
Enhancing Bayesian Network Model for Integrated Software Quality Prediction

Łukasz Radliński

Institute of Information Technology in Management

University of Szczecin

Szczecin, Poland

lukrad@uoo.univ.szczecin.pl

Abstract—A Bayesian network model for integrated software

quality prediction, proposed in earlier study, has potential in

supporting decision makers in software projects. However, it

also has some disadvantages limiting its use. The aim of this

paper is to overcome these limitations by enhancing the

original model in three ways: (1) incorporating project factors,

(2) adding subnets with detailed process factors, and (3)

modeling integration of software components or sub-systems.

These enhancements significantly improve the analytical

usefulness of this predictive Bayesian network model.

Keywords-Bayesian network; decision support; process

factors; project factors; quality factors; software quality.

I. INTRODUCTION

The quality of software is a very important aspect of
software project. Thus, software quality have been
extensively studied since the turn of 1960‟s and 1970‟s
[1][26]. While most of these studies have been focused on
software defectiveness [6], some researchers also investigate
selected features of software quality such as reliability
[16][18], maintainability [25] or usability [2]. Although such
studies are very useful contributions to software engineering
discipline, they typically focus on a single feature of
software quality.

Project decisions related to software quality require
support from analytical and predictive models. It is possible
to make decisions based on output from models focusing on
a single quality feature. The majority of existing approaches
involving techniques, such as case-based reasoning, decision
trees, multiple regression, are not feasible for this purpose
because they focus on a single output. Important decisions,
influencing the whole project and its environment, should be
made after deeper analyses of possible effects involving
multiple outputs. Performing such analyses can be supported
by a simulation model that can handle multiple outputs and
various types of relationships. In our experiences with using
empirical data in software companies, we found that the
companies do not have data of required volume and
granularity to automatically generate/learn the model purely
from data. Therefore, we propose using expert-driven
Bayesian networks (BNs) as a formal representation for such
simulation model. Section III provides more details on
motivations for using BNs.

Earlier studies [20][21] proposed a BN model for
integrated software quality prediction. Preliminary

experiments revealed that this model may be a useful
simulation tool for decision makers in software projects. The
main aim of this paper is to develop an enhanced version of
this predictive model. The main contributions of this paper
are the following enhancements of the original model:

 Incorporating project factors that describe the nature
of a project – as a result, an enhanced model can be
reused for different types of software projects, rather
than for a single project type defined upfront;

 Adding subnets with detailed process factors
influencing overall process quality – this may be
useful where direct assessment of the level of
process quality is difficult or where it is useful to
perform simulations using detailed process factors;

 Modeling an integration of software components or
sub-systems into larger software products – this
extends the usability of the model for different parts
of a software product and their integration.

This paper is organized as follows: Section II defines
software quality and its factors according to ISO standards.
Section III discusses related work. Section IV summarizes
original BN model. Section V presents proposed
enhancements to the original model. Section VI provides
plans for model calibration and validation. Section VII draws
conclusions and discusses future work.

II. SOFTWARE QUALITY FACTORS

Detailed analysis of software quality requires
investigating a variety of quality factors. This paper is based
on the breakdown of software quality proposed in ISO 250xx
series of standards [11][12], which superseded an older 9126
standard [13]. On the first level there are 11 quality features:
compatibility, flexibility, functional suitability,
maintainability, operability, performance efficiency,
portability, reliability, safety, security, and usability. Then
each feature is decomposed into a set of sub-features. For
example, reliability has five sub-features defined:
availability, fault tolerance, maturity, recoverability, and
reliability compliance. On the third level there are measures
describing specific sub-features. These measures should be
carefully selected depending on the purpose of analysis and
environment where such model will be used. In this paper, a
term „quality factors‟ refers to all levels of software quality,
i.e., features, sub-features and measures.

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

III. RELATED WORK

In previous research, a variety of statistical and machine
learning techniques have been used for quality prediction.
The most popular are: multiple regression (MR), case-based
reasoning (CBR), decision trees (DT), random forests (RF),
rule induction (RI), support vector machines (SVM), system
dynamics (SD), neural networks (NN), and Bayesian
networks (BN). We have investigated various features of
popular and well established techniques. This analysis helped
in selecting the technique that would be the best suited for
our model for software quality prediction.

