
The Application of Machine Learning to Problems in Graph Drawing
A Literature Review

Raissa dos Santos Vieira
Hugo Alexandre Dantas do Nascimento

Wanderson Barcelos da Silva

Institute of Informatics
Federal University of Goiás

Goiânia - GO, Brazil
Email: {raissavieira,hadn,wandersonsilva}@inf.ufg.br

Abstract—Graph drawing, as a research field, is concerned with
the visualization of information modeled in the form of graphs.
The present paper is a literature review that identifies the state-
of-the-art in applying machine learning techniques to problems
in graph drawing. We focused on machine learning strategies
that build up and represent knowledge about how to draw a
graph. Surprisingly, only a few pieces of research can be found
about this subject. We classified them in two main groups: the
ones that extract knowledge from the user by human-computer
interaction and those that are not based on data directly gathered
from users. The study of these methods shows that there is still
much to research and to develop regarding the application of
machine learning to graph drawing. We suggest directions for
future research on this area.

Keywords–Graph Drawing; Human-Computer Interaction; Ma-
chine Learning.

I. INTRODUCTION

Graphs are mathematical models defined as a set of ver-
tices and a set of edges. They are widely used to represent
physical and abstract entities and their relationships. Often, it
is necessary to draw a graph, that is, to construct a geometric
representation of its vertices and edges [1]. For this aim, it
is common to choose a standard graph-related convention (for
example, drawing vertices as circles and edges as straight lines)
and a set of aesthetic criteria (such as displaying edges with
uniform orientation, minimizing edge crossings and presenting
symmetry).

When a graph contains only a few vertices and edges, it can
easily be drawn manually. However, as the size of the graph
increases, manual drawing becomes more difficult and time
consuming. The most common strategy for drawing medium
to large-size graphs – ranging from hundreds to thousands
of vertices and edges – is through the usage of automated
techniques that incorporate a set of aesthetic criteria and
apply algorithms for finding aesthetically pleasing drawings.
A number of computational systems for drawing graphs exist
based on this approach. Including, we have GraphViz [2] and
Gephi [3].

Drawing a graph by a computational process, on the other
hand, also creates many difficulties. One of them is that the
search for drawings of good quality drawings with several
aesthetic criteria is an NP-Hard problem [1]. In addition, some
aesthetic criteria are in conflict, so that the improvement of a

drawing in respect to one criterion may imply a reduction of
other aesthetical aspects. Furthermore, the drawing of a graph
is essentially a subjective task – some users may prefer to
satisfy some particular aesthetic criteria, different from the
preferences of other users.

For this reason, even with the use of heuristics, there
is still a need for human intervention to assist in obtaining
good quality graph drawings. This was perceived very early
in the advent of the graph drawing research field, resulting
in the inclusion of human-computer interactive resources in
most graph drawing systems. Such resources help to tailor
the drawing towards satisfying aesthetic criteria that are not
fully treated computationally, and to escape from local minima,
when the graph drawing process involves an optimization
model.

In the current paper, we present a literature review of the
use of machine learning techniques for graph drawing. This
is a much more complex challenge than merely having a
fully automatic graph drawing system or a system with a few
simple interactive tools. We shall comment on computational
approaches that attempt to acquire knowledge that can be used
to help drawing graphs. As can be seen, there are few reports
of research on this subject. However, some interesting ones
have been found and their study may lead to promising lines
of future research.

The remainder of the paper is organized as follows: in
Section II, graph drawing definitions are presented; Section III
provides an overview of the application of machine learning
techniques to graph drawing; Section IV summarizes the
characteristics of the existing approaches; finally, in Section V,
we draw our conclusions and suggest future works.

