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Abstract— New tools for computer automatic reasoning, case-
based reasoning or data mining, require powerful artificial 
intelligence techniques to provide both, a high rate of precision 
in their predictions, and a collection of similar past experiences 
that could be applied in the actual scenario. Algorithms based 
on Nearest Neighbors, Support Vector Machines, etc. often 
provide an accurate solution for classification problems, but 
they depend on how the similarity is measured. For this task, 
most of the experts employ a Euclidean metric that equally 
weights all attributes of the case (which is unlikely in the real 
world).  In addition, it is well known that a correct metric choice 
should improve their prediction abilities and avoid the curse of 
dimensionality.  In this paper, we present a new metric for those 
algorithms. It replaces the traditional Euclidean approach with 
a new riemannian metric that “enlarges” the space parallel to 
the frontier of separation between classes, thus improving 
classification accuracy. 
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I.  INTRODUCTION 
In a classification problem [1], a “case” is characterized by 

a set of numerical, ordinal and/or nominal values formed 
by its P attributes. It belongs to one of the J possible classes 
 Classification algorithms based on empirical data have .{ݕ}
at their disposal N “training cases”, which consist of values of 
the attributes and their classes { ࢞,   }, n = 1… N.  The targetݕ
of these algorithms is assigning a new case to the correct class. 

In current case-based reasoning (CBR), data mining tools 
(DM), etc. nearest neighbor classification algorithms (k-NN) 
are frequently used to implement the similar cases search 
phase. This kind of algorithms seeks for the cases closest to 
the new one to determine its class by majority voting.  
Internally, they usually employ a Euclidean metric to measure 
the “distance” (dissimilarity) among cases, but this metric 
does not behave particularly well in the border of separation 
between two classes [2][3][4].   

We introduce, in this paper, a better metric for these 
algorithms, the LOM metric. It attempts to adjust locally the 
perception of which points are close to a given one. It adapts 
the measurement of distances in such a way that they are 
shorter in the direction parallel to the tangent hyperplane to 
the border of separation between classes, and gets larger in the 
perpendicular direction. The decision function, which 
provides the border of separation between classes, is estimated 
in a pilot trial and obtained by a traditional classification 
algorithm. LOM has only two free parameters, which can be 
optimally tuned through a cross-validation (CV) procedure. 

This paper is organized as follows: Section 2 relates actual 
and past research in this area. Section 3 describes the LOM 
metric and its properties. In Sections 4 and 5, the specifics of 
the LOM metric, working in conjunction with a support vector 
machine (SVM) decision function, are explained. Section 6 
contains the first results, which prove the merit of the 
algorithm. In the end, a section of conclusions and the work to 
be addressed in a near future is included. 

II. METRICS USED IN SIMILARITY MEASUREMENTS 
The vast majority of the algorithms used in automated 

reasoning based on previous cases, sensor fusion, DM and 
other typical tasks of artificial intelligence (AI), in one way or 
another, base its calculations on some kind of measure of 
similarity/dissimilarity between objects. In most scenarios, 
this fact usually remains unnoticed (since is regularly used the 
Euclidean metric as a default). Euclidean metric considers of 
equal relevance the values of the different attributes. It ignores 
in what area of the attributes space the case is located and 
whether the cases close to it belong or not to the same class.  

To distinguish between similar objects, humans weight 
some attributes more than others; the features chosen to 
classify an object (and their relevance) depend on what they 
see at first glance.  Definitively, humans do not employ a 
Euclidean metric. 

A. Relevant previous studies on simmilarity metrics 
Numerous studies have suggested that in the vicinity of the 

separation surface of two classes, equidistant distance curves 
(isolines) “should be enlarged” in the direction tangent to the 
surface and “shortened” in the perpendicular to it. Far away 
from this border, the Euclidean metric can be considered a 
sufficiently good choice.  

The algorithm LAMANNA of Carlotta Domeniconi and 
her team [2][3], proposes to employ the boundary of 
separation between classes, provided by a SVM, to determine 
the most relevant local directions in the vicinity of a point. 
This paper introduces very interesting aspects, as using the 
gradient of the decision function as an indicator of the 
direction of greater relevance in the classification. However, 
their algorithm does not lead to a metric, since the distance 
does not meet properties, such as the triangular inequality or 
the symmetry ones. Neither is it clear that their distance will 
lead to positive definite (PD) kernels and, therefore, it is not 
guaranteed that it could be used by the common optimization 
algorithms employed in the SVMs. 