Table I illustrates how various features of modeling,
simulation and prediction correspond to different techniques.
This comparison has been developed based on the extensive
literature survey, involving the investigation of inherent
features of these techniques [17], applications of these
techniques in software engineering area [5][7][28][30][32],
our own experiments – both published [24] and unpublished.
With this comparison we do not attempt to produce a general
ranking of techniques, since it is very difficult and probably
not possible [14][23] or feasible [29], because the technique
selection should involve context-specific features. In this
comparison we do not consider the accuracy of predictions
for these techniques. Earlier studies showed that the accuracy
is varying significantly depending on particular dataset used
in analysis [14][17][24][28][32].

Most of these techniques are data-driven, which means
that the prediction is provided almost entirely based on
empirical data. Thus, these techniques fail when such data is
not available. We were aware that, due to availability of the
data, our model would have to be based in larger extent on
expert knowledge rather than on empirical data.

Additionally, only some of these techniques enable
providing prediction for multiple dependent variables. Such
functionality is crucial because we attempt to develop a
model where software quality is reflected not by a single
variable but a range of interrelated variables.

The main use of the model is to provide decision support
through the ability of performing various simulations. To
make these simulations more realistic, the model should have
the ability of defining causal relationships by domain
experts. Only very few techniques enable this feature.

TABLE I. FEATURES OF POPULAR MODELLING TECHNIQUES
a

Feature
Technique

MR CBR DT RF RI SVM SD NN BN

expert

knowledge

L H H L H L H M H

multiple
dependent

variables

L L L L H L H H H

causal
relationships

M L M M H L H M H

explit

uncertainty
M L L L L L L L H

intuitiveness H M H L H L H L H

ease of
adaptation

H M M M M H M M M

a. „L‟ – low, „M‟ – medium, „H‟ – high

Given the context of our research, we have selected BN
as a formal representation for our predictive model, because
this technique enables the required functionality. BN is a
very powerful modeling technique that has already been
widely used in various studies on software engineering [22].
Pfautz at al. say that they are “well-suited to capturing vague
and uncertain knowledge” [19]. BNs have a unique set of
features such as ability to incorporate expert knowledge and
empirical data, explicit modeling of causal relationships,
probabilistic definition of variables reflecting uncertainty of
modeled system, no need to declare in advance a list of input
and output variables, ability to run with incomplete data, and
visual representation. BNs can also take a form of time-series
models called dynamic Bayesian networks. Detailed analysis
of the motivations for using BNs can be found in [8][23].

BNs have been used in earlier studies to model software
quality. However, most of these studies have been focused
on a single aspect of software quality. We found three
references, where the authors model multiple features of
software quality.

Beaver [4] developed a BN model to reflect software
quality according to the ISO 9126 standard. However, the
author does not provide enough details on model structure,
variable definitions and model validation. Thus, it is difficult
to assess the correctness and usability of this model.

Wagner [31] proposed BN models for predicting
software quality using activity-based software quality
models. In contrast with the current study, the author focused
on modeling selected features from ISO 9126 standard, i.e.,
maintainability and security, and not the relationships
between these features.

Fenton at al. [10] developed a BN model for the trade-off
between development effort, project scope and software
quality. In this model software quality is reflected by two
variables, defect rate and customer satisfaction.

IV. ORIGINAL BAYESIAN NETWORK MODEL

The main aim of the BN model is to deliver useful
information to project managers and support their decisions.
Proposed BN model enables performing various types of
analyses:

 „What-if‟ analysis - investigating how different
actions may influence specific quality factors. For
example, an impact of increased amount of
specification effort on functional suitability,
maintainability or operability.

 ‟Goal-seeking‟ - answering a question: how to
achieve a specific target? For example: how much
better a testing process is required to achieve a
higher level of reliability (with other constraints
entered to the model).

 ‟Trade-off‟ analysis - investigating the degree at
which a quality factor that has to be traded for
another quality factor (given other constrains). For
example: an architectural trade-off between
performance efficiency and maintainability, where
efficient software may be difficult in maintenance.

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

The initial structure of this model has been discussed in
[20][21]. This model is too large to be presented in detail
here. Thus, this paper only briefly summarizes its main
concepts illustrated in Figures 1 and 2. The main parts, i.e.,
quality factors are modeled as hierarchical Naïve Bayesian
Classifiers where variables reflecting a detailed level of
software quality are the children of the more general factors.
For example, usability has four sub-features modeled as its
children (Figure 1).

