G	

FD

_E
/F
D_

H	

FD

_F
/F
D_

G	

FD

_F
/F
D_

H	

FD

_G
/F
D_

H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

d. Derivatives

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FS
_A

/F
S_
B	

FS
_A

/F
S_
C	

FS
_A

/F
S_
D	

FS
_A

/F
S_
E	

FS
_A

/F
S_
F	

FS
_A

/F
S_
G	

FS
_A

/F
S_
H	

FS
_A

/F
S_
I	

FS
_B

/F
S_
C	

FS
_B

/F
S_
D	

FS
_B

/F
S_
E	

FS
_B

/F
S_
F	

FS
_B

/F
S_
G	

FS
_B

/F
S_
H	

FS
_B

/F
S_
I	

FS
_C

/F
S_
D	

FS
_C

/F
S_
E	

FS
_C

/F
S_
F	

FS
_C

/F
S_
G	

FS
_C

/F
S_
H	

FS
_C

/F
S_
I	

FS
_D

/F
S_
E	

FS
_D

/F
S_
F	

FS
_D

/F
S_
G	

FS
_D

/F
S_
H	

FS
_D

/F
S_
I	

FS
_E
/F
S_
F	

FS
_E
/F
S_
G	

FS
_E
/F
S_
H	

FS
_E
/F
S_
I	

FS
_F
/F
S_
G	

FS
_F
/F
S_
H	

FS
_F
/F
S_
I	

FS
_G

/F
S_
H	

FS
_G

/F
S_
I	

FS
_H

/F
S_
I	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

e. Step

Figure 4. Average outcome distributions for DSB experiments for different
modules.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

TABLE IV. AVERAGE OUTCOME DISTRIBUTIONS FOR DSB IN
DIFFERENT BLOCKS COMBINATIONS FOR DIFFERENT MODULES.

(A) EARLY BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 0.0% 14.8% 29.3% 0.5% 55.4%
Edges 0.0% 0.0% 1.8% 1.5% 96.6%
Smoothing 0.0% 1.4% 27.1% 4.0% 67.5%
Derivatives 0.0% 0.6% 0.0% 0.0% 99.4%
Step 0.0% 8.3% 0.0% 0.1% 91.7%

(B) CENTRAL BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 40.9% 21.7% 3.8% 0.0% 33.6%
Edges 47.8% 0.0% 0.0% 0.0% 52.2%
Smoothing 49.0% 0.0% 16.9% 0.0% 34.1%
Derivatives 0.0% 0.5% 0.0% 0.0% 99.5%
Step 0.0% 8.3% 0.0% 0.0% 91.6%

(C) LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 16.1% 14.7% 13.2% 0.0% 56.0%
Edges 35.5% 0.0% 0.0% 0.0% 64.5%
Smoothing 15.7% 0.0% 0.1% 49.7% 34.6%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 3.6% 0.0% 0.0% 96.3%

(D) EARLY & CENTRAL BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 4.3% 10.0% 18.4% 0.0% 67.3%
Edges 1.5% 0.0% 7.5% 0.3% 90.7%
Smoothing 0.8% 1.4% 19.6% 1.4% 76.7%
Derivatives 0.0% 0.5% 0.0% 0.0% 99.5%
Step 0.0% 8.3% 0.0% 0.0% 91.7%

(E) EARLY & LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 3.8% 9.9% 18.1% 0.0% 68.2%
Edges 1.4% 0.0% 7.8% 0.0% 90.8%
Smoothing 0.7% 1.4% 18.4% 16.9% 62.6%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 6.0% 0.0% 0.0% 94.0%

(F) CENTRAL & LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 35.5% 22.2% 3.8% 0.0% 38.5%
Edges 44.3% 0.0% 0.0% 0.0% 55.7%
Smoothing 16.9% 0.0% 4.9% 14.0% 64.3%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 5.9% 0.0% 0.0% 94.1%

Table IV(c), respectively. For example, the highest ”no
output” failure rate observed in the presence of DSB errors
in early blocks in 14.8% (corners) whereas the highest “no
output” failure rate observed in the presence of DSBs in late
blocks is 14.7% (corners). The highest proportion of DSBs in
early blocks resulting in data corruption is 29.3% (corners).

Comparing the results of the different modules, we ob-
serve that there is a higher proportion of crash failure, data
corruption and no output failure in the presence of DSBs in
early blocks, while the presence of DSBs in late blocks result
in higher rate of safe runs. Also, the failure profile is more

varied (different types of failures) when DSBs are injected
in an early block, while the profile is more restricted when
DSBs are injected late. Thus, we can conclude that, by not
injecting in an early block, there is a reduced likelihood of
uncovering vulnerabilities.

