eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

Mapping the Fuzzy Semantic Model into Fuzzy Object Relational Database Model

Sabrine Jandoubi
and Nadia Yacoubi-Ayadi

MIRACL Laboratory
High School of Computing
and Multimedia
University of Sfax
Sfax, Tunisia

National School of
Computer Sciences
University of Manouba
Tunis, Tunisia

Afef Bahri

Salem Chakhar

Portsmouth Business School and
Centre for Operational Research
and Logistics
University of Portsmouth
Portsmouth, UK

Email: sabrine. jandoubi@gmail.com Email: afef.bahri@gmail.com Email: salem.chakhar@port.ac.uk

nadia.yacoubi.ayadi@gmail.com

Abstract—This paper discusses the mapping of the Fuzzy Se-
mantic Model (FSM) into a Fuzzy Object Relational database
Model (FuzzORM). We designed a set of mapping rules to
transform all the constructs of the FSM into the FuzzORM.
A prototype supporting these rules is under development over
the Object-Relational Database Management System (ORDBMS)
PostgreSQL. The first results of implementation are presented in
this paper.

Keywords—Fuzzy database; Imperfect information; Mapping
rule; Object relational database; Semantic modeling.

I. INTRODUCTION

The semantic data models are powerful conceptual model-
ing tools but lack effective implementation mechanisms. Thus,
most of fuzzy semantic data models have been mapped and
implemented through relational [1][2] or object-oriented [3][4]
database models. This paper discusses the mapping of the FSM
[5] into a FuzzORM. This solution permits to take advantages
of both relational and object-oriented database models.

We designed a set of mapping rules to transform the con-
structs of the FSM into the FuzzORM. A prototype supporting
these mapping rules is under development over the ORDBMS
PostgreSQL. The first results of implementation are presented
in this paper.

The rest of the paper is organized as follows. Section II
briefly reviews the FSM. Section III details the mapping rules.
Section IV presents the first implementation results. Section V
discusses some related work. Section VI concludes the paper.

II. Fuzzy SEMANTIC MODEL
In this section, we provide a very brief review of FSM [5].

A. Fuzzy Classes

Let E be the universe of discourse. A fuzzy entity e in
FE is a natural or artificial entity that one or several of its
properties are fuzzy. At the extensional level, a fuzzy class
K in E is a collection of fuzzy entities having some similar
properties: K = {(e,ux(e)) : e € E A pg(e) > 0}, where
ur : E — [0,1] is the membership function that maps the
elements of E to the range [0,1], and px(e) represents the
degree of membership (d.o.m) of the fuzzy entity e in class
K. At the intensional level, a fuzzy class K is defined as a
set of attributes and a set of decision rules.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

Figure 1 shows a FSM-based model example.

sering gelegnane | | GATAXY

10
8 [isaalary

T label |_aze SOTTE N il v~
integer real

Figure 1. Example of FSM model.

For example, the class STAR in Figure 1 has five attributes
(star-name, type-of-star, age, luminosity and weight) and two
decision rules (‘luminosity> 0.5’ and ‘weight> 0.05’).

B. Attributes

Each attribute is basically characterized by its name, data
type and domain. A data type may be crisp or fuzzy. The
domain of an attribute atztr is the set of values the attribute
may take. Let T'(attr) denotes the domain of aftr. Domains of
fuzzy attributes are also fuzzy. For instance, the fuzzy attribute
location associated with class GALAXY in Figure 1 has the
following domain: {in, near, very near, distant, very distant}.

C. Decision Rules

Decision rules may be based on attributes or on common
semantics. An attribute-based decision rule is a condition of the
form (attr){op)(v), where attr is an attribute, op is a binary
or a set operator; and v € T'(attr). A semantic decision rule is a
semantic phrase used to specify the members of a fuzzy class.
Two decision rules from Figure 1 are: ‘luminosity=very high’
and ‘is-a galaxy’. The first decision rule is based on attribute
luminosity and associated with class STAR. The second is a
semantic decision rule associated with class GALAXY. An
advanced definition of decision rules is given in [6].