Such structure enables easy adjustments, e.g. adding a
new sub-feature requires only a definition of this newly
added variable without a need to change other parts of the
model. Such structure works well even when relationships
between children variables exist in reality but have not been
included in the model [27].

Quality features are linked with other. These links have
been defined according to a knowledge base that contains
results from a literature survey [20][21]. Figure 2 illustrates
some of these links.

The model also contains some basic process variables
describing effort, process quality and process effectiveness.
Since this is a part of the model that was significantly
enhanced more details on process variables have been
provided in Section V.A.

reliability maturity

availability

fault
tolerance

recoverability

reliability
compliance

usability

effectiveness

efficiency

satisfaction

usability
compliance

time to fully recover
after network failure

percentage of tasks
accomplished

time to restore database
after its failure

percentage of tasks
achieved per unit of time

percentage of
satisfied users

downtime

data access time after
failure of one disk

Figure 1. Three levels of software quality: features (left), sub-features

(center) and examples of measures (right).

maintainability

performance
effficiency

operability

portability compatibiity

functional
suitability

Figure 2. Selected links between quality features.

Proper definition of the quantitative part, i.e., probability
distributions for variables, is a challenging step in the
process of building a BN. All variables in this model are
defined using a 5-point ranked scale from „very low‟ to „very
high‟ level of intensity. Probability distributions are not
defined by manually filling probability tables but using a set
of expressions such as weighted mean, weighted max and
weighted min [9]. For example, the following expression:

 proc_effN(wmean(3, effort, 4, process_q), 0.001)

means that process effectiveness is defined by a Normal
distribution as a weighted mean of effort and process quality
with weights 3 and 4, respectively; 0.001 is a value of
variance and represents the level of uncertainty. Such types
of expressions simplify the process of building a BN because
they require only the values of the weights for each variable
instead of the whole probability tables.

V. MODEL ENHANCEMENTS

This section considers three main enhancements of the
original BN model: incorporating project factors (Subsection
A), adding subnets with detailed process factors (Subsection
B) and integrating software components or sub-systems
(Subsection C).

A. Project Factors

Original model did not contain any project factors, i.e.,
factors describing the nature of developed project. Thus, it
had to be calibrated separately for each project or, more
generally, for each type of project. Since such calibration is
time-consuming, to improve model usefulness the enhanced
model contains additional project factors. These project
factors reflect the nature of the project and its environment.
Currently the model contains the following project factors:
architecture, CASE tool used, development platform,
functional size, UI (User Interface) type, intended market,
and used methodology.

Figure 3 illustrates links between selected project factors
and selected quality features. To simplify the definition of
probability tables for quality features the model uses so
called „partitioned expressions‟, where the child node is
defined using different expressions for different states of
parent nodes. Figure 4 provides an example of such
expressions for operability given selected states of UI type,
together with visualization of probability distributions.

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

maintainability architecture

performance
effficiency

UI typeusability operability

development
platform

portability

compatibiity

Figure 3. Example of modelling the impact of project factors.

0

0.1

0.2

0.3

0.4

0.5

0.6

very low low medium high very high

operability

UI type = 'textual'

UI type = 'window-based'

UI type = 'basic HTML-based'

0 0.2 0.4 0.6 0.8 1

Figure 4. Example of modelling the impact of project factors.

A difficulty of this enhancement is related with the
calibration stage. Some quality features, such as performance
efficiency, have many project factors as parents. Defining
probability distributions for such quality features is difficult
because they have to reflect every possible combination of
states of parent project factors. However, after performing
such calibration the usability of the BN model is
significantly improved.

B. Process Factors

The original model contains nine variables reflecting
process of software development: effort, process quality and
process effectiveness – separately for three main activities of
software development: specification, implementation and
testing. In some situations it might be sufficient to represent
process quality as a single variable. However, to improve the
analytical capabilities of this model, it has been enhanced by
subnets with detailed process factors, separate for three main
activities of software development.

Figure 5 illustrates a subnet for process factors in
specification. Subnets for implementation and testing stages
have similar structures – the difference is that they do not
contain variables related to requirements (upper right part of
Figure 5). Variables describing process factors have been
mainly linked according to causal relationships.