5) DSBs in early blocks vs DSBs in block combinations:
Here, we compare the results of DSBs in early blocks against
DSBs in different combinations of blocks, which we present
in Table IV(a), Table IV(d), Table IV(e) and Table IV(f),
respectively. For example, the lowest crash failure rate seen
for DSBs injected in early blocks is 55.4% while the lowest
crash failure rate observed for DSBs injected in both early
& central block is 67.3%. The highest data corruption rate
observed for DSBs in early blocks is 29.3%, while that
seen for combination of DSB in early & late blocks is
18.4%. The highest proportion of safe run observed in the
presence of DSBs in early block is 0.0%, while the highest
observed for DSBs injected in both central & early blocks
is 44.3%. Overall, we observed that the proportion of crash
failures has increased when DSBs are injected in an early
and central block compared when DSBs are injected in an
early block only. However, this comes as a counterbalance to
a corresponding decrease in SDCs when DSBs are injected
in an early and central block.

We also observed that injecting DSBs in an early and
central block results in very similar failure profile as when
injecting DSBs in an early and late block. On the other hand,
we observed that when DSBs are injected in a central and
late block, the profile changes considerably. The proportion
of safe runs increases while the proportion of crash failures
decreases (except for the control software). Thus, with these
results, we can conclude that the locations at which DSBs
are injected has a strong impact on the failure profile of the
system. We have shown that an early injection of a DSB
error often leads to a failure.

C. Limitations
One limitation of the results presented here is the range of

applications we have used to evaluate the DSB fault model.
Though initial results show that the fault model can help
uncover vulnerabilities that are otherwise not detected by
single bit-flip errors, the fault model needs to be validated
against several other applications.

A second limitation in the results presented here is
that, to the best of our knowledge, there is little to no
field data that shows how multiple bit upsets will manifest
themselves. There is however increasing evidence that the
rate of hardware errors is increasing. We only consider DSB
errors here and, in our future work, we are considering
multiple single bit-flip (MSB) errors. The relevance of the
results presented here is only as far as the field data matches
the DSB model introduced.

V. RELATED WORK

Fault injection is a widely used technique in dependabil-
ity evaluation [7][12][16][17]. Hardware transient faults are
injected into a target system by flipping bits in CPU registers
or memory [16][17]. Recent research have shown that multi-
ple fault injections can be very effective in detecting software
vulnerabilities [7][8]. Other works have investigated impact
of device-level fault injections that manifest as single bit-
upsets in registers and main memory [18][19][20].

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

Recently, the effects of multiple bit-upsets on SRAMs
and DRAMs have been studied. In [21], the authors inves-
tigated DRAM disturbance errors that manifests as multiple
bit-upsets in memory. On the other hand, the authors of
[22] investigated the geometric effects of multiple bit-upsets
injected into DRAMs. The main difference between our
study and these studies is the level of abstraction we focused
on. The fault model under investigation in [22] is multiple
bit-upsets in multiple cells within the same memory location
while that under investigation in [21] is multiple bit-upsets
in different memory locations. In spite of the fundamental
differences between our work and theirs, they also showed
higher rate of safe runs under the single bit-flip model. In
addition, under the double bit-flip model, higher crash failure
rate is observed. However, they reported that the proportion
of SDCs is higher under the double bit-flip model, this
is contrary to what our study showed. We observed lower
proportion of SDCs under the variant of double bit-flip model
studied here than when compared with the single bit-flip
model.

Similar to our study, the authors of [8] mimicked bit-
flips in registers of a real hardware platform. In addition,
they investigated the impact of SBF and double bit-flips (two
random bit-flips in same location) on program execution.
Our study mainly differs from theirs in the assumed DBU
fault model. The DBU fault model in their work selects
a single location and flips two bits in that location, while
in ours the model chooses two locations and flips one bit
in each location. However, in [8], they also injected faults
in memory words and investigated the error sensitivity for
different target locations. Both works reported a higher level
of safe runs for SBUs and a higher proportion of crash
failures for DBUs.

VI. CONCLUSION AND FUTURE WORK

We have investigated the impact of a novel variant of the
double bit upsets, namely the double single bit-flip model,
on software execution. We have evaluated it on five different
modules from two different applications. Our results show
that (i) the proportion of crash failures induced by DSBs
is significantly higher than single bit-flip errors, (ii) the
proportion of SDCs is lower with DSBs than with single
bit-flips and (iii) DSBs induce different failure profiles in
different applications.

