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Abstract—A Bayesian network model for integrated software 

quality prediction, proposed in earlier study, has potential in 

supporting decision makers in software projects. However, it 

also has some disadvantages limiting its use. The aim of this 

paper is to overcome these limitations by enhancing the 

original model in three ways: (1) incorporating project factors, 

(2) adding subnets with detailed process factors, and (3) 

modeling integration of software components or sub-systems. 

These enhancements significantly improve the analytical 

usefulness of this predictive Bayesian network model. 

Keywords-Bayesian network; decision support; process 

factors; project factors; quality factors; software quality. 

I. INTRODUCTION 

The quality of software is a very important aspect of 
software project. Thus, software quality have been 
extensively studied since the turn of 1960‟s and 1970‟s 
[1][26]. While most of these studies have been focused on 
software defectiveness [6], some researchers also investigate 
selected features of software quality such as reliability 
[16][18], maintainability [25] or usability [2]. Although such 
studies are very useful contributions to software engineering 
discipline, they typically focus on a single feature of 
software quality. 

Project decisions related to software quality require 
support from analytical and predictive models. It is possible 
to make decisions based on output from models focusing on 
a single quality feature. The majority of existing approaches 
involving techniques, such as case-based reasoning, decision 
trees, multiple regression, are not feasible for this purpose 
because they focus on a single output. Important decisions, 
influencing the whole project and its environment, should be 
made after deeper analyses of possible effects involving 
multiple outputs. Performing such analyses can be supported 
by a simulation model that can handle multiple outputs and 
various types of relationships. In our experiences with using 
empirical data in software companies, we found that the 
companies do not have data of required volume and 
granularity to automatically generate/learn the model purely 
from data. Therefore, we propose using expert-driven 
Bayesian networks (BNs) as a formal representation for such 
simulation model. Section III provides more details on 
motivations for using BNs. 

Earlier studies [20][21] proposed a BN model for 
integrated software quality prediction. Preliminary 

experiments revealed that this model may be a useful 
simulation tool for decision makers in software projects. The 
main aim of this paper is to develop an enhanced version of 
this predictive model. The main contributions of this paper 
are the following enhancements of the original model: 

 Incorporating project factors that describe the nature 
of a project – as a result, an enhanced model can be 
reused for different types of software projects, rather 
than for a single project type defined upfront; 

 Adding subnets with detailed process factors 
influencing overall process quality – this may be 
useful where direct assessment of the level of 
process quality is difficult or where it is useful to 
perform simulations using detailed process factors; 

 Modeling an integration of software components or 
sub-systems into larger software products – this 
extends the usability of the model for different parts 
of a software product and their integration. 

This paper is organized as follows: Section II defines 
software quality and its factors according to ISO standards. 
Section III discusses related work. Section IV summarizes 
original BN model. Section V presents proposed 
enhancements to the original model. Section VI provides 
plans for model calibration and validation. Section VII draws 
conclusions and discusses future work.  

II. SOFTWARE QUALITY FACTORS 

Detailed analysis of software quality requires 
investigating a variety of quality factors. This paper is based 
on the breakdown of software quality proposed in ISO 250xx 
series of standards [11][12], which superseded an older 9126 
standard [13]. On the first level there are 11 quality features: 
compatibility, flexibility, functional suitability, 
maintainability, operability, performance efficiency, 
portability, reliability, safety, security, and usability. Then 
each feature is decomposed into a set of sub-features. For 
example, reliability has five sub-features defined: 
availability, fault tolerance, maturity, recoverability, and 
reliability compliance. On the third level there are measures 
describing specific sub-features. These measures should be 
carefully selected depending on the purpose of analysis and 
environment where such model will be used. In this paper, a 
term „quality factors‟ refers to all levels of software quality, 
i.e., features, sub-features and measures. 
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III. RELATED WORK 

In previous research, a variety of statistical and machine 
learning techniques have been used for quality prediction. 
The most popular are: multiple regression (MR), case-based 
reasoning (CBR), decision trees (DT), random forests (RF), 
rule induction (RI), support vector machines (SVM), system 
dynamics (SD), neural networks (NN), and Bayesian 
networks (BN). We have investigated various features of 
popular and well established techniques. This analysis helped 
in selecting the technique that would be the best suited for 
our model for software quality prediction. 