For example, the level of leadership quality influences
three variables: team organization, defined process followed
and appropriateness of methods and tools used. Then, the
level (quality) of requirements management, defined process
followed and appropriateness of methods and tools used
jointly determine the level of process quality. Process
quality, requirements creep and staff quality influence the
overall process quality.

stakeholder
involvement

requirements
stability

requirements
management

requirements
creep

distributed
communication

leadership
quality

team
organization

defined
process

followed

process
quality

overall process
quality

process
effectiveness

effort

appropriateness
of methods and

tools used

staff
education

staff
motivation

staff
experience

staff
skills

staff
quality

functional
suitability

operabilitymaintainability ...

Figure 5. Subnet for process factors in specification stage.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

very low low medium high very high

overall
process quality

process_q = 'high'
staff_q = 'high'

0 0.2 0.4 0.6 0.8 1

process_q = 'low'
staff_q = 'low'

process_q = 'low'
staff_q = 'high'

process_q = 'high', staff_q = 'low'

Figure 6. Example of aggregation of process factors.

Process effectiveness aggregates all process factors and is
defined as a combination of overall process quality and the
level of effort. Finally, process effectiveness variables,
separately in three development stages, influence the level of
selected software quality features. Variables in this subnet
are quantitatively defined using weighted expressions similar
to Equation 1.

Figure 6 illustrates the impact of various combinations of
process quality and staff quality on overall process quality.
The latter is defined as a weighted min (wmin) of its parents
to incorporate the fact that undesirable state of one parent
node may significantly decrease the value of overall process
quality, even if other parents are at desirable states. The
values of weights determine the strength of impact of
particular parent on the aggregated value.

C. Integrating components/sub-systems

One of the challenges of building a predictive model for
software quality is to properly define the level of granularity.
Such model may be built for the whole software systems,
sub-systems, single applications, components, modules,
classes etc. To improve the flexibility of this model, as
another enhancement of the original model, it now can be
used at various levels of details.

UI type = „textual‟ operability = N(0.3, 0.01)

UI type = „textual‟ operability = N(0.6, 0.01)

UI type = „textual‟ operability = N(0.7, 0.01)

overall_proc_q = N(m, 0.001)

m = wmin(a, process_q, b,
staff_q, c, req_creep)

a = 2.5 b = 2.0 c = 1.5

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

reliability
component 1

reliability
component 2

reliability
component 3

reliability
component 4

reliability
subsystem 1

reliability
subsystem 2

reliability
whole system

Figure 7. Example of integrating components/sub-systems.

0

0.1

0.2

0.3

0.4

0.5

0.6

very low low medium high very high

reliability

subsystem 1

whole software product

subsystem 2

0 0.2 0.4 0.6 0.8 1

Figure 8. Definition and predictions for integrated reliability.

The basic idea, illustrated in Figure 7, is the following:
First, users nominate the lowest level of details for the
model. Then, they perform a calibration for this level. The
higher level of details is modeled by aggregating quality
factors (and possible other variables too). This aggregation
can be done using expressions such as mean, max, min,
weighted mean, weighted max or weighted min [9]. This
procedure may be continued until the highest desired level of
details has been reflected in the model.

This enhancement enables performing predictions for
quality factors either at the detailed level, e.g., a class or a
module, or aggregated, e.g., an application or a system. An
example of such aggregation for reliability is shown in
Figure 8. The reliability of the whole software product can
only be as high as for the part with the lowest level of
reliability. In the model it is reflected with the weighted min
(wmin) function. Because some subsystems may be more
frequently used than the other, their impact on overall
reliability would be greater. This can be reflected by
adjusting the values of weights a and b. In this hypothetical
example a subsystem 1 is more reliable than subsystem 2. It
also has greater impact on overall reliability (a>b).
Therefore, the reliability of the whole system is between the
level of reliability for subsystems 1 and 2, but much closer to
reliability of system 1.

VI. PLANS FOR MODEL CALIBRATION AND VALIDATION

Currently, the process of model calibration with
industrial partners is performed. In the first step, a tradeoff
between model complexity, usability and clearness is
investigated. It is focused on answering a question: how
large the model can be so that it is clear enough for being
used in industry? This calibration is performed using a
customized technique of structured interviews based on
repertory grid [3][15].

After investigating some patterns from this analysis, the
model structure will be adjusted. Then, detailed model
calibration will be performed using structured interviews.
This will enable capturing relevant expert knowledge that
would be difficult to express using only a predefined
questionnaire.