II. GRAPH DRAWING

A finite undirected graph G is an ordered pair (V,E) of
finite sets V and E, where V is a set of vertices representing a
set of discrete objects, and E is a set of unordered pairs {x, y}
of distinct elements in V, termed edges between vertices x and
y. In a directed graph, E is a set of ordered pairs of vertices
such that an edge e = (x, y) connects x to y, but the reverse
is not true, unless there is an edge e′ = (y, x) in E. A two-
dimensional drawing of a graph G = (V,E) is a function that
associates each vertex and edge of G with geomtric objects in
a drawing space.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

The graph drawing process begins with a computational
representation of a graph (e.g., an adjacency matrix or a
vertex-edge incidence list) and the selection of a graphical
convention. Vertices are usually depicted as circles or squares
while the edges are commonly represented by polygonal lines
or arcs. Then, a set of aesthetic criteria are chosen in order to
determine the aesthetic quality of any drawing of the graph.
Aesthetic criteria, frequently employed as soft constraints, are:

• Minimizing the number of edge crossings;
• Displaying symmetries;
• Distributing the vertices evenly in the drawing area;
• Showing all edges with uniform length; and
• Arranging the edges in the same direction as much as

possible (in the case of directed graphs).

In addition to the aesthetic criteria, soft constraints, hard
“drawing constraints” can be imposed. While an aesthetic
criterion may be neglected to a certain degree, all the hard
drawing constraints must always be satisfied. Examples of
drawing constraints are:

• Avoiding vertex over placement and
• Requiring some vertices and edges to be located in

given fixed positions.

In the graph drawing research area, the drawing problem
is studied according to the class of graphs considered, e.g.
undirected, directed, planar or tree graphs. For each particular
class, there are graph conventions, aesthetic criteria and hard
constraints, all of relative importance.

A drawing of a given graph that reflects these details can
be attempted. With a large drawing area, usually different
drawings can be generated for non-trivial graphs. Not all of
these drawings are of practical interest. The most desirable
ones are those that best satisfy the aesthetic criteria, since
they have a higher chance of being readable, that is, helping
understand the inherent graph structure.

One of the difficulties of obtaining useful drawings, how-
ever, is that finding the best drawing for many aesthetic criteria
is a NP-Hard problem [1]. Also, some aesthetic criteria conflict
with the other. In this case, there may be no drawing that
optimally satisfies two or more adopted aesthetic criteria. In
such situations, there must be a trade-off between the criteria.

The definition of what is a “good” drawing can also be a
very challenging task. The opinions of which aesthetic criteria
to adopt may vary significantly between users. Sometimes,
a common set of aesthetic criteria is desirable by all users,
but they vary in their relative importance. For instance, one
user may prefer edge crossing minimization over drawing
symmetry, while another user may prefer the opposite. Many
computational approaches to evaluate the quality of a graph
drawing employ a weighted function of the given aesthetic
criteria with weights provided in advance by the user.

In some situations, the user’s preferences are imprecise and
difficult to model mathematically. In this case, the users have
to draw the graph manually, possibly in an incremental way
until an acceptable quality of the drawing is reached.

Thus, we can conclude that human interaction is necessary
in many current graph drawing systems because these systems
do not automatically and adequately deal with all drawing
issues that may be of concern to the users.

In a previous work, Nascimento and Eades [4] investigated
interactive optimization systems for graph drawing. They also
proposed a framework that combines graph drawing algorithms
and human interaction in an optimization process. The main
result of their study was that the combination of graph drawing
algorithms with human interventions help to achieve better
results than having the algorithms and the users working
independently. Furthermore, the authors identified certain in-
teractive actions already being performed by users that could
be used as the basis for new graph drawing algorithms. They
then suggested applying machine learning techniques to learn
and automatize such actions.

The idea of using machine learning to graph drawing
goes far beyond the traditional interactive graph-drawing ap-
proaches, as it tries to computationally empower existing
algorithms while releasing users to carry out more suitable
roles. The following section presents a review on existing
approaches that, in some ways, pursue this idea.

III. USING MACHINE LEARNING FOR GRAPH DRAWING

We performed a search of the relevant scientific literature
in order to identify existing graph drawing methods that use
machine learning techniques. The main literature databases
investigated were: the bibliographic database of the Institute
of Electrical and Electronics Engineers (IEEE), the database
of the Association for Computing Machinery (ACM), Scopus,
CiteSeer, Science Direct and the Web of Science. Our search
string combined the terms: Graph Drawing, Graph Layout,
Machine Learning, Expert Systems, Task Learning, Case-
Based, Knowledge-Based, User Preferences and Artificial In-
telligence.