138

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

D. Complex Fuzzy Classes

The FSM contains several complex fuzzy classes permit-
ting to implement the semantics of real-world in terms of
generalization, specialization, aggregation, grouping and com-
position relationships, which are commonly used in semantic
modeling. A detailed description of these constructs is given
in [5].

E. Computing the Degree of Membership

The degree to which each decision rule determines the
fuzzy class K is not the same. To ensure this, each decision
rule j is associated with a non-negative weight w; reflecting
its importance in deciding whether or not an entity e is
a member of a given fuzzy class K. The d.o.m of entity
e in fuzzy class K is computed as follows [5]: ux(e) =
> 5= pj(v)-w;/ 37N, wj, where n is the number of decision
rules, v € D(attr) and p; : D(attr) — [0,1] is the partial
membership function associated with the jth decision rule; it
maps the elements of D(attr) into [0,1] (artr is the attribute
on which the decision rule is based). For semantic decision
rules, v is a semantic phrase and the partial d.o.m p;(v) is
supposed to be equal to 1 but the user may explicitly provide
a value less than 1. This basic definition of the d.o.m is used
to define the membership degrees of complex fuzzy classes
(see [5] for details).

III. MAPPING FSM TO FUZZORM DATABASE MODEL

Let M be a model based on FSM. The objective of the
mapping process is to create a FuzzORM database model T’
that captures all the semantics of M. The mapping process
consists in a set of mapping rules to be applied on the
attributes, decision rules, simple and complex classes, and
semantic relationships.

A. Mapping of Attributes

Attributes in FSM can be crisp or fuzzy. The list of fuzzy
data types supported by FSM are given in Table I (see also
[7]). A crisp attribute is basically characterized by its name,
description, domain and data type. There are other system
attributes but only these ones are considered in this paper. In
addition to its basic data type, a fuzzy attribute is characterized
by a set of parameters permitting to generate its possibility
distribution. The number of parameters needed to define fuzzy
attributes is different from one data type to another.

TABLE 1. FUZZY DATA TYPES.

Type Name Example

1 Single scalar quality= average

2 Simple number age=30

3 Set of possible scalar assignments quality={bad,average,good }

4 Set of possible numeric assignments age={20,21,22,23}

5 Fuzzy range age=between 20 and 30

6 Approximate value age=about 35

7 Interval age€ [25, 35]

8 Less/More than value age=less/more than 35

9 Poss. dist. over a numeric domain age={0.5/20,1.0/21,0.7/22,0.3,23}
10-13 Linguistic label (four models) age=young

14 An unknown value age=unk

15 An undefined value age=und

16 A Null value age=null

Figure 2 provides the graphical representation of the pos-
sibility distribution of three examples of fuzzy attributes. The
Fuzzy Range that handles ‘more or less’ information between

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

two numeric values requires four parameters (a, 3,y and \).
The Approximate Value is defined by three parameters (c, ¢~
and c¥). The Interval data type is defined through the limits
of the range a and f.

VN I

o ¥ = c ¢ ¢ = o

Figure 2. Graphical representation of some fuzzy data types.

In FuzzORM, the fuzzy attributes are mapped into com-
posed and/or multi-valued attributes (supported by object rela-
tional database models) that store all the required parameters.
This solution is formalized through several mapping rules. The
following are two examples.

Mapping Rule 1. Let attr be a crisp attribute in M.
Attribute attr is mapped to a new attribute with the same
characteristics as in conventional databases.o

Mapping Rule 2. Let attr be a fuzzy attribute in M.
The attribute attr is mapped to a new attribute with the
same characteristics plus an additional compound attribute
Parameters with the following components: (i) Value, which is
the value of the attribute as provided by the user; (ii) DataType,
which is the fuzzy data type of the attribute provided by the
user; and (iii) ParametersList, which is a multi-valued attribute
indicating the list of parameters’ values needed to generate the
possibility distribution of the fuzzy data type.c

B. Mapping of Decision Rules

The characteristics of each decision rule should be mapped
into the metadata level of FuzzORM. For attribute-based
decision rules, we need to maintain the following information:
(1) RulelD that stores the identifier of the decision rule; (ii)
RelationID that indicates the name of the class to which the
decision rule is associated; (iii) DecisionRule, which is a com-
posite attribute defined as follows: (a) AttrID that references
the attribute on which the decision rule is based, (b) Operator
that contains a binary or a set operator, and (c) RHO, which is
a crisp or fuzzy value from the attribute domain representing
the Right-Hand Operand of the decision rule; and (iv) Weight
that stores the weight of the decision rule as specified in the
data model M.

