
An Application of Pattern Matching for the Adjustment of Quality of Service

Metrics

Doug Legge and Atta Badii

IMSS

University of Reading

Reading, England

{d.j.s.legge, atta.badii}@reading.ac.uk

Abstract—Quality of Service is an important component of

Internet Protocol traffic as it allows a prioritisation of

designated applications during periods of high utilisation or

where there is restricted resource, such that the end-user

experience can be optimised. Typically, Quality of Service is

defined through manual policies with expert human input

required. In this paper, we present initial support for the

hypothesis that the definition and on-going change

management of manual Quality of Service policies can be

replaced through the use of pattern matching techniques,

which classify traffic in real-time. This paper serves as an

introduction to concepts, which may be new to many Internet

Protocol-based network engineers, and as a motivation for

those in the field of Artificial Intelligence, machine-learning, as

to where advanced learning functions could be applied.

Keywords-Quality of Service (QoS); self organizing map

(SOM); k Nearest Neighbour (kNN); agent

I. CONCEPT

Quality of Service (QoS) policies provide for the

prioritisation of packets on IP networks, partly motivated in

the early 2001 by the convergence of voice and data traffic.

Despite the increasing availability of high-speed

consumer (e.g., xDSL ≈50Mbps) and corporate (e.g.,

Ethernet ≈10Mbps) data links, Internet Protocol (IP)

engineers now face the conundrum, once seen in the

Personal Computer (PC) world, where a faster network

resource is rapidly consumed at an increasing rate by

bandwidth hogging applications, such as Videoconferencing

or Tele-presence. As a result little planned capacity

overhead remains and QoS mechanisms continue to be

required.

With no end in sight, the dependence of QoS

implementation upon expert judgement leaves organisations

exposed to high salary costs and a potential loss of critical

knowledge resulting from staff churn. In addition, these

existing optimisation techniques lead to increasingly

complex network operations regards the service mechanisms

required to deliver appropriate application performance.

Including those supporting activities such as ‗requirements

analysis‘ and ‗policy change management control‘. Verma

[1] states ―as networks make the transition from all traffic is

equal to the new model in which some traffic is more equal

than others‖, a way must be found in which to specify

differentiate and service traffic types on the network whilst

maintaining a simplified abstraction.

Whilst optimisation of traffic-flow is a valid and well

researched field, simplification of its engineering and on-

going management has, in the first author‘s experience as

the IT Operations Manager for a UK FTSE 250 company,

been long overdue at the coalface of network support.

For some years now machine learning, and in particular

‗neural-networks‘, have been used within many industries

[2][3][4]. However, it is in the field of data mining that

neural networks have been most productive, being used to

―extract new information, from existing data, thus providing

innovative insights and tactical commercial benefit‖ [5].

The authors‘ previous work [6][7] highlighted those

issues corporate organisations face regarding this

‗requirements analysis phase‘ necessary to collate that

information required to build network traffic services (e.g.,

QoS policy statements). This work demonstrated how these

policies in practice remain sub-optimally implemented

through lack of a facility to allow their dynamic adaptation

responsive to changing circumstances and thus changing

priorities of different business data traffic types.

In this report the authors‘ present paper results from

initial experimentation regards how varying traffics differ in

sensitivity, and how that ‗footprint‘ within IP packets could

be used to characterise data for machine-learning.

This shows how autonomous agents could be devised

such that they were capable of traffic categorisation and

dynamic differential, reallocation of computer network

bandwidth, to various business data streams according to

their relative dynamic priorities. Such agents could then

reduce the reliance and complexity of current (human)

expert QoS policy definition through the deployment of

machine-learning techniques for the re-classification of the

IP traffic. This paper also introduces the platform on which

further experimentation will be completed.

II. APPLICATION SENSITIVITY, DELAY AND PROCESSING

Certain Internet traffic applications are time-critical. The

stutter arising from delayed packets often renders

1

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

videoconferencing unusable. For any System for Intelligent

Network Control (SINC) to be adopted it must satisfy the

end-user delivery requirements [6]. A summary of

sensitivities is given in Table 1.