Table I illustrates how various features of modeling, 
simulation and prediction correspond to different techniques. 
This comparison has been developed based on the extensive 
literature survey, involving the investigation of inherent 
features of these techniques [17], applications of these 
techniques in software engineering area [5][7][28][30][32], 
our own experiments – both published [24] and unpublished. 
With this comparison we do not attempt to produce a general 
ranking of techniques, since it is very difficult and probably 
not possible [14][23] or feasible [29], because the technique 
selection should involve context-specific features. In this 
comparison we do not consider the accuracy of predictions 
for these techniques. Earlier studies showed that the accuracy 
is varying significantly depending on particular dataset used 
in analysis [14][17][24][28][32]. 

Most of these techniques are data-driven, which means 
that the prediction is provided almost entirely based on 
empirical data. Thus, these techniques fail when such data is 
not available. We were aware that, due to availability of the 
data, our model would have to be based in larger extent on 
expert knowledge rather than on empirical data. 

Additionally, only some of these techniques enable 
providing prediction for multiple dependent variables. Such 
functionality is crucial because we attempt to develop a 
model where software quality is reflected not by a single 
variable but a range of interrelated variables. 

The main use of the model is to provide decision support 
through the ability of performing various simulations. To 
make these simulations more realistic, the model should have 
the ability of defining causal relationships by domain 
experts. Only very few techniques enable this feature. 

TABLE I.  FEATURES OF POPULAR MODELLING TECHNIQUES
a 

Feature 
Technique 

MR CBR DT RF RI SVM SD NN BN 

expert 

knowledge 

L H H L H L H M H 

multiple 
dependent 

variables 

L L L L H L H H H 

causal 
relationships 

M L M M H L H M H 

explit 

uncertainty 
M L L L L L L L H 

intuitiveness H M H L H L H L H 

ease of 
adaptation 

H M M M M H M M M 

a. „L‟ – low, „M‟ – medium, „H‟ – high 

Given the context of our research, we have selected BN 
as a formal representation for our predictive model, because 
this technique enables the required functionality. BN is a 
very powerful modeling technique that has already been 
widely used in various studies on software engineering [22]. 
Pfautz at al. say that they are “well-suited to capturing vague 
and uncertain knowledge” [19]. BNs have a unique set of 
features such as ability to incorporate expert knowledge and 
empirical data, explicit modeling of causal relationships, 
probabilistic definition of variables reflecting uncertainty of 
modeled system, no need to declare in advance a list of input 
and output variables, ability to run with incomplete data, and 
visual representation. BNs can also take a form of time-series 
models called dynamic Bayesian networks. Detailed analysis 
of the motivations for using BNs can be found in [8][23]. 

BNs have been used in earlier studies to model software 
quality. However, most of these studies have been focused 
on a single aspect of software quality. We found three 
references, where the authors model multiple features of 
software quality. 

Beaver [4] developed a BN model to reflect software 
quality according to the ISO 9126 standard. However, the 
author does not provide enough details on model structure, 
variable definitions and model validation. Thus, it is difficult 
to assess the correctness and usability of this model. 

Wagner [31] proposed BN models for predicting 
software quality using activity-based software quality 
models. In contrast with the current study, the author focused 
on modeling selected features from ISO 9126 standard, i.e., 
maintainability and security, and not the relationships 
between these features. 

Fenton at al. [10] developed a BN model for the trade-off 
between development effort, project scope and software 
quality. In this model software quality is reflected by two 
variables, defect rate and customer satisfaction. 

IV. ORIGINAL BAYESIAN NETWORK MODEL 

The main aim of the BN model is to deliver useful 
information to project managers and support their decisions. 
Proposed BN model enables performing various types of 
analyses: 

 „What-if‟ analysis - investigating how different 
actions may influence specific quality factors. For 
example, an impact of increased amount of 
specification effort on functional suitability, 
maintainability or operability. 