The search identified 86 papers. Four other references that
we previously knew of were added. We then analyzed all these
papers and reduced the bibliography to only 11, all of which
actually use machine learning techniques to help to produce
good drawings of graphs. This final set of papers was divided
into two main groups, presented next:

1) Approaches that learn from human interaction – these
are approaches that learn information from users
based on their interactions to a graph drawing system.
They are presented in Section III-A;

2) Approaches that are not based on human interaction
– we consider here approaches that gather and evolve
knowledge about how to draw a graph from the
results of other automatic graph drawing algorithms
or from the graph structure itself. These approaches
are presented in Section III-B.

We describe other details about the approaches that allows a
more refined classification, later in the paper. Some aspects that
we analyze include: the goal of the learning process (defining
the quality of the drawing, or improving the convergence of
an optimization process towards a good drawing), the class
of graphs being drawn, the type of information interactively
provided by the user for the learning process, the learning
method, and whether or not the acquired knowledge can be
reused to draw other graphs.

A. Approaches based on human-computer interaction
Since the choice of aesthetic criteria and their importance is

an inherently subjective task, Neto [5] and Neto and Eades [6]

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

developed an approach for learning users’ preferences. They
were in the first to propose the automatic learning of human
knowledge for drawing graphs. For this, they created an inter-
active system in which the parameters of an objective function
(inferring the desirable aesthetics) and the setup parameters of
a simulated annealing graph drawing method are automatically
adjusted. As shown in Figure 1, the system consists of:
a graph drawing editor, for human operators to draw the
graph according to their preferences; a learning module that,
implicitly, observes the users’ actions and tries to learn and
reproduce their results; and a knowledge base consisting of
weights for a set of predefined aesthetic criteria (these weights
appear in the objective function) and some parameters for
initializing the simulated annealing process. Using the editor,
the user provides a drawing of the graph. While doing this, the
system performs two tasks autonomously: (1) it measures the
aesthetic criteria of the user-generated drawing (2) and it runs a
process for automatically learning all parameters necessary for
reproducing the drawing. The learning process is also based
on a simulated annealing strategy. The knowledge acquired
by the system may help to recreate a drawing for other very
similar graphs. However, the authors mentioned that it is not
clear whether the aesthetic parameters can be meaningful to
draw other graphs.

Figure 1. Learning model (adapted from [5]).

Some other approaches for the learning of aesthetic criteria
are based on evolutionary computation techniques, such as
genetic algorithms. This has been done by Masui [7], Rosete-
Suárez et al. [8], Barbosa and Barreto [9], Bach et al. [10] and
Spönemann [11]. In general, these authors present systems that
collect information from human interaction that helps to clarify
and to adjust a fitness function, as illustrated in Figure 2. Their
goal is to refine the definition of the graph drawing problem
(in the sense of identifying what kind of drawing addresses
the subjective aesthetic criteria).

Following this line of thought, Masui [7] proposed having
the user evaluating drawing examples, which are rated as
“good” or “bad”. This evaluation is done in a preliminary stage.
Figure 3 illustrates some examples given by the user to the
system. Such pieces of information then serve as a reference
for the algorithm to infer the desirable aesthetic criteria. The
approach was developed only for directed graphs. After setting
the fitness function based on examples given by the user, an
evolutionary process is run in order to produce drawings of
these graphs.

Rosete-Suárez et al. [8] built a system that also acquires
user preferences, but from the manual scoring of drawing

Figure 2. Interactive evolutionary computation: the user evaluates graph
drawing solutions and helps to refine a fitness function (adapted from [4]).

Figure 3. Good and bad example layout pairs given to the system reported
in [7].

solutions in the population of a particular genetic algorithm.
They worked with undirected graphs. When running the ge-
netic algorithm, the system asks the user to give scores for six
graph drawings from the current population. The learning of
weights for a fitness function occurs from such an evaluation.
The fitness function is adjusted with these weights to reflect
the importance to the user of each aesthetic criterion. The
interactive process also tries to improves the convergence
of the genetic algorithm, since solutions with good aesthetic
quality evolved more quickly than in some other evolutionary
approaches without human interaction.

Likewise, Barbosa and Barreto [9] employed user evalua-
tion to undirected graph drawings. However, they used a pro-
cess called co-evolution, in which the set of weights of a fitness
function is evolved indirectly using information from both the
user and an internal evolutionary algorithm. Furthermore, the

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

user ranks the solutions in the current population instead of
giving full scores. Figure 4 shows some drawings that were
presented by their system to the user for evaluation.