The semantic decision rules are mapped similarly. How-
ever, in this case the attribute DecisionRule contains two
components: (a) Operator, which is any semantic operator such
as ‘IS-A’, ‘A-SET-OF’ or ‘A-PART’; and (b) RHO, which is a
semantic phrase.

The mapping of decision rules from M to T is formalized
as follows.

Mapping Rule 3. Let r; be an attribute-based or semantic-
based decision rule in the data model M. Then, the character-
istics of decision rule r; are mapped into the database model
T as indicated above.o

C. Transformation of Basic Fuzzy Classes

Each fuzzy class in the FSM model is mapped into a
relation. The fuzzy attributes are mapped as explained in
Section III-A. The crisp attributes are treated as in conventional
databases. An additional non printable attribute, DOM, used

139

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

to store the global d.o.m is systematically added to the new
relation. The decision rules associated with K are mapped as
indicated in Section III-B.

The mapping of simple fuzzy classes is formalized as
follows.

Mapping Rule 4. Let K be a fuzzy class in M with the
attributes attrl,- - -,attrp. The mapping of K from M to T
is as follows: (i) create a relation R=(attr1’,- - -,attrp’) where
attrl’,- - - ,attrp’ are the mapping of attributes attrl,- - -attrp
using Mapping Rules 1 and 2; (ii) add an attribute DOM with
real data type to R; (iii) add the characterisers of each decision
rule of K to T using Mapping Rule 3; and (iv) associate to
the new relation R the triggers permitting to compte the d.o.m
and to control the parameters of fuzzy attributes.o

The last operation will be discussed in Section IV.

D. Transformation of Subclass/Superclass Relationships

A fuzzy subclass B of a fuzzy superclass A in FSM is
mapped in FuzzORM into a fuzzy relation that inherits all
attributes of the fuzzy relation issued from A. In addition to
the attribute DOM, the relation B contains a new attribute,
denoted by DOM-A, which is used to store the d.o.m of one
entity from fuzzy subclass B in its fuzzy superclass A. A fuzzy
subclass in FSM may be attribute-defined, roster-defined or set-
operation-defined. An attribute-defined fuzzy subclass has one
or several attribute values that are in accordance with some
discriminative values that characterize perfectly its members.
For instance, the fuzzy subclasses NOVA and SUPERNOVA
in Figure 1 are specializations of the fuzzy class STAR based
on the attribute type-of-star. A roster-defined fuzzy subclass is
simply defined by an explicit enumeration of its members. A
set-operation-defined fuzzy subclass may be defined as the set-
difference or the set-intersection of two or more fuzzy classes.

The following mapping rule formalizes the mapping of
attribute-defined subclass/superclass relationships.

Mapping Rule 5. Let B be a fuzzy subclass of a fuzzy
superclass A. The mapping of subclass/superclass relationship
from M to T is as follows: (i) fuzzy classes A and B are
transformed according to Mapping Rule 4; (ii) a new attribute,
denoted by DOM-A used to store the d.o.m of one entity from
fuzzy subclass B in its fuzzy superclass A is added to the
relation mapped from B; and (iii) add to the database model
T the definition parameters of subclass/superclass relationship
(i.e., list of attributes used to categorize the elements of fuzzy
class B).c

Similar mapping rules have been defined to transform
roster-defined and set-operation-defined fuzzy subclasses. The
main changes concerns the last operation. For roster-defined
subclasses, the parameters are simply the list of the members
of the fuzzy class B as specified by the user. The mapping
of set-operation-defined fuzzy subclasses is more complicated
since the fuzzy subclass has at least two fuzzy superclasses.
Hence, the mapping rule above should be applied to each of
these fuzzy superclasses. We need also to maintain the set
operator used to define the subclass/superclass relationship.