Weinberger et al. [5] optimize a Mahalanobis metric using 
semidefinite programming (SDP). Their algorithm provides 
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acceptable results and leads to a global metric for the entire 
attributes space. It does also optimize a lot of parameters (P2) 
so the final metric does not have easily interpretable 
properties. In similar approaches, other researchers [6][7][8] 
have attempted to optimize the Mahalanobis matrix using 
different techniques (SDP to optimize the separation between 
pairs of cases, average of weighted covariance matrices, etc.). 

Goldberg et al. [9] proposed the NCA algorithm that 
adjusts the elements of a linear transformation matrix, 
minimizing the probability of classification error in a random 
selection of cases close to the current one. It results in a global 
metric, but the minimization method is subject to be trapped 
in local minima; and can incur in overfitting. In general, the 
use of metrics which involve matrices with real elements does 
not allow their main directions to change in different regions 
of the space of attributes, just as we propose in this paper. 

Following a completely different approach, several 
authors have tried to improve the metric used to calculate the 
distances in SVMs based on RBF kernels. Chan et al. [10] 
proposed to modify the radius of the RBF depending on the 
density of cases in that region. It is a very simple approach and 
does not orient the metric in any special direction. 

Amari and Wu [11][12] were pioneers in pointing out the 
relevance of the kernel choice in SVM performance. They 
proposed to use conformal transformations for RBF kernels, 
which widen the spatial resolution in the vicinity of the surface 
of separation between classes. Wu et al. [13] developed a 
conformal transformation in the space of the features, based 
on the support vectors (SV) obtained in a previous iteration. 

Williams et al. [14] chose a different function to 
implement the conformal transformation depending on the 
value of the separation function provided by a SVM (whose 
value for different points in the attributes space provides the 
criteria for class separation).  

All conformal transformation previously related, use a 
prior calculation of the border of separation between classes 
and then "widen" the metric in the associated Riemann space. 
None of them justify in detail why this would improve the 
separability of the points in those areas. They neither orient 
the metric in the direction of class separation.  

III. THE PROPOSED METRIC 
What does that a point is "close" to another mean? This is 

a fundamental question to define a metric. In a two-class 
problem, in the vicinity of a point in the attributes space, some 
directions point to areas where there are many elements of a 
certain class, while other directions point to areas with 
elements of mixed classes.  To determine these directions is 
of fundamental relevance when delineating a flawless metric. 

The aim of our actual research is to define a metric that 
possess two groups of directions in the P-dimensional 
attributes space: 

• One direction is perpendicular to the hypersurface 
separating both classes. The gradient of the separation 
function could be a valid method to determine it. 

• The set of all directions perpendicular to the former, 
i.e., all those contained in the hyperplane 
perpendicular to the gradient. 

 

Figure 1.  Main directions for the metric. 

Different weights can be assigned to each of these two 
groups of directions.  We propose to calculate the "distance" 
between two very close points, based on a weighted sum of 
the squared norms of the projections of the segment joining 
the two points on each of these two sets of directions. Hence, 
the formula proposed to calculate the distance is: 
 ݀ଶ = ଶݎଶݒ + ெଶݎଶݒ  (1)

where: 
 Ԧ  is the vector joining the two points (P1-P2 in Fig.1)ݒ •

whose distance is to be evaluated. 
 .ሬሬሬሬԦ  is the normalized gradient vector at point P1ݎ݃ •
 Ԧ on the directionݒ  is the norm of the projection of	ݒ •

of the gradient of the hypersurface of class separation. 
It can be easily computed by ݒ = .Ԧݒ  .ሬሬሬሬԦݎ݃

-Ԧ on the hyperݒ is the norm of the projection of	ݒ •
plane perpendicular to the gradient. ݒଶ = Ԧ‖ଶݒ‖ − ଶݒ . 

ݎ •  is the "minor radius". It reflects that in the 
direction of the gradient, the length of the projection 
will contribute to a larger distance between points. 

 is the "major radius". It weights the projection in	ெݎ •
the plane perpendicular to the gradient. Any 
separation in this direction will contribute to a lesser 
extent to the distance between points. 