Figure 4. A sample from the initial population (from [9]).

Bach et al. [10] presented a system called “GraphCuisine”,
a random drawing generator for undirected graphs with a pop-
ulational viewpoint. A random initial population is generated
and an evolutionary algorithm improves the quality of this pop-
ulation. Then the user selects solutions they deem to be the best
by visual inspection. When multiple graphs are selected, the
system tries to infer what graph characteristics are important
to the user and adjusts the fitness function to represent them.
This interactive approach aims to refine the problem of how to
produce good graph drawings and to improve the convergence
of the genetic algorithm. The system interface to select the best
drawings is shown in Figure 5. Note that there are options for
the users to modify the generation interval in which they want
to view the population, the population size and how many
drawings should be presented for selection.

Lastly, Spönemann [11] makes use of two interactive
human inputs with an evolutionary approach: the users can di-
rectly manipulate the weights of a fitness function by changing
visual sliders, or they can select good drawings from the cur-
rent population. Both actions result in the automatic adjustment
of the weights in the objective function, representing aesthetic
criteria. Figure 6 presents the user interface showing drawings
for individuals of the current population. There is a checkbox
below each graph drawing, which enables users to select the
drawing for the purpose of the adaption of the weights. The
system works with both undirected and directed graphs.

An advantage of using genetic algorithms for interactive
optimization is that it naturally produces several alternative
solutions for user evaluation and it is flexible in dealing with
different aesthetics criteria and constraints.

B. Approaches not based on human-computer interaction
Other approaches exist that use well-known machine learn-

ing techniques for drawing graphs, but that do not take into
consideration data provided by human operators.

Figure 5. The population view, displaying representative graphs of the
current population (adapted from [12]).

Figure 6. User interface for evolutionary meta layout (from [11]).

We start mentioning three reports of research that are based
on neural networks.

Cimikowski and Shope [13] presented a parallel neural
network algorithm that minimizes edge crossings in drawings
of nonplanar graphs. They based their work on that of Takefuji
and Lee [14] for computing a maximal graph planarization.
The use of a neural-network representation for solving opti-
mization problems was proposed by Hopfield and Tank [15].
After them, several developments followed.

Cimikowski and Shope dealt with graph drawings in the
form of arc diagrams (or linear embeddings), as illustrated
in Figure 7 for K6, the complete graph on six vertices. In

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

their graphical convention, the vertices are placed along a
horizontal line and the edges are drawn as semicircles in one
of the two half planes bounded by the line. Their optimization
approach consists of modeling each edge of the graph as
two neurons, representing the possibility of the edge being
drawn above or below the line. Every neuron can be set to
state 0 or 1, and this indicates distinct configurations for the
position of the edges (above or below the line, not placed
at all or in an inconsistent condition). An energy system is
then created, containing excitatory and inhibitory forces that
push the neurons to a state that minimizes the number of edge
crossings while ensuring that all edges are placed. Through
an iterative process, the system converges from a randomly-
defined initial state to a stable configuration with the minimal
number of edge crossings. In terms of the quality of the final
results and processing time, the approach proved to be more
competitive than a conventional greedy algorithm for the same
problem.

Figure 7. Linear embeddings of the complete graph K6 with 3 crossings
(from [13]).

Wang and Okazaki [16] improved the method proposed
by Cimikowski and Shope [13]. They modified the internal
dynamics of the neural network to permit temporary increases
in the energy function in order to help the network to escape
from local minima.

Finally, Meyer [17] presented an approached for graph
drawing based on a competitive learning algorithm and on an
extension of ideas used in unsupervised neural networks and
self-organized maps. An association between a self-organized
network and a graph drawing problem was established. The
graph to be drawn is viewed as a neural network to be trained
– every vertex of the graph is a neuron in the network; the
position of a vertex v in the drawing is, in fact, described by
the weight vector of the connections of v to other neurons.
Drawing a graph is then treated as the problem of training
its related network, that is, finding the proper sets of weights
for the neurons. The training method consists of a competitive
learning algorithm that updates the weights associated to a
winner neuron v and to its neighbors so that they get closer
to a random stimulus (to a point randomly chosen on a mesh
over the drawing area). Ideally, the winner is the neuron whose
weights are the closest to the stimulus. This process is iterated
with new winners, with the changes being less significant
at each time. The final result of the algorithm is a set of
weights (coordinates) that visually highlights the structure of
the graph. Figure 8 shows two drawings of K6, obtained using
a triangular mesh and a rectangular mesh for the random

stimuli. The approach is also able to draw graphs in a three-
dimensional space and to deal with some spatial aesthetics
criteria.