E. Transformation of Interaction Relationships

An interaction relationship relates members of one fuzzy
class to other members of one or many fuzzy classes. Let
By, .-+, B, be n fuzzy classes related by an n-ary interaction

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

relationship. Each participant fuzzy class has n — 1 attributes
for relating each of its members to each of the other members.
When a participant fuzzy class B; is mapped into a relation
in the database level, a composite attribute InteractionList is
added to it. The InteractionList contains as many component
attributes as the number of participant fuzzy classes. These
component attributes are used to indicate the list of the related
members from the other fuzzy classes.

On the other hand, when an interaction relationship re-
quires the creation of new attributes, a new fuzzy interaction
class is generated. In addition to its own attributes (that
are specified in the interaction relationship), the new inter-
action class should contain the following attributes: (i) the
key attributes of the classes participating in the interaction
relationship; and a DOM attribute as for basic classes.

The mapping of interaction relationships is formalized as
follows.

Mapping Rule 6. Let By, - - -, B,, be n fuzzy classes related
by an n-ary interaction relationship in M. The interaction
relationship is mapped as follows: (i) fuzzy classes By, - -, By,
are mapped into relations R1,---, R, according to Mapping
Rule 4; (ii) add to each relation R; issued from fuzzy class
B; a composite attribute InteractionList for relating each of its
members to the members of the other classes; and (iii) if the
interaction relationship requires the creation of new attributes,
then a new interaction relation is created as indicated above.o

A fuzzy class may participate in several relationships.
In this case, the mapping of this fuzzy class requires as
many composite attributes InteractionList as the number of
interaction relationships.

FE. Transformation of Fuzzy Complex Classes

As mentioned above, FSM supports several complex fuzzy
classes (composite, aggregate or grouping classes). These
classes are first mapped according to Mapping Rule 4. Then,
we need to add to the metadata repository the characteristics
of the semantic relationships. For instance, the composition
relationships are characterized by the following information: (i)
RelationNamel that stores the name of the first fuzzy class; (ii)
RelationName? that stores the name of the second fuzzy class;
(iii) DefinitionType that indicates the way the composition
relationship is defined (attribute-defined or enumerated); (iv)
Parameters, which is a multi-valued attribute that stores the
parameters associated with DefinitionType attribute (list of
attributes or members); and (v) DOM that stores the d.o.m of
the fuzzy relation named RelationNamel in the fuzzy relation
named RealtionName?2.

A collection of other mapping rules have been defined to
transform the different fuzzy complex classes but they are not
presented here. However, some examples are given in Section
IV-B.

IV. IMPLEMENTATION

A prototype named Fuzzy Interface Module (FIM) sup-
porting the different mapping rules is under development over
the ORBMS PostgreSQL. The mapping of a FSM model into
FuzzORM concerns three different levels: (i) database system
level, which is associated with extended data manipulation
languages devoted to handle different fuzzy operations that the
database system should support; (ii) database level, which is

140

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

concerned with the way the imperfect information is internally
stored. This concerns both attribute values and extensional
definition of different relations; and (iii) metadata level, which
concerns the intensional definition of relations. The metadata
level is normally managed by the host database system. How-
ever, the full implementation of the FuzzORM model requires
some additional metadata, which are not supported by current
database systems. In what follows, we focus on the second and
third levels only.

A. Database Level

The mapping rules detailed in Section III are traduced into
a set of PL/SQL routines. The main routine takes a FSM
model as a text file and generates a new FuzzORM database
using the different mapping rules. The input text file is scanned
three times. In the first scan, FIM identifies and implements
the fuzzy domains, the decision rules, the metadata about the
attributes and the metadata about the semantic relationships in
the FSM model. In the second scan, FIM maps all the fuzzy
classes (simple or complex) and implements them without
considering the semantic relationships between the classes. In
the third scan, FIM adds the semantic relationships.

The fuzzy classes are mapped into relations as detailed in
Section III. The mapping of the FSM model in Figure 1 leads
to the FuzzORM database given in Figure 3.