 ‟Goal-seeking‟ - answering a question: how to 
achieve a specific target? For example: how much 
better a testing process is required to achieve a 
higher level of reliability (with other constraints 
entered to the model). 

 ‟Trade-off‟ analysis - investigating the degree at 
which a quality factor that has to be traded for 
another quality factor (given other constrains). For 
example: an architectural trade-off between 
performance efficiency and maintainability, where 
efficient software may be difficult in maintenance. 
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The initial structure of this model has been discussed in 
[20][21]. This model is too large to be presented in detail 
here. Thus, this paper only briefly summarizes its main 
concepts illustrated in Figures 1 and 2. The main parts, i.e., 
quality factors are modeled as hierarchical Naïve Bayesian 
Classifiers where variables reflecting a detailed level of 
software quality are the children of the more general factors. 
For example, usability has four sub-features modeled as its 
children (Figure 1). 

Such structure enables easy adjustments, e.g. adding a 
new sub-feature requires only a definition of this newly 
added variable without a need to change other parts of the 
model. Such structure works well even when relationships 
between children variables exist in reality but have not been 
included in the model [27]. 

Quality features are linked with other. These links have 
been defined according to a knowledge base that contains 
results from a literature survey [20][21]. Figure 2 illustrates 
some of these links. 

The model also contains some basic process variables 
describing effort, process quality and process effectiveness. 
Since this is a part of the model that was significantly 
enhanced more details on process variables have been 
provided in Section V.A. 

 

reliability maturity

availability

fault 
tolerance

recoverability

reliability 
compliance

usability

effectiveness

efficiency

satisfaction

usability 
compliance

time to fully recover 
after network failure

percentage of tasks 
accomplished

time to restore database 
after its failure

percentage of tasks 
achieved per unit of time

percentage of 
satisfied users

downtime

data access time after 
failure of one disk

 
Figure 1.  Three levels of software quality: features (left), sub-features 

(center) and examples of measures (right). 

maintainability

performance 
effficiency

operability

portability compatibiity

functional 
suitability

 
Figure 2.  Selected links between quality features. 

Proper definition of the quantitative part, i.e., probability 
distributions for variables, is a challenging step in the 
process of building a BN. All variables in this model are 
defined using a 5-point ranked scale from „very low‟ to „very 
high‟ level of intensity. Probability distributions are not 
defined by manually filling probability tables but using a set 
of expressions such as weighted mean, weighted max and 
weighted min [9]. For example, the following expression: 

 proc_effN(wmean(3, effort, 4, process_q), 0.001) 

means that process effectiveness is defined by a Normal 
distribution as a weighted mean of effort and process quality 
with weights 3 and 4, respectively; 0.001 is a value of 
variance and represents the level of uncertainty. Such types 
of expressions simplify the process of building a BN because 
they require only the values of the weights for each variable 
instead of the whole probability tables. 

V. MODEL ENHANCEMENTS 

This section considers three main enhancements of the 
original BN model: incorporating project factors (Subsection 
A), adding subnets with detailed process factors (Subsection 
B) and integrating software components or sub-systems 
(Subsection C). 

A. Project Factors 

Original model did not contain any project factors, i.e., 
factors describing the nature of developed project. Thus, it 
had to be calibrated separately for each project or, more 
generally, for each type of project. Since such calibration is 
time-consuming, to improve model usefulness the enhanced 
model contains additional project factors. These project 
factors reflect the nature of the project and its environment. 
Currently the model contains the following project factors: 
architecture, CASE tool used, development platform, 
functional size, UI (User Interface) type, intended market, 
and used methodology. 