(a) (b)

Figure 8. The complete graph K6: (a) triangular layout, (b) rectangular
layout (from [17]).

Despite neural networks and self-organized maps being
very catchy names, we must point that these three related
approaches deviate from the machine learning nature in which
we are interested. They really do not build a general neural
network that learns aesthetic criteria or hints about how to
draw a graph. What their methods do is to model the graph
structure and the drawing problem as a network coupled with
an energy system. The methods then improve the state of
the network in order to minimize the system energy, usually
resulting in a good quality graph drawing. Unfortunately, there
is not resultant learned knowledge that can be reused, and
every new graph has to be drawn by repeating the whole
optimization process from scratch.

A different and more interesting learning approach is the
one proposed by Stolfi et al. [18], using asynchronous teams
(A-teams) for drawing graphs. By experimenting with teams
of graph drawing heuristics, they verified that some sequences
of heuristics (alternating over a drawing of a graph) could
produce better results than other sequences. They then termed
such good sequences as “pedigrees” and built a system for
finding and using them. The system operates in two modes:
“playing” and “working”. In the playing mode, graph drawing
heuristics (coded as agents in an A-team) are applied at random
in order to evolve a set of drawings of a given graph. A history
describing what heuristic was used in sequence is kept for
every drawing. When the A-team stops, the history for the
best generated drawing is the pedigree that we are looking
for. Next, in the working mode, the system produces drawings
for new graphs by applying only the sequence of heuristics
described by the pedigree.

The approach was tested using both undirected and directed
graphs. The playing mode produces a high quality drawing,
but is very timing consuming because it usually creates many
intermediate solutions that have bad quality and are thus
discarded. So its main advantage is to produce a pedigree. The
working mode, on the other hand, does not create a perfect
drawing, but is able to generate a reasonably good solution
relatively quickly. The authors suggest that a pedigree could
be applied as a recipe to draw similar graphs, but this was not
fully tested.

At last, Niggemann and Stain [19] presented an approach
for learning the best method for drawing clustered graphs. With
this aim in mind, the authors used a set of graphs and a set
of popular graph drawing methods. They applied clustering

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

Figure 9. A graph, on the left, and the abstract view its clusters, on the right
(from [19]).

algorithms to the graphs and, for each resultant subgraph
(cluster), all drawing methods in the set were tested. Next,
a knowledge base was created containing the characteristics
extracted from all the subgraphs created and the method that
generated the best drawing for them. After the learning step,
the knowledge base could be used to draw any new graph. This
involves partitioning the new graph into clusters, extracting
their characteristics and generating a drawing for every cluster
using the best method indicated by the knowledge base. The
final step is to integrate the drawing in order to create a
drawing of the whole graph. Figure 9 illustrates an input graph
(the left image) and how it was clustered into four subgraphs
(represented by rectangles on the right). Each subgraph has
its own characteristics and is drawn by a particular method
according to the knowledge base.

IV. CHARACTERISTICS OF THE APPROACHES

Table I summarizes eight aspects of the approaches de-
scribed in the previous sections:

• Year of publication.
• Class of graphs – the type of graph that can be drawn

by the approach. We use the letter “D” to represent
directed graphs and “U” for undirected graphs.

• Goal of the approach – the existing approaches have
two general goals: to refine the graph drawing problem
(that is, to learn the user’s preferences of drawing
aesthetics and thus to provide a drawing that the
user may like); and to improve the convergence of
a graph drawing algorithm towards a high quality
solution (in general, by helping to escape from local
minima, focusing the algorithm on more important
subproblems, tuning the algorithm’s parameters and
providing shortcuts).