In order to relate ݎ	and ݎெ	to the separation function, they 
will be defined by the following formulas: 
ݎ  = ൫1/ݎ + ߬	݁ିሺॿሻమ൯ݎெ = .ݎ ൫1 + ߬	݁ିሺॿሻమ൯ (2)

where: 
• r  defines the general scale for the metric. 
• ߬  is a parameter which shrinks/amplifies the 

minor/major radius as the base point approaches to 
the border of separation between classes.  

• ݂ሺॿሻ is the function that evaluates the membership of 
a point ॿ in the attribute’s space to one or another 
class.  On the boundary between classes, its value is 
zero and as the point moves away, takes positive or 
negative values. 

When the base point is close to the border of separation 
between classes, ݂ሺॿሻ is zero, and therefore, the major radius 
will be (1 + τ)2 times the minor radius.  In those areas of the 
attributes space where ݂ሺॿሻ  returns a large positive or 
negative value, the minor and major radius are nearly equal 
(see Fig.2).  
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Figure 2.  Equidistant distance curves (isolines) for the points P1 and P1’. 

Therefore, the metric depends on just two parameters that 
are adjustable for each scenario: ݎ and τ. 

A. Metric properties 
A differential element (line element) in a P-dimensional 

Euclidean space could be represented by: 
ݏ݀  = ሾ݀ݔଵ, ,ଶݔ݀ … , ሿ (3)ݔ݀

The normalized gradient of the decision function for a 
certain point of the attributes space is: 
ݎ݃  = ሾ݃ݎଵ, ,ଶݎ݃ … , ሿ (4)ݎ݃

Thus, the projection of the differential element in the 
direction of the gradient: 

ݏ݀  = ,ݏ݀〉 〈ݎ݃ =݃ݎ. ݔ݀
ୀଵ  (5)

And its squared norm ݀ݏଶ  in matrix form: 

ሾ݀ݔଵ ଶݔ݀ … ሿݔ݀ ێێۏ
ۍ ଵଶݎ݃ .ଵݎ݃ ଶݎ݃ … .ଵݎ݃ .ଵݎ݃ݎ݃ ଶݎ݃ ଶଶݎ݃ … .ଶݎ݃ …ݎ݃ … … .ଵݎ݃… ݎ݃ .ଶݎ݃ ݎ݃ … ଶݎ݃ ۑۑے

ې ൦݀ݔଵ݀ݔଶ…݀ݔ൪ (6)

The squared norm of the projection of the differential 
element on the plane perpendicular to the gradient: ݀ݏଶ ଶݏ݀  = ଶݏ݀	 − ଶݏ݀ = 

 

ሾ݀ݔଵ݀ݔଶ…݀ݔሿ	ێێۏ
ۍ 1 − ଵଶݎ݃ .ଵݎ݃− ଶݎ݃ … .ଵݎ݃− .ଵݎ݃−ݎ݃ ଶݎ݃ 1 − ଶଶݎ݃ … .ଶݎ݃− …ݎ݃ … … .ଵݎ݃−… ݎ݃ .ଶݎ݃− ݎ݃ … 1 − ଶݎ݃ ۑۑے

ې ൦݀ݔଵ݀ݔଶ…݀ݔ൪ (7)

From these results, it is possible to express a differential 
element in the LOM metric, given by (3), as: 

ଶݏ݀  = ሾ݀ݔଵ ଶݔ݀ … 	ܩ		ሿݔ݀ ൦݀ݔଵ݀ݔଶ…݀ݔ൪ (8)

ܩ =
ێێۏ
ێێێ
ቆۍێێ ଶݎ1 − ଵଶݎெଶቇ݃ݎ1 + ெଶݎ1 			ቆ ଶݎ1 − .ଵݎெଶቇ݃ݎ1 ଶݎ݃ ⋯ ቆ ଶݎ1 − .ଵݎெଶቇ݃ݎ1 ቆݎ݃ ଶݎ1 − .ଵݎெଶቇ݃ݎ1 	ଶݎ݃ 	ቆ ଶݎ1 − ଶଶݎெଶቇ݃ݎ1 + ெଶݎ1 ⋯ ቆ ଶݎ1 − .ଶݎெଶቇ݃ݎ1 ⋯ݎ݃ ⋯ ⋯ ⋯ቆ ଶݎ1 − .ଵݎெଶቇ݃ݎ1 ݎ݃ 		ቆ ଶݎ1 − .ଶݎெଶቇ݃ݎ1 ݎ݃ ⋯ ቆ ଶݎ1 − ଶݎெଶቇ݃ݎ1 + ۑۑےெଶݎ1