TABLE I. APPLICATION SENSITIVITIES

Traffic Type
Sensitivities

Bandwidth Loss Delay Jitter

Voice (set-up) Very low Medium High High

eCommerce Low High High Low

Transactions Low High High Low

Email Low High Low Low

Telnet Low High Medium Low

Casual browsing Low Medium Medium Low

Serious browsing Medium High High Low

File transfer High Medium Low Low

ICA Medium Medium High Medium

Video conferencing High Medium High High

Multicast High High High High

Any rule-based system must therefore respect such end-

user observable concerns such as: delay, defined as a lapse

of time, which includes jitter, often defined as a packet delay

variation (PDV) used as a measure of the ‗variability over

time‘ of the packet latency across a network. In traditional

QoS deployments a set of common applications, group of

users, or business performance requirements, can be profiled

and a template developed for that application and each

resulting flow. Thus each flow which fits that profile can be

treated the same, reducing the cost of replicating flow

information for similar flows. The authors‘ previous paper

[7] drew on an observation-action pair mapping, or ―policy

of an agent‖ [8], shown in equation 1 below:

(1)

in which a stateless function F maps its current

observation (of network traffic and available resource) to a

new action, representing a classification of the data, and t is

the budget (e.g., time) in which the observation is made and

the mapping completed. As an example of relevance to this

paper, consider the rule for an attribute found within IP

traffic, such as packet length, shown in equation 2 below:

 (2)

where y, in this instance is packet length in Bytes and a

and b exhaust all possible classifications of that packet. An

illustration being packets ≤ 80 Bytes are classified a, where

a equals a classification of ‗Expedite Forward‘, and all other

packets (e. g., > 80 Bytes) are classified b, where b equals a

classification of, in this instance, ‗AF21‘.

Such tests are, however, dependent on a known typing of

net packets: given variability of the packet structure, simple

rules are likely to misclassify traffic, with a resulting

incorrect prioritisation. This motivates our research to

classify packets based on a ―black-box‖ (unsupervised)

approach, by which a priori unknown packet structures can

be presented to the learning-function for classification based

on learned characteristics (e.g., voice packets which have a

high QoS priority, have these known sensitivities). Where

this characterisation is completed using some or all of those

attributes available within an IP packet, but where the

attribute choice is not fixed, thus allowing for an assessment

of belief in a hypothesis to be updated with new data at each

observation epoch. This set of attributes provides a ‗frame

of discernment‘ Θ [9].

III. LEARNING FOR AN INTELLIGENT NETWORK CONTROL

There are many well-known mechanisms for the useful

characterisation of data [10][11][12] including:

 Supervised learning

 Unsupervised learning

 Reinforcement learning

Evidence from the authors‘ background research

indicated that the use of pattern matching is effective at

finding previously unseen patterns within the dataset, and

given IP networks have vast sums of data traversing

networks, with each packet or frame having an inherent

footprint resultant from its header(s), this would appear to

offer a suitable mechanism for intelligent network control.

There is no lack of data in the typical network [13]

making statistical analysis techniques of traffic a relatively

easy task. The challenge to the data classification is to

accurately classify traffic in real-time. Initial

experimentation with the first author‘s corporate network

has focused on the classification of traffic flows using a k-

Nearest Neighbour (kNN) clustering feature. Tarassenko

[14] defines the objective of any clustering as:

“Given P patterns in n-dimensional space, find a partition

of the patterns into K groups, or clusters, such that the

patterns in a cluster are more similar to each other than to

patterns in different clusters.”

Clustering requires the characterisation of input data

within a multidimensional space; in the context of this

research we characterise data as the five-tuple:

 source IP address;

 destination IP address;

 source port number;

 destination port number;

 protocol;

t tF

y a

y b
packet_length:

2

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

 plus additional attributes including length and

frame_time_delta.

The authors‘ have adapted the framework of [15] to

identify a classification process that isolates differences

within a population of network traffic, each having different

a model (or description). The process by which this is

achieved is defined below, and whilst the final realisation of

this research is expected to be deployed using Application

Specific Interface Card (ADIC) or Programmable Logic

modules, integrated within internetwork devices in much the

same way as the WAN Interface Cards (WIC) seen in

routers, Fig. 3 shows the current system in development:

1. Sensing: input to the system, the packets arriving on

the ingress interface

2. Pre-process: signals are pre-processed such that

they can be transposed for subsequent operations

without loosing relevant processing information.