• Knowledge source – this indicates the source from
which the approach obtains information for the learn-
ing process. We consider here the main classification
followed throughout the paper, regarding whether or
not to use information coming from human interac-
tion. However, we detail the second case by giving two
options that better describe the non-interactive types
of source: the graph structure alone or data collected
from the usage of other graph drawing methods.

• Type of interaction – when the knowledge source is
“human interaction”, then this column specifies the

form of interaction that can be performed by the user
to provide the system with information. The types
of human interaction that we found in the reviewed
literature are: evaluating graph drawings (assigning
scores or ranking the drawings), selecting some graph
drawings from a list, performing manual adjustments
(weights of aesthetic criteria or the drawing itself), and
providing graph drawing examples with good or bad
aesthetics.

• Learning method – this column indicates the learning
method used in the approach. The following methods
appeared in the reviewed literature: neural networks or
related algorithms, case-based knowledge representa-
tion, and the adjustment of a graph-drawing evaluation
function (that measures the quality of a graph drawing)
used as a fitness function in an evolutionary graph
drawing method.

• Reusability - this means that the approach acquires
general knowledge that can be applied to the drawing
of other graphs.

TABLE I. CHARACTERISTICS OF THE LEARNING APPROACHES.

Goal Knowledge Type of Learning
source interaction method

Pa
pe

r

Ye
ar

of
pu

bl
ic

at
io

n

C
la

ss
of

gr
ap

hs

R
efi

ni
ng

th
e

pr
ob

le
m

Im
pr

ov
in

g
co

nv
er

ge
nc

e

D
at

a
st

ru
ct

ur
e

D
ra

w
in

g
m

et
ho

d

H
um

an
in

te
ra

ct
io

n

E
va

lu
at

io
n

Se
le

ct
io

n

M
an

ua
l

ad
ju

st
m

en
t

D
ra

w
in

g
ex

am
pl

es

N
eu

ra
l

ne
tw

or
k

C
as

e-
ba

se
d

kn
ow

.

Fi
tn

es
s

ev
ol

ut
io

n

R
eu

sa
bi

lit
y

[5] 1994 U/D X X X X X X
[7] 1994 D X X X X
[13] 1996 U X X X
[17] 1998 U X X X
[8] 1999 U X X X X X
[18] 1999 U/D X X X X
[19] 2000 U/D X X X X
[9] 2001 U X X X X
[16] 2005 U X X X
[10] 2013 U X X X X X
[11] 2014 U/D X X X X X

From the table, we can see that machine learning tech-
niques have not yet been fully explored to solve problems in
graph drawing. There is a major concentration of approaches
that use human-computer interaction to adjust a fitness func-
tion in an evolutionary graph drawing algorithm. However,
reusability of the knowledge learned by the approach is still
a weakness. Even when the knowledge is reusable, there is
no guarantee that the results will be satisfactory. For example,
the learning obtained in [18] can be reused for a new graph
drawing task, but the quality of the drawings may not be as
good as those obtained by drawing the graph via a complete
process (in playing mode). Another aspect of the literature
review is that we could not find publications about this theme
between the years 2006 and 2012.

V. CONCLUSION AND FUTURE WORK

As far as we know, this is the first literature review to
identify the state-of-the-art in the use of machine learning
techniques to problems in graph drawing. As we could see
from the review, only a few studies investigated such topic.

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

Considering that the graph drawing research area is well
established, with an annual international symposium since
1994, this suggests that there is still much to investigate when
the aim is to learn knowledge about how to draw a graph
computationally.

The characteristics of the existing approaches presented in
Table I can be useful for identifying possible research topics.
For instance, case-based knowledge representation has been
employed only marginally. There is also a lack of an effective
method based on a general neural network for learning about
how to draw graphs. Furthermore, the reusability of some
described methods should be more deeply experimented with
and evaluated. Finally, there are some questions on the current
topic that still pose significant challenges. For example, “What
other types of knowledge can be collected from a user in
order to improve a graph drawing process?” and “How can
the knowledge about drawing a particular graph be generalized
and applied to other graphs?”.