ۑۑۑ
ېۑۑ
(9)

Decomposing ܩ into ܩଵ +   :ଶܩ

 

ଵܩ = ቆ ଶݎ1 − ێێۏ	ெଶቇݎ1
ێێێ
ۍ ଵଶݎ݃ .ଵݎ݃ ଶݎ݃ … .ଵݎ݃ .ଵݎ݃ݎ݃ ଶݎ݃ ଶଶݎ݃ … .ଶݎ݃ …ݎ݃ … … .ଵݎ݃… ݎ݃ .ଶݎ݃ ݎ݃ … ଶݎ݃ ۑۑے

ۑۑۑ
ې
 

 
ଶܩ  = 	 ெଶݎ1  ܫ	

(10)

Analyzing this ܩ matrix, it can be concluded that ܩ is the 
sum of a resultant matrix of a dyadic product: ܩଵ , with an 
scalar matrix ܩଶ. ܩଵ has only one non-zero eigenvalue equal 
to ቀ ଵమ − ଵಾమ ቁ ଶ‖ݎ݃‖  0. The P eigenvalues of ܩଶ are all equal 

to ଵಾమ  0. 

According to the Weyl’s theorem, which states that if A 
and B are two symmetric matrices of dimension PxP with 
eigenvalues ߣଵሺܣሻ ≤ ሻܣଶሺߣ ≤ ⋯ ≤ ሻܤଵሺߣ ሻandܣሺߣ ≤ ሻܤଶሺߣ ≤⋯ ≤  ሻ respectively, and if the eigenvalues of the matrixܤሺߣ
resulting from the sum A + B are: ߣଵሺܣ + ሻܤ ≤ ܣଶሺߣ + ሻܤ ≤⋯ ≤ ܣሺߣ +  : i 1…P	ሻ, it is true that ∀ܤ

ܣሺߣ + ሻܤ  ൞ ሻܣሺߣ + ሻܣିଵሺߣሻܤଵሺߣ + ሻܣଵሺߣ…ሻܤଶሺߣ + ሻܤሺߣ ܣሺߣ + ሻܤ ≤ ൞ ሻܣሺߣ + ሻܣାଵሺߣሻܤሺߣ + ሻܣሺߣ…ሻܤିଵሺߣ + ሻܤሺߣ  

From the left side inequality of the expressions above; as 
all the ߣሺܣሻ  0 and ߣሺܤሻ  0, it is concluded that all the 
eigenvalues of the matrix ܩ  of this metric are positive, 
therefore the matrix is defined positive, and its rank is P.  

Alternatively to the Weyl’s theorem, eq. (9) and (10) can 
be interpreted as the regularization of the singular matrix ܩଵ 
by means of the sum of a scalar matrix ܩଶ. 

Spaces in ࣬  in which the differential distance is 
measured using an expression of the form (8), where ܩ  is 
symmetric, differentiable at least twice, and its determinant is 
nonzero, are called Riemann spaces, and ܩ is its fundamental 
or metric tensor (covariant tensor of second order). 

B. Distance between two points 
The length of an arc of a curve between two points is 

calculated by: 

ܮ  = න ఒఒݏ݀ = න ඨ݃݀ݔ݀ݔ,
ఒఒ  (11)

performing a parametric integration along the geodesic that 
connects both points. 

In any metric, the distance between two points should be 
measured by the shortest route.  A geodesic is the curve that, 
for two points sufficiently closed, its length is minimal among 
all the curves joining these two points.  