GALAXY

loeation I content DOM

st | Vlue | Datalype | Farametersst | {}

oy name | age
| Value | Daratipe | 7

STARS

| gourplD | comtent | DOM | DOM GALAXY |

STAR
type-af-star starname | age | welght
| Value | Datalype | Rarameterslist__| Value | Datalype | ParametersDist |

. {uminosity [DosM DOM-5TARY
| Value T DaraTipe | ParametersList |

SUPERNOVA

| snova-iaine

nype-of-snova | weight | lininosity |
| Value [DaraType | FarametersList | Value | DataType | FarametersList |

DOM DOM-STAR

Figure 3. The FuzzORM Database.

As we can see, each fuzzy class is mapped into a relation
and each fuzzy attribute into an attribute with composite type.
The multi-valued attribute content is used in some complex
fuzzy classes to maintain the list of members of these classes.
This attribute is empty during the creation of the relations.

Each fuzzy relation is associated with serval triggers to
control the validity of the introduced data (i.e., the parameters
of fuzzy attributes). Figure 4 provides a trigger example.

CREATE FUNCTION GalaxylLoc() RETURNS trigger AS $GalaxyLoc$
DECLARE
alpha numeric; beta numeric; gamma numeric; delta numeric;
BEGIN
IF NEW.location IS NULL THEN
RAISE EXCEPTION ’location cannot be null’;
END IF;
IF NOT ((alpha<=beta) AND (beta<=gamma) AND (gamma<=lambda))
THEN
RAISE EXCEPTION ’Please provide valid parameters’;
END IF;
END;
$GalaxyLoc$ LANGUAGE plpgsql;
CREATE TRIGGER GalaxyLoc BEFORE INSERT OR UPDATE ON Galaxy
FOR EACH ROW EXECUTE PROCEDURE GalaxyLoc();

Figure 4. A trigger example.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

The code in Figure 4 represents a simple version of the
trigger associated with the relation issued from fuzzy class
GALAXY.

B. Metadata Level

The metadata contains several meta-relations for storing the
different parameters and elements of FuzzORM such as fuzzy
attribute characteristics, decision rules and semantic relation-
ships. We define a meta-relation named FUZ-ATTRIBUTES to
store the information about fuzzy attributes: their basic type,
fuzzy types and their parameters. Here, we use a single column
to define the parameters of fuzzy attributes, independently of
the number of used parameters (1, 2, 3 or 4). In fact, the
ORDBMS allows the use of multi-valued attributes permitting
to maintain several values for a given attribute. This is not
allowed in relational database systems where we should use 4
different columns to define the parameters of different fuzzy
data types. This may cause many NULL values (when the
number of parameters is less than 4). An extract from FUZ-
ATTRIBUTES is given in Table II.

TABLE II. META-RELATION FUZ-ATTRIBUTES.

AttrlD AttrName FuzzyDataType BasciDataType Parameters

1 luminosity ~ Fuzzy Range Real {0.05,0.2,1.0,1.3,}
2 weight Interval Real {1.2,1.5}

3 location Linguistic Label Text {7.5,10}

The meta-relation LABELS is used to handle the charac-
teristics of linguistic labels. An extract from the meta-relation
LABELS is given in Table III.

TABLE III. META-RELATION LABELS.

LabellD AttrID Label Parameters
1 7 very young {0,1.8}

2 7 young {1.5,5.0}
3 7 old {42,113}
4 7 very old {11,15}

The labels shown in this meta-relation are relative to the
fuzzy attribute age (which is defined as a set of Gaussian
linguistic labels) associated with fuzzy class STAR.

We also define other meta-relations for handling proximity
relations, possibility distributions, domains of attributes, etc.

The metadata level contains also all the information re-
quired to define the decision rules associated with different
fuzzy classes. They are stored in two meta-relations: A-
DECISION-RULES and S-DECISION-RULES. The first one
is devoted to store the definition of attribute-based decision
rules and the second one is used to store the definition of
semantic decision rules. The extensional definition of the meta-
relations A-DECISION-RULES and S-DECISION-RULES for
our example are given in Table IV and V, respectively.

There are also a set of meta-relations to handle the semantic
relationships of subclass/superclass, composition, aggregation
and grouping. The first meta-relation is SUB-SUPER-COMP
that is devoted to store information concerning fuzzy sub-
class/superclass and composition relationships. The second
meta-relation GROUPING is devoted to store information
concerning grouping relationships. The meta-relations SUB-
SUPER-COMP and GROUPING are given in Table VI and
Table VII, respectively.