This calibration will cover almost the whole structure of
the model – except the quantitative measures assigned to
quality features/sub-features. Companies that accepted to
participate in the process of calibrating the model are not
willing to provide such data outside their environments. On
one side this is related with data protection and privacy, on
the other side with time consuming process of preparing
them. Calibration of the rest of the model will be performed
by asking domain experts to:

 Assign weights in the weighted expressions;

 Assign the level of their uncertainty about provided
data;

 Provide prior distributions for root nodes.
Results of this survey will be combined with results

available in the literature and empirical analyses performed
earlier.

The internal validation of the model will be focused on
investigating how well the model incorporates
data/knowledge gathered during the calibration stage. A
variety of fitness measures will be used here. In the external
validation, industrial partners will be granted access to the
model to familiarize with it and assess a variety of its
features, such as correctness, usability, clearness, ease of use
and ease of customization/calibration.

VII. CONCLUSIONS AND FUTURE WORK

Proposed BN model for software quality prediction
reflects the breakdown of quality factors proposed in ISO
250xx series of standards. It contains a variety of software
quality factors, together with relationships between them. It
also contains process factors that influence software quality.

Obtained results lead to the following conclusions:

 Original BN model is useful in a variety of
applications but suffers limitations related to the lack
of details on selected software development aspects;

 Proposed enhancements, i.e., incorporating project
factors, adding subnets with detailed process factors
and ability of integrating software components or
sub-systems overcome these limitations;

 Proposed enhancements require additional time for
model calibration in target environment.

reliabilitysystem = N(m, 0.01)

m = wmin(a, reliabilitysub 1, b, reliabilitysub 2)

a = 4 b = 3

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

Plans for future work related to this BN model include:

 Further enhancements to the model to reflect the
dynamics of software development and maintenance;

 Automated calibration of the model using the data
from software repositories or knowledge base;

 Detailed model calibration and validation using
software engineering literature, expert judgment, and
empirical data.

ACKNOWLEDGMENT

This work has been partially supported by research funds
from the Ministry of Science and Higher Education in
Poland as a research grant no. N N111 291738 for years
2010-2012.

REFERENCES

[1] F. Akiyama, “An Example of Software System
Debugging,” in Proceedings of Federation for Information
Processing Congress, vol. 71, Ljubljana, 1971, pp. 353-379.

[2] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability
Meanings and Interpretations in ISO Standards,” Software
Quality Journal, vol. 11, pp. 325-338, 2003.

[3] H. C. Banestad, J. E. Hannay, “Comparison of Model-based
and Judgment-based Release Planning in Incremental
Software Projects,” in Proceeding of the 33rd International
Conference on Software Engineering, ACM, 2011,
pp. 766-775.

[4] J. M. Beaver, “A life cycle software quality model using
bayesian belief networks,” Ph.D. Thesis, University of
Central Florida, 2006.

[5] S. Bouktif, F. Ahmed, I. Khalil and G. Antoniol, “A novel
composite model approach to improve software quality
prediction,” Information and Software Technology, vol. 52,
no. 12, pp. 1298-1311, Dec. 2010.

[6] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Systems with Applications, vol.
36, no. 4, pp. 7346-7354, May. 2009.

[7] C. Catal, “Review: Software fault prediction: A literature
review and current trends”, Expert Systems with
Applications, vol. 38, no. 4, pp. 4626-4636, Apr. 2011.

[8] N. E. Fenton and M. Neil, ”A Critique of Software Defect
Prediction Models”, IEEE Transactions on Software
Engineering, vol. 25, no. 5, pp. 675-689, Sep. 1999.

[9] N. E. Fenton, M. Neil, and J. G. Caballero, “Using Ranked
Nodes to Model Qualitative Judgments in Bayesian
Networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 10, pp. 1420-1432, Oct. 2007.

[10] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M.
Tailor, “Making Resource Decisions for Software Projects,”
in Proceedings of the 26th International Conference on
Software Engineering, 2004, pp. 397-406.

[11] ISO/IEC 25000:2005, Software Engineering – Software
product Quality Requirements and Evaluation (SQuaRE) –
Guide to SQuaRE, 2005.

[12] ISO/IEC CD 25010:2008, Software engineering – Software
product Quality Requirements and Evaluation (SQuaRE) –
Software and quality in use models, Version 0.55, 2008.

[13] ISO/IEC FDIS 9126-1:2001, Software Engineering –
Product quality – Part 1: Quality model, 2001.