Figure 3 illustrates links between selected project factors 
and selected quality features. To simplify the definition of 
probability tables for quality features the model uses so 
called „partitioned expressions‟, where the child node is 
defined using different expressions for different states of 
parent nodes. Figure 4 provides an example of such 
expressions for operability given selected states of UI type, 
together with visualization of probability distributions. 
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maintainability architecture

performance 
effficiency

UI typeusability operability

development 
platform

portability

compatibiity

 
Figure 3.  Example of modelling the impact of project factors. 

0

0.1

0.2

0.3

0.4

0.5

0.6

very low low medium high very high

operability

UI type = 'textual'

UI type = 'window-based'

UI type = 'basic HTML-based'

0 0.2 0.4 0.6 0.8 1

 
Figure 4.  Example of modelling the impact of project factors. 

A difficulty of this enhancement is related with the 
calibration stage. Some quality features, such as performance 
efficiency, have many project factors as parents. Defining 
probability distributions for such quality features is difficult 
because they have to reflect every possible combination of 
states of parent project factors. However, after performing 
such calibration the usability of the BN model is 
significantly improved. 

B. Process Factors 

The original model contains nine variables reflecting 
process of software development: effort, process quality and 
process effectiveness – separately for three main activities of 
software development: specification, implementation and 
testing. In some situations it might be sufficient to represent 
process quality as a single variable. However, to improve the 
analytical capabilities of this model, it has been enhanced by 
subnets with detailed process factors, separate for three main 
activities of software development. 

Figure 5 illustrates a subnet for process factors in 
specification. Subnets for implementation and testing stages 
have similar structures – the difference is that they do not 
contain variables related to requirements (upper right part of 
Figure 5). Variables describing process factors have been 
mainly linked according to causal relationships.  

For example, the level of leadership quality influences 
three variables: team organization, defined process followed 
and appropriateness of methods and tools used. Then, the 
level (quality) of requirements management, defined process 
followed and appropriateness of methods and tools used 
jointly determine the level of process quality. Process 
quality, requirements creep and staff quality influence the 
overall process quality. 

stakeholder 
involvement

requirements 
stability

requirements 
management

requirements 
creep

distributed  
communication

leadership 
quality

team 
organization

defined 
process 

followed

process
quality

overall process 
quality

process 
effectiveness

effort

appropriateness 
of methods and 

tools used

staff 
education

staff 
motivation

staff 
experience

staff
skills

staff
quality

functional 
suitability

operabilitymaintainability ...

 
Figure 5.  Subnet for process factors in specification stage. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

very low low medium high very high

overall
process quality

process_q = 'high'
staff_q = 'high'

0 0.2 0.4 0.6 0.8 1

process_q = 'low'
staff_q = 'low'

process_q = 'low'
staff_q = 'high'

process_q = 'high', staff_q = 'low'

 
Figure 6.  Example of aggregation of process factors. 

Process effectiveness aggregates all process factors and is 
defined as a combination of overall process quality and the 
level of effort. Finally, process effectiveness variables, 
separately in three development stages, influence the level of 
selected software quality features. Variables in this subnet 
are quantitatively defined using weighted expressions similar 
to Equation 1. 

Figure 6 illustrates the impact of various combinations of 
process quality and staff quality on overall process quality. 
The latter is defined as a weighted min (wmin) of its parents 
to incorporate the fact that undesirable state of one parent 
node may significantly decrease the value of overall process 
quality, even if other parents are at desirable states. The 
values of weights determine the strength of impact of 
particular parent on the aggregated value. 

C. Integrating components/sub-systems 

One of the challenges of building a predictive model for 
software quality is to properly define the level of granularity. 
Such model may be built for the whole software systems, 
sub-systems, single applications, components, modules, 
classes etc. To improve the flexibility of this model, as 
another enhancement of the original model, it now can be 
used at various levels of details. 

UI type = „textual‟  operability = N(0.3, 0.01) 

UI type = „textual‟  operability = N(0.6, 0.01) 

UI type = „textual‟  operability = N(0.7, 0.01) 

overall_proc_q = N(m, 0.001) 

m = wmin(a, process_q, b, 
staff_q, c, req_creep) 

a = 2.5 b = 2.0 c = 1.5 
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Figure 7.  Example of integrating components/sub-systems. 
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Figure 8.  Definition and predictions for integrated reliability. 