141

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

TABLE IV. META-RELATION A-DECISION-RULES.

RuleID RelationID RuleDefinition Weight
AttrID| Operator| RHO
1 STAR {luminosity,>,0.5L } 0.80
2 STAR {weight,>,0.05W } 0.30
3 SUPERNOVA {luminosity, > high} 0.60
4 SUPERNOVA {weight,>,1W,} 0.50
5 NOVA {luminosity,>,0.5L } 0.80
5 NOVA {weight,>,0.05W } 0.30

TABLE V. META-RELATION S-DECISION-RULES.

RuleID RelationID RuleDefinition Weight
Operator]D | RHO
1 GALAXY {IS-A,Galaxy } 1.0

TABLE VI. META-RELATION SUB-SUPER-COMP.

Relation]Name Relation2Name RelationshipType DefinitionType Parameters DOM

GALAXY PLANETS Aggregation Enumerated {} 1.0

GALAXY STARS Aggregation Enumerated {} 1.0

GALAXY COMETS Aggregation Enumerated {} 1.0

STAR SUPERNOVA Subclass/ Attribute {star-type} 0.9
Superclass

STAR NOVA Subclass/ Attribute {star-type} 1.0
Superclass

TABLE VII. META-RELATION GROUPING.

RelationName
STARS

DefinitionType Parameters DOM
Enumerated {} 1.0

The multi-valued attribute Parameters is used to maintain
the list of members of complex fuzzy classes defined by
enumeration. The list of members will be specified by the user
progressively during the exploitation of the database.

C. Fuzzy Operations

To compute the membership degrees and for query process-
ing, we need to extend the binary and the set operators that
may be used in the definition of decision rules. An attribute-
based decision rule is associated with a condition of the form:

(attr)(op)(v)

The operator op may be a binary operator (i.e., =, =,
<, <, >, >) or a set operator (i.e., €, C, C, D, D). All
these operators may be associated with the negation operator,
denoted ‘=’ below. In conventional logic, the response to a
binary comparison is a two-valued one and may be true (1) or
false (0). Within fuzzy logic, the result of a comparison may
take any value in the range [0,1]. Thus, the two-valued logic
is simply a special case of fuzzy logic that is restricted to the
two extreme values (0 and 1) of the range [0,1].

Based on the work of [8], we propose an extension of
all the operators mentioned above to support fuzzy logic. For
instance, the fuzzy operator ‘~’, which gives the degree in
which two fuzzy numbers (approximate values in Table 1) are
approximately equal is defined as follows:

. 0, | £ — ¢ |> margin;
pi (7,) ={ 1 =gl

margin’

| — ¢ |< margin.

Here, we suppose that the parameters ¢ and ¢~ of an
approximate value (see Figure 2) are the same and equal
to margin. The fuzzy ‘- ~’ operator is computed as the
complement of ‘~’ operator, i.e., i~ = 1 — p~(Z, J).

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

D. DOM Computing Routines

FIM proposes a set of routines for computing membership
degrees. These routines are defined as triggers and associated
with the corresponding relations. The basic routine named
DOM is used to compute global and partial membership
degrees associated to the fuzzy instances of classes (tuples in
database). This routine permits to compute g (+) (see section
II-E) and is associated to the INSERT and UPDATE triggers.
The principle of DOM routine is given in Figure 5.

Algorithm 1: DOM

Input : [,/ relation.
£, # ple.
Output: rale [0, 1]/ d.om.
P +— {set of decision mles for R}:
W +— {decision rules weights};
wdom +— 03
wsum +— 0;
for (each r € P) do
wdom +— wdom + W[i] + RHO(r,t):
wsum +— wsum + wdom;

if {wsum = 0) then
| rewum 0

retum wdom fwswm;

Figure 5. The d.o.m computing algorithm.

The DOM routine uses the RHO function, which permits
to calculate the partial membership degrees (see Section II-E).

V. DISCUSSION AND RELATED WORK

In this section, we discuss some implementation issues and
some related work.