At the moment, we are investigating actions performed by
humans when using interactive graph drawing systems, so that
the perceptions and the decisions made by these users can be
registered and eventually interpreted, modeled and transformed
into algorithms.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian state agency
FAPEG for supporting this work with a master scholarship
and other financial resources that allowed the necessary infras-
tructure for research. We also thank Professor Leslie Richard
Foulds, National Senior Visiting Professor at INF-UFG, for
revising this paper and suggesting important improvements.

REFERENCES
[1] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for

drawing graphs: an annotated bibliography,” Computational Geometry,
vol. 4, no. 5, 1994, pp. 235–282.

[2] “Graphviz - graph visualization software,” URL:
http://www.graphviz.org/ 2015.01.02 [accessed: 2015-01-02].

[3] “Gephi - the open graph viz platform,” URL: http://gephi.github.io/
[accessed: 2015-01-02].

[4] H. A. D. do Nascimento, “User hints for optimization processes,” Ph.D.
dissertation, University of Sydney, Australia, November 2003.

[5] C. F. X. M. Neto, “A layout system for information system diagrams,”
Ph.D. dissertation, University of Queensland, Australia, March 1994.

[6] C. F. X. M. Neto and P. Eades, “Learning aesthetics for visualization,”
in Anais do XX Seminário Integrado de Software e Hardware, 1993,
pp. 76–88.

[7] T. Masui, “Evolutionary learning of graph layout constraints from
examples,” in Proceedings of the 7th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’94. New York, NY,
USA: ACM, 1994, pp. 103–108.

[8] A. Rosete-Suarez, M. Sebag, and A. Ochoa-Rodriguez, “A study of
evolutionary graph drawing,” Laboratoire de Recherche en Informatique
(LRI), Universite Paris-Sud XI, Tech. Rep. 1228, 1999.

[9] H. J. C. Barbosa and A. M. S. Barreto, “An interactive genetic
algorithm with co-evolution of weights for multiobjective problems,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), 2001, pp. 203–210.

[10] B. Bach, A. Spritzer, E. Lutton, and J.-D. Fekete, “Interactive random
graph generation with evolutionary algorithms,” in Graph Drawing, ser.
Lecture Notes in Computer Science, W. Didimo and M. Patrignani, Eds.
Springer Berlin Heidelberg, 2013, vol. 7704, pp. 541–552.

[11] M. Spönemann, “Evolutionary meta layout of graphs,” Institut für
Informatik, Christian-Albrechts-Universität zu Kiel, Deutsche Nation-
albibliothek, Tech. Rep., 2014, in English, 21 pages.

[12] “Aviz: Visual analytics project - graphcuisine,” URL:
http://www.aviz.fr/Research/Graphcuisine [accessed: 2015-01-05].

[13] R. Cimikowski and P. Shope, “A neural-network algorithm for a graph
layout problem,” IEEE Transactions on Neural Networks, vol. 7, no. 2,
1996, pp. 341–345.

[14] Y. Takefuji and K.-C. Lee, “A near-optimum parallel planarization
algorithm,” Science, vol. 245, no. 4923, 1989, pp. 1221–1223.

[15] J. J. Hopfield and D. W. Tank, “”neural” computation of decisions in
optimization problems,” Biological Cybernetics, vol. 52, no. 3, 1985,
pp. 141–152.

[16] R.-L. Wang and K. Okazaki, “Artificial neural network for minimum
crossing number problem,” in Proceedings of 2005 International Con-
ference on Machine Learning and Cybernetics, vol. 7, 2005, pp. 4201–
4204.

[17] B. Meyer, “Self-organizing graphs - a neural network perspective of
graph layout,” in Graph Drawing, ser. Lecture Notes in Computer
Science, S. Whitesides, Ed. Springer Berlin Heidelberg, 1998, vol.
1547, pp. 246–262.

[18] J. Stolfi, H. A. D. do Nascimento, and C. F. X. M. Neto, “Heuristics
and pedigrees for drawing directed graphs,” Journal of the Brazilian
Computer Society, vol. 6, 07 1999, pp. 38 – 49.

[19] O. Niggemann and Benno, “A meta heuristic for graph drawing:
learning the optimal graph-drawing method for clustered graphs,” in
Proceedings of the working Conference on Advanced Visual Interfaces,
ser. AVI ’00. New York, NY, USA: ACM, 2000, pp. 286–289.

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