From (11), and using the calculus of variations, it is shown 
that a geodesic should fulfil the following differential 
equation: 

ሷݔ  +Γݔሶݔሶ = 0,  (12)
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The derivatives are with respect to (w.r.t.) the parameter 
of integration and the Γ are the 2nd kind Christoffel symbols: 

 Γ = 12 ݃ ቆ߲߲݃ݔ + ߲߲݃ݔ − ߲߲݃ݔ ቇ
ୀଵ  (13)

where: 
• ݃  are the elements of the covariant metric tensor. 
• ݃  are the elements of contravariant tensor. This 

tensor is computed by inverting the matrix ܩ (which 
is always possible since	ܩ is nonsingular). 

IV. THE LOM METRIC WHEN USING A SEPARATION 
FUNCTION FROM A SVM 

Consider a support vector machine as the prior 
classification algorithm. The expression of the classification 
decision function is: 

 ݂ሺॿሻ = ߙௌ
ୀଵ ൫ॿ,ॿௌ൯ܭ + ܾ (14)

where: 
• ܸ݊ܵ is the number of support vectors (SV). 
 . is the weight of the ith SV	ߙ •
• ॿ	is the new point to be classified. 
• ॿௌ is the ith SV. 

,൫ॿܭ • ॿௌ൯ = ݁ିቛॿషॿೄೇቛమమ 	 is the RBF kernel function 
that is applied on the ॿ point and the ith SV 

• b is the independent term that adjusts the decision 
function to be 0 in the frontier between classes. 

Now, the different terms that are used in (9) are derived. 
The gradient (un-normalized), and its derivative w.r.t. ݔ:  

ݎܩ  = ߲݂ሺॿሻ߲ݔ = ߙௌ
ୀଵ .	൫ॿ,ॿௌ൯ܭ ൬−2ߪଶ൰ ൬ॿ௫ೕ − ॿௌ௫ೕ൰ (15)

ݔ߲ݎܩ߲  = ߙௌ
ୀଵ ൫ॿ,ॿௌ൯ܭ ൬−2ߪଶ൰∗ ൬−2ߪଶ൰ ൬ॿ௫ೕ − ॿௌ௫ೕ൰ ቀॿ௫ೖ − ॿௌ௫ೖቁ + ൨ߜ  

(16)

The normalized gradient, and its derivative w.r.t. ݔ: 

ݎ݃  = ∑ටݎܩ ଶୀଵݎܩ  (17)

ݔ߲ݎ߲݃ =
ݔ߲ݎܩ߲ ට∑ ଶୀଵݎܩ 		− ݎܩ 	൬∑ ୀଵݎܩ ݔ߲ݎܩ߲ ൰ට∑ ∑ଶୀଵݎܩ ଶୀଵݎܩ  

(18)

According with the LOM metric definition (2): 

 ߲ ൬ ݔெଶ൰߲ݎ1 = ெଷݎ2− ݔெ߲ݎ߲ 														߲ ൬
ଶݎ1 − ݔெଶ൰߲ݎ1 = ெଷݎ2 ൬ቂݎெݎ ቃସ + 1൰ ݔெ߲ݎ߲  (19)

ݔெ߲ݎ߲  = ݎܩమሺॿሻ݂ሺॿሻି݁߬ݎ	2− = −2ሺݎெ −  (20)ݎܩሻ݂ሺॿሻݎ

Also, it is possible to calculate the derivatives of the 
elements of the metric tensor w.r.t. the different coordinates: 

 

߲߲݃ݔ = ெଷݎ2 ൬ቀݎெݎ ቁସ + 1൨ ݎ݃	ݎ݃ − ൰ߜ +ݔெ߲ݎ߲ ቆ ଶݎ1 − ݎெଶቇቆ݃ݎ1 ݔ߲ݎ߲݃ + ݎ݃ ݔ߲ݎ߲݃ ቇ 
(21)

With all the above results, it is possible to calculate the 
Christoffel symbols and the geodesic that connects two points. 

V. DISTANCE BETWEEN POINTS IN THE LOM METRIC 
There are two major approaches to calculate distances 

based on a metric that varies locally: to approximate the 
integration of (12), or employ an algorithm that evaluates 
distances for a grid of points and then, choose the shortest path 
between origin and destination. 

A. Distance calculated by integrating the geodesic 
The integration of (12) can be accomplished by many 

methods. Perhaps the simplest one is: 
• Discretize the path between points in a finite number 

of points:	࢞, 0 ≤ ݉ ≤   is the kth coordinateݔ	 .ெ, are fixed points࢞	and࢞ The initial and final points .ܯ
of the ࢞ point. 