The basic idea, illustrated in Figure 7, is the following: 
First, users nominate the lowest level of details for the 
model. Then, they perform a calibration for this level. The 
higher level of details is modeled by aggregating quality 
factors (and possible other variables too). This aggregation 
can be done using expressions such as mean, max, min, 
weighted mean, weighted max or weighted min [9]. This 
procedure may be continued until the highest desired level of 
details has been reflected in the model. 

This enhancement enables performing predictions for 
quality factors either at the detailed level, e.g., a class or a 
module, or aggregated, e.g., an application or a system. An 
example of such aggregation for reliability is shown in 
Figure 8. The reliability of the whole software product can 
only be as high as for the part with the lowest level of 
reliability. In the model it is reflected with the weighted min 
(wmin) function. Because some subsystems may be more 
frequently used than the other, their impact on overall 
reliability would be greater. This can be reflected by 
adjusting the values of weights a and b. In this hypothetical 
example a subsystem 1 is more reliable than subsystem 2. It 
also has greater impact on overall reliability (a>b). 
Therefore, the reliability of the whole system is between the 
level of reliability for subsystems 1 and 2, but much closer to 
reliability of system 1. 

VI. PLANS FOR MODEL CALIBRATION AND VALIDATION 

Currently, the process of model calibration with 
industrial partners is performed. In the first step, a tradeoff 
between model complexity, usability and clearness is 
investigated. It is focused on answering a question: how 
large the model can be so that it is clear enough for being 
used in industry? This calibration is performed using a 
customized technique of structured interviews based on 
repertory grid [3][15]. 

After investigating some patterns from this analysis, the 
model structure will be adjusted. Then, detailed model 
calibration will be performed using structured interviews. 
This will enable capturing relevant expert knowledge that 
would be difficult to express using only a predefined 
questionnaire. 

This calibration will cover almost the whole structure of 
the model – except the quantitative measures assigned to 
quality features/sub-features. Companies that accepted to 
participate in the process of calibrating the model are not 
willing to provide such data outside their environments. On 
one side this is related with data protection and privacy, on 
the other side with time consuming process of preparing 
them. Calibration of the rest of the model will be performed 
by asking domain experts to: 

 Assign weights in the weighted expressions; 

 Assign the level of their uncertainty about provided 
data; 

 Provide prior distributions for root nodes. 
Results of this survey will be combined with results 

available in the literature and empirical analyses performed 
earlier. 

The internal validation of the model will be focused on 
investigating how well the model incorporates 
data/knowledge gathered during the calibration stage. A 
variety of fitness measures will be used here. In the external 
validation, industrial partners will be granted access to the 
model to familiarize with it and assess a variety of its 
features, such as correctness, usability, clearness, ease of use 
and ease of customization/calibration.  

VII. CONCLUSIONS AND FUTURE WORK 

Proposed BN model for software quality prediction 
reflects the breakdown of quality factors proposed in ISO 
250xx series of standards. It contains a variety of software 
quality factors, together with relationships between them. It 
also contains process factors that influence software quality. 

Obtained results lead to the following conclusions: 

 Original BN model is useful in a variety of 
applications but suffers limitations related to the lack 
of details on selected software development aspects; 

 Proposed enhancements, i.e., incorporating project 
factors, adding subnets with detailed process factors 
and ability of integrating software components or 
sub-systems overcome these limitations; 

 Proposed enhancements require additional time for 
model calibration in target environment. 

 
 

reliabilitysystem = N(m, 0.01) 

m = wmin(a, reliabilitysub 1, b, reliabilitysub 2) 

a = 4 b = 3 
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Plans for future work related to this BN model include: 

 Further enhancements to the model to reflect the 
dynamics of software development and maintenance; 

 Automated calibration of the model using the data 
from software repositories or knowledge base; 

 Detailed model calibration and validation using 
software engineering literature, expert judgment, and 
empirical data. 
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