[14] Y. Jiang, B. Cukic and T. Menzies, “Cost Curve Evaluation of
Fault Prediction Models,” in Proceedings of the 2008 19th
International Symposium on Software Reliability
Engineering, IEEE Computer Society, Washington, DC,
2008, pp. 197-206.

[15] G. Kelly, “The psychology of personal constructs,” Norton,
New York, 1955.

[16] M. Lyu, “Handbook of software reliability engineering,”
McGraw-Hill, Hightstown, NJ, 1996.

[17] C. Mair, G. Kadoda G, M. Lefley, K. Phalp, C. Schofield,
M. Shepperd and S. Webster, “An investigation of machine
learning based prediction systems,” Journal of Systems and
Software, vol. 53, no. 1, pp. 23-29, Jul. 2000.

[18] J. D. Musa, “Software Reliability Engineering: More Reliable
Software Faster and Cheaper,” Second Edition, Authorhouse,
2004.

[19] J. Pfautz, D. Koelle, E. Carlson, and E. Roth, “Complexities
and Challenges in the Use of Bayesian Belief Networks:
Informing the Design of Causal Influence Models,” Human
Factors and Ergonomics Society Annual Meeting
Proceedings, vol. 53, no. 4, pp. 237-241, Oct. 2009.

[20] Ł. Radliński, “A Conceptual Bayesian Net Model for
Integrated Software Quality Prediction,” Annales UMCS
Informatica, vol. 11, no. 2, 2011 (accepted).

[21] Ł. Radliński, “A Framework for Integrated Software Quality
Prediction using Bayesian Nets,” in Proceedings of
International Conference on Computational Science and Its
Applications (ICCSA 2011), vol. 6786, Springer, 2011, pp.
310-325.

[22] L. Radlinski, “A Survey of Bayesian Net Models for Software
Development Effort Prediction”, International Journal of
Software Engineering and Computing, vol. 2, no. 2,
pp. 95-109, 2010.

[23] Ł. Radliński, “Techniques for Predicting Development Effort
and Software Quality in IT Projects”, Research Papers of the
University of Szczecin. Series: Studia Informatica, vol. 26,
pp. 119-137, 2010 (in Polish).

[24] L. Radlinski and W. Hoffmann, “On Predicting Software
Development Effort using Machine Learning Techniques and
Local Data”, International Journal of Software Engineering
and Computing, vol. 2, no. 2, pp. 123-136, 2010.

[25] M. Riaz, E. Mendes, and E. Tempero, “A systematic review
of software maintainability prediction and metrics,” in
Empirical Software Engineering and Measurement, 2009, pp.
367-377.

[26] R. J. Rubey, R. D. Hartwick, “Quantitative measurement of
program quality,” in: Proceedings of ACM National
Conference, ACM, 1968, pp. 671-677.

[27] S. Russell, P. Norvig, “Artificial Inteligence. A Modern
Approach,” Second Edition, Pearson Education, Upper Saddle
River, 2003.

[28] M. Shepperd and G. Kadoda, “Comparing Software
Prediction Techniques Using Simulation,” IEEE Transactions
on Software Engineering, vol. 27, no. 11, pp. 1014-1022,
Nov. 2001.

[29] Q. Song, Z. Jia, Shepperd M., S. Ying and J. Liu, “A General
Software Defect-Proneness Prediction Framework”, IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 356-
370, May-Jun. 2011.

[30] B. Stewart, “Predicting project delivery rates using the Naive–
Bayes classifier”, Journal on Software Maintenance and
Evolution: Research and Practice, vol. 14, pp. 161-179, 2002.

[31] S. Wagner, “A Bayesian network approach to assess and
predict software quality using activity-based quality models,”
Information and Software Technology, vol. 52, no. 11, pp.
1230-1241, Nov. 2010.

[32] D. Zhang and J. J. P. Tsai, “Machine Learning and Software
Engineering,” Software Quality Journal, vol. 11, no. 2, pp. 87-
119, 2003.

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

	I. Introduction
	II. Software Quality Factors
	III. Related Work
	IV. Original Bayesian Network Model
	V. Model Enhancements
	A. Project Factors
	B. Process Factors
	A.
	C. Integrating components/sub-systems

	VI. Plans for Model Calibration and Validation
	I.
	I.
	VII. Conclusions and Future Work
	Acknowledgment
	References