• Set the equivalent differences equation at each point: 

 
ݔ ← ൫ݔାଵ + +ିଵ൯2ݔ 18Γሺ࢞ሻ ൫ݔାଵ − ାଵݔିଵ൯൫ݔ − ିଵ൯,ݔ

(22)

• Iterate until the equation is satisfied for all the points  
within a preestablished error. 

• The resulting points profile the geodesic between the 
initial and final points. 

B. Distance calculated by the shortest path 
To integrate the differential equation of the geodesic does 

not guarantee finding the shortest path between two points. A 
solution that guarantees it, is to search for the shortest path by 
a well-known algorithm as the one proposed by Dijkstra [17]. 

VI. MEASURES OF PERFORMANCE  
A two attributes synthetic problem is defined. It resembles 

an ill-behaved, non-linearly separable classification problem, 
with sufficient complexity to be interesting. It could be easily 
reproducible and the number of cases may vary at will in a 
repeatable way. Thus, a two class problem with six hundred 
cases for each class is generated: 

• The first class consists of data taken from three 
independent Gaussian distributions with means: ቂ02ቃ , ቂ20ቃ , ቂ44ቃ 
and covariance matrices: ቂ0.1 00 1ቃ , ቂ1 00 0.1ቃ , ቈ 1 −ඥ1 2⁄−ඥ1 2⁄ 1  

• The second class is formed with an equal amount of 
data, but taken from only one Gaussian distribution 
with mean and covariance: 	ቂ02ቃ , ቂ1 00 1ቃ 
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Figure 3.  Graphical representation of the synthetic problem. The round 
points belong to the class -1, the crosses to the class +1. 

Fig. 3 provides a graphical representation of these six 
hundred cases. It also includes a closed curve that depicts the 
class separation function obtained from a RBF-SVM (with 
parameters C=4, γ=2). 

One of the advantages of a synthetic problem is that it is 
possible to calculate the expected error for classifying a new 
case. In our problem, the Bayes error is 10.22%.  

By a ten-fold cross-validation technique, the parameters of 
a SVM based on a RBF kernel are adjusted. The optimal 
parameters for this SVM are: C = 4, γ = 2, showing an average 
error in the classification of 10.75%. Therefore, it is only at 
0.53% of what can be considered the optimal classification. 

A. Geodesic curves in the LOM metric for this test bed 
Using the decision curve provided by the SVM, the LOM 

metric can be defined. Then, it is possible to calculate the 
distances from an arbitrary point (in Fig. 4 is the point [0,4]) 
to any other points in the plane by integrating the differential 
equation of the geodesic (22). 

It can be clearly seen, that the traditional straight lines 
between points in a Euclidean metric have been replaced by 
curves that follow profiles similar to the decision function to 
reach their destinations. 

This means, that the shorter paths among points prefer to 
surround the surface of separation between classes (instead of 
crossing it). Therefore, under this metric, the points that are 
located in paths parallel to the boundary show greater 
similarity, and smaller distance, to the case to be classified. 

The three main drawbacks of this technique are: 
• A geodesic trajectory is not guaranteed to be the 

shortest path. 
• The time required for calculating the distance among 

all the cases of the problem.  A differential equation 
must be integrated for each pair of points. 

• The geodesic trajectory may vary depending on the 
initial path considered for the integration of the 
differential equation. 

Figure 4.  Geodesic curves to reach different points from (0,4) according 
with the LOM metric. 

B. Dijkstra’s shortest path between two points 
In this research, we have implemented a variation of the 

Dijkstra's algorithm that uses a priority queue to accelerate 
calculations and allows diagonal paths between the elements 
of the grid. The results can be seen in Fig. 5. The results agree 
with those obtained by integrating the geodesic equation. 

In this case, it is possible to calculate the distance between 
one point and the rest of the points in the space of attributes; 
and it is also easy to draw the contour of the isolines for a 
given point. 

Thus, the objective has been achieved, the isolines of the 
metric are not simple circles, nor ellipsoids fixed at the origin 
(as it happens in the current most advanced algorithms), but 
curves better adapted to each problem. It can be seen that trips 
to relatively close or distant points according to the Euclidean 
metric, become larger or smaller distances according in which 
direction is travelled from the starting point. 