A. Discussion

The first implementation issue to discuss concerns the
mapping and storing of fuzzy attributes’ parameters. There are
several solutions to map fuzzy attributes. We can, for example,
use one common meta-relation with four attributes devoted to
store the different parameters. In that time, we may have ‘null’
values any time the number of parameters is less than four.
Another solution is to group data types along the number of
required parameters. After that, four relations are needed for
data types with one, two, three or four parameters, respectively.
An ameliorated version of this solution is adopted in [8] where
a common meta-relation is defined with a specific attribute
serves as a pointer to two other meta-relations. One drawback
of the solutions cited above is that anytime we need to add
a new linguistic data type or to change the adopted linguistic
data type, we may have to update the meta-relations structure.

The straightforward solution proposed in this paper does
not depend on the parameters number because it uses multi-
valued attributes allowing the storage of more than one single
value. That is, all the needed parameters of linguistic data
type may be defined using only one attribute. This solution
has several advantages: (i) is supported by object relational
database models; (ii) reduces the presence of ‘null’ values;
and (iii) the atomic attributes of a composite attribute remain
accessible individually as with non-composite attributes.

The second issue concerns the use of the attribute Pa-
rameters both at the intensional and extensional levels. This
allows users to insert values of different data types, which
may have different number of parameters. For instance, the
formal definition of the attribute may be a trapezoidal-based

142

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

possibility distribution with four parameters but the user may
introduce a crisp value (with no parameter at all), an interval
(with two parameters) or an approximate value (with three
parameters). In all cases, the different data types defined at
the extensional level should be consistent with the formal
definition of the attribute at the intensional level.

The third issue is related to the computing of the d.o.m.
In FSM model, we need to compute the partial and global
membership degrees associated with the class instances. At
the database level, we need to compute the partial and global
membership degrees of any tuple. Three solutions may be
adopted: (i) store the partial membership degrees and compute
global membership degree on the fly; (ii) store the global
membership degree and compute partial membership degrees
on the fly; and (iii) store both partial and global membership
degrees. The first solution is expensive in access time because
we need to compute the global membership degree frequently.
The third solution may ameliorate the access time substantially
but this needs, however, a much more storage space. In this
paper, we use the second solution as it is less expensive
and ameliorate access time substantially. Equally, the second
approach where we compute global membership degree on
preprocessing allows us to use global membership degrees as a
filter to eliminate quickly false alarms in the querying process.
This may reduce execution time, especially for large databases.

B. Related Work

Fuzzy information has been extensively investigated in the
context of relational database model [1][2]. There are also
several semantic [S][1][9][2][10][11][12] and object-oriented
[13][14] database models where fuzziness is introduced with
one or several levels. Due to the lack of effective implementa-
tion mechanisms, most of fuzzy semantic data models have
been mapped and implemented through relational database
models. For instance, the well-known Entity-Relationship (ER)
data model is extended to support fuzziness in [1]. The
paper includes also a fuzzy entity-relationship methodology
for the design and development of fuzzy relational databases.
This methodology was used for mapping the fuzzy ER to
a relational one. In [15], the Is-a relationships, Functional
relationships, complex Objects (IFO) model was extended to
the Extended IFO (ExIFO) to represent uncertainty as well
as precise information. The authors provide also an algorithm
for mapping the schema of the ExIFO model to an extended
NF? database model. In [2], the IFO data model is extended to
support fuzziness. The obtained model, denoted IF-0, is then
mapped to a relational fuzzy database schema.

There are also some proposals for mapping semantic data
models into object-oriented database models, which permit to
support several concepts of semantic modeling. For instance,
in [4] the authors extend the IFO model for handling ill-
defined values including values with semantic representation,
values with semantic representation and conjunctive meaning,
values with semantic representation and disjunctive meaning.
The paper includes also a mapping of the obtained fuzzy
IFO model to a fuzzy object-oriented database model. The
proposal of [3] presents an extension of the Extended Entity-
Relationship (EER) model to deal with fuzzy information. The
paper provides also a formal design methodology for fuzzy
object-oriented databases from the fuzzy EER model.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

VI. CONCLUSION

This paper provides a formal approach for mapping the
FSM to a FuzzORM database model. Compared to existing
proposals, our mapping approach permits to gather advantages
of both relational and object-oriented database models. Several
points related to this proposal need to be addressed: (i) the
enrichment of the semantics of FSM through the addition
of different constraints associated with attributes, entities and
classes; and then their incorporation into FuzzORM; (ii) the
definition and implementation of a data definition language
adapted to FuzzORM databases; (iii) the implementation of
the conceptual query language introduced in [5]; and (iv) the
enrichment of FIM with capabilities related to the definition of
imperative aspects of the database such as security, integrity
and access levels.