As future work, we will investigate the reason behind
the observed differences between this model and SBF. We
will also extend the DSB model to include injection in
memory words. Further, we will compare the failure profile
of the DSB model with existing DBU models. We will
also investigate the effectiveness of current software-based
fault tolerance techniques, such as detectors, against DSBs
and in turn determine the type of fault tolerance needed to
handle the different types of failures. We will also generalise
the work focusing on multiple single bit-flip (MSB) errors
(instead of two).

REFERENCES

[1] C. Yang and A. Orailoglu, “Processor reliability enhancement through
compiler-directed register file peak temperature reductionprocessor
reliability enhancement through compiler-directed register file peak
temperature reduction,” in Proceedings Dependable Systems and
Networks, 2009, pp. 468–477.

[2] J.-C. Laprie, Dependability: Basic Concepts and Terminology.
Springer-Verlag, December 1992.

[3] M. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” IEEE Computer, vol. 30, no. 4, April 1997, pp. 75–82.

[4] “Iso 26262-1:2011, road vehicles – functional safety – part 1:
Vocabulary. iso, geneva, switzerland,” 2011.

[5] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Rucker-
bauer, “Investigation of increased multi-bit failure rate due to neutron
induced seu in advanced embedded srams,” in IEEE Symposium on
VLSI Circuits, 2007, pp. 80–81.

[6] R. Reed and et al., “Heavy ion and proton-induced single event
multiple upset,” IEEE Transactions on Nuclear Science, vol. 44, no. 6,
1997, pp. 2224–2229.

[7] S. Winter, M. Tretter, B. Sattler, and N. Suri, “simfi: From single to
simultaneous software fault injections,” in Proceedings of Dependable
Systems and Networks (DSN), 2013.

[8] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A
study of the impact of single bit-flip and double bit-flip errors on
program execution,” in Computer Safety, Reliability, and Security,
ser. Lecture Notes in Computer Science, F. Bitsch, J. Guiochet,
and M. Kaniche, Eds. Springer Berlin Heidelberg, 2013, vol.
8153, pp. 265–276. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-40793-2 24

[9] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
in Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIXATC’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855846

[10] S. Smith, “Susan version 2l,” http://users.fmrib.ox.ac.uk/∼steve/
susan/susan2l.c, 1999, [Online; accessed 19-November-2014].

[11] MATLAB, version 8.3 (R2014a). Natick, Massachusetts: The
MathWorks Inc., 2014. [Online]. Available: http://www.mathworks.
co.uk/products/matlab/

[12] A. Thomas and K. Pattabiraman, “Llfi: An intermediate code level
fault injector for soft computing applications,” in Proceedings of IEEE
Workshop on Silicon Errors in Logic, System Effects (SELSE), 2013.

[13] S. Smith, “Fault-rate llfi,” https://github.com/ShadenSmith/LLFI,
2014, [Online; accessed 19-November-2014].

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[15] PyYaml, “Pyyaml,” http://pyyaml.org/wiki/PyYAMLDocumentation,
2011, [Online; accessed 19-November-2014].

[16] M. Hiller, A. Jhumka, and N. Suri, “An approach for analysing
the propagation of data errors in software,” in Proceedings of the
31st IEEE/IFIP International Conference on Dependable Systems and
Networks, July 2001, pp. 161–172.

[17] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
A flexible software-based fault and error injection system,” IEEE
Transactions on Computers, vol. 44, no. 2, February 1995, pp. 248–
260.

[18] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A study
of the impact of bit-flip errors on programs compiled with different
optimization levels,” in Dependable Computing Conference (EDCC),
2014 Tenth European, May 2014, pp. 146–157.

[19] D. Di Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and
R. Johansson, “On the impact of hardware faults — an investigation
of the relationship between workload inputs and failure mode
distributions,” in Proceedings of the 31st International Conference
on Computer Safety, Reliability, and Security, ser. SAFECOMP’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 198–209. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33678-2 17

[20] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects
of compiler optimizations on application reliability,” in Workload
Characterization (IISWC), 2011 IEEE International Symposium on,
Nov 2011, pp. 184–193.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

[21] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” SIGARCH
Comput. Archit. News, vol. 42, no. 3, Jun. 2014, pp. 361–372.
[Online]. Available: http://doi.acm.org/10.1145/2678373.2665726

[22] S. Satoh, Y. Tosaka, and S. Wender, “Geometric effect of multiple-
bit soft errors induced by cosmic ray neutrons on dram’s,” Electron
Device Letters, IEEE, vol. 21, no. 6, June 2000, pp. 310–312.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