Figure 5.  Shortest paths to reach different points from (0,4) using the 
LOM metric. It can be seen also the isolines that join equidistant points. 
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C. Using the LOM metric in the k-NN algorithm 
We prepared four sets of 180, 90, 60 and 30 cases of the 

two class problem described in Section VI.A to train four 
different k-NN classifiers to test the performance of the new 
metric; and another test set (independent of those enumerated 
above) containing over 6000 cases. The aim was to show not 
only that the classification accuracy improves when using the 
LOM metric, but also that this is true when either the number 
of training cases is high or low.  

Therefore, different SVMs for each problem were trained, 
and then the k-NN algorithm was applied (using both the 

Euclidean and LOM metrics) to classify each of the 6,000 test 
cases. In this study, to calculate the distance between two 
points with the LOM metric, the Dijkstra technique was used 
(we also employed different edge lengths to study the effect 
of degeneration of distance measurements when this 
parameter got larger). In Table 1, and in the four graphs of 
Fig. 6, the results obtained are shown.  

In each of the four scenarios (180, 90, 60 and 30 cases), a 
significant increase of classification accuracy is achieved with 
the k-NN algorithm which employs the new LOM metric 
(compared with the results obtained with the k-NN or 
RBF-SVM algorithms using the Euclidean metric). 

Figure 6.  Results of the k-NN classification for the four problems. 

TABLE I.  SUMMARY OF CLASSIIFICATION ACCURACY 

Problem k-NN euclidean 
metric SVM k-NN LOM metric 

180 cases 88.25%  (k=13) 88.54% 88.65%   (τ=0.2, k=13)
90 cases 87.23%    (k=3) 87.53% 89.12%   (τ=1.25, k=7)
60 cases 84.40%    (k=5) 85.08% 88.98% (τ=1.25, k=13)
30 cases 81.23%    (k=1) 82.40% 83.33%       ( τ=3, k=2)

VII. CONCLUSION AND FUTURE WORK  
The main objective of the LOM metric has been achieved; 

it does not only enlarge the space parallel to the decision 
function, but it also provides a metric whose isolines are not 
ellipses centered at the initial point that extend along all the 
space, but curves which adapt locally to the profile of the 
decision function. 
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As it is frequently remarked in the literature, the shortest 
path between points in a Riemannian metric is a geodesic, but 
not every geodesic is the shortest path.  Several times in this 
research, we have found two different geodesics to reach the 
same point.  This is due to the different initial path used, and 
the attractors that govern the integrations of the differential 
equations.  Under this point of view, it is preferable to use the 
Dijkstra's algorithm.  

However, one of the main drawbacks of Dijkstra's 
algorithm is the time required to calculate the distance 
between points. Its order of complexity is ܱ൫ሺ|ܧ| +|ܸ|ሻ݈݃|ܸ|൯	using a priority queue, being |ܧ| the cardinality of 
edges and |ܸ| the same measure for the vertices. 

Analyzing the results obtained with the k-NN algorithm, 
some aspects become relevant: 

• It is not necessary to explore different values for the r 
parameter (for k-NN, r is just a scale factor).  

• The range of the τ parameter for which significant 
improvements are obtained is wide. This is because 
the LOM metric is derived from a well-founded 
theoretical concept.  

• Even for edges of 0.1 units, the distance calculations 
by the Dijkstra’s algorithm are correct enough (the 
range of the attributes in each dimension is between -1 
and 6). Shorter edges do not provide a significant 
improvement of accuracy and only increase 
calculation time.  

One aspect for further research is the study of the 
degradation of Dijkstra's algorithm when used in spaces with 
more dimensions than two. But, perhaps the most relevant 
area of improvement is to define a simplification of the LOM 
metric that allows its use in multidimensional spaces with 
reasonable time and memory constraints. We are currently 
working in one of them and our first results are very 
promising. 

As a conclusion, calculation of distances using the LOM 
metric is seen as an alternative for those algorithms that use 
this measurement in their decision making. It increases the 
classification accuracy and reduces the curse of 
dimensionality. The main drawback of the LOM metric is that 
more extensive calculations are needed to obtain the distances. 
Currently, we are working to minimize this inconvenience. 
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