REFERENCES

[1] N. Chaudhry, J. Moyne, and E. Rundensteiner, “Extended database
design methodology for uncertain data management,” Information sci-
ences, vol. 121, no. 1, 1999, pp. 83-112.

[2] Z. Ma, “A conceptual design methodology for fuzzy relational
databases,” Journal of Database Management, vol. 16, no. 2, 2005, pp.
66-83.

[3] Z. Ma, W. Zhang, W. Ma, and G. Chen, “Conceptual design of fuzzy
object-oriented databases using extended entity-relationship model,”
International Journal of Intelligent Systems, vol. 16, no. 6, 2001, pp.
697-711.

[4] M. Vila, J. Cubero, J. Medina, and O. Pons, “A conceptual approach for
dealing with imprecision and uncertainty in object-based data models,”
International Journal of Intelligent Systems, vol. 11, no. 10, 1996, pp.
791-806.

[5] R. Bouaziz, S. Chakhar, V. Mousseau, S. Ram, and A. Telmoudi,
“Database design and querying within the fuzzy semantic model,”
Information Sciences, vol. 177, no. 21, 2007, pp. 4598-4620.

[6] L. Ellouze, R. Bouaziz, and S. Chakhar, “Extending fuzzy semantic
model by advanced decision rules,” in Annual Meeting of the North
American Fuzzy Information Processing Society, 2009. NAFIPS 2009,
June 2009, pp. 1-6.

[7]1 A.Bahri, S. Chakhar, Y. Naja, and R. Bouaziz, “Implementing imperfect
information in fuzzy databases,” in Proceedings of The International
Symposium on Computational Intelligence and Intelligent Informatics,
October 14-16 2005, pp. 1-8.

[8] J. Medina, M. Vila, J. Cubero, and O. Pons, “Towards the implementa-
tion of a generalized fuzzy relational database model,” Fuzzy Sets and
Systems, vol. 75, no. 3, 1995, pp. 273-289.

[9] G. Chen and E. Kerre, “Extending ER/EER concepts towards fuzzy
conceptual data modeling,” in Fuzzy Systems Proceedings, 1998. IEEE
World Congress on Computational Intelligence., The 1998 1IEEE Inter-
national Conference on, vol. 2, May 1998, pp. 1320-1325.

[10] Z.Ma, F. Zhang, L. Yan, and J. Cheng, “Fuzzy data models and formal
descriptions,” Studies in Fuzziness and Soft Computing, vol. 306, 2014,
pp. 33-60.

[11] L. Yan and Z. Ma, “Incorporating fuzzy information into the formal
mapping from web data model to extended entity-relationship model,”
Integrated Computer-Aided Engineering, vol. 19, no. 4, 2012, pp. 313—
330.

[12] F. Zhang, Z. Ma, and L. Yan, “Representation and reasoning of fuzzy ER
models with description logic DLR,” Journal of Intelligent and Fuzzy
Systems, vol. 26, no. 2, 2014, pp. 611-623.

[13] Z. Ma, W. Zhang, and W. Ma, “Extending object-oriented databases
for fuzzy information modeling,” Information Systems, vol. 29, no. 5,
2004, pp. 421-435.

[14] C. Cuevas, N. Marin, O. Pons, and M. Vila, “PgdDB: A fuzzy object-
relational system,” Fuzzy Sets Systems, vol. 159, no. 12, Jun. 2008, pp.
1500-1514.

[15] A. Yazici, B. Buckles, and F. Petry, “Handling complex and uncertain
information in the EXIFO and NF? data models,” IEEE Transactions
on Fuzzy Systems, vol. 7, no. 6, 1999, pp. 659-676.

143