This may use a segmentation function to isolate the

features of the data from each other or from

background noise. One such segmentation would be

to separate UDP from TCP traffic as each has a

differing underlying network requirement.

3. Feature Extraction: whose purpose is to reduce the

data by measuring certain features or properties,

which in turn are passed to a

4. Classifier: which evaluates the evidence and makes

a decision as to the queue in which the traffic will be

transmitted

5. Post-processing: Are those processes engaged after

the classifier required to return the newly classified

traffic to a network egress interface

Of course, the use of kNN is not new, however, with

networks and the data they handle within a QoS setting

highly time critical, we cannot allow the real-time

classification of data detrimentally to slow it. In particular,

there are industry standards for node processing: the optimal

decision boundary which accepts a level of error within the

classification to ensure any process keeps within any overall

budget defined (e.g., RTD) should be less than 150ms

according to ITU-T G.114 [16]. The novelty in our research

includes, therefore, the engineering of a classification

algorithm which will prevent the modelling of extremely

complex dimensional dependencies. It was this requirement

of visualisation that led the authors to the thought of Pattern

Matching for QoS, and which the authors‘ can now model

using that framework of [15] where:

1. Sensing:

a. Traffic is generated from a production

network or simulated on a laboratory

environment, using client>server

transactions, or application simulation

software

b. That traffic generated is captured using

network protocol analysis software (e.g.,

Wireshark; Etherpeek) and saved as a .cap

file for analysis

2. Pre-process:

a. The traffic is exported as an .XML

compliant .pdlm file such that it can be

imported into spread-sheet applications for

statistical analysis

b. The resultant .xml file is loaded into a text

reader (e.g., textpad) and searched for non

ASCII characters, which would prevent

import to those spread-sheet applications

c. At this stage the .xml data requires to be

transposed such that each attribute (e.g.,

frame_length) is a column header, and

each instance of that attribute (per packet

or frame) is a row of known variable type

(e.g., nominal, string etc.). This is

completed by a SQL transpose routine, the

output of which is a reordered .xml file.

d. That .xml file is opened within Microsoft

Excel to ensure consistency of data. This

includes missing or errored cells,

inconsistent format or corrupt file.

e. This data file is presented to SPSS PASW,

Weka, and Matlab software which enables

a number of statistical analysis

visualisations to be completed, such as a

scatterplot of Frame_length over Time,

shown at Fig. 1, ―Visualisation of

Captured Data in WEKA‖ below.

f. A suitable file (e.g., Weka .arf; Matlab

.mat) can now be built such that varying

learning processes can be explored and

evaluated.

3. Feature Extraction:

a. Feature exaction then is the reduction of

data to its principle features. In the case of

Internetwork traffic this has previously

been defined as the five tuple with

additional attributes, including but not

exclusive to:

o ip_src

o ip_dst

o ip_srcport (tcp or udp)

o ip_dstport (tcp or udp)

o prot

o frame_pkt_length

o frame_time_delta

o frame_time_relative

3

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

Figure 1. Visualisation of Captured Data in WEKA.

Equation 3 illustrates how three ‗characterisation

features‘, say packet_length (xa), time_frame_delta (xb) and

ip_dstport (xc), could be used to characterise a packet as

distinct from any other packet not within the same cluster.

This would present a feature vector in a two-dimensional

feature space [14], where:

a

b

c

x

x

x

(3)

This use of feature extraction can be illustrated with an

adaptation of [14] shown in Fig. 2, where these three

attributes are presented to the clustering function (F) which

has then defined the packets in two distinct clusters with an

individual mean of X, where:

Xn = the packets captured within time t

(where time t is from the start of capture to the end of the

capture processed) with features

X = {xa, xb, xc}

Cn = the clusters of the set K = {C1, C2, ……, Cn}

= the cluster centre characterised in this instance using

the mean vector mk

Figure 2. Adaption of Features of a Cluster [14]

This difference between clusters typically measured by

the distance between them (such as Euclidean distance or

Pearson correlation) to define a closeness or

interrelationship of the traffic. The known issue of

Euclidean distance, which assigns more weight (i.e.,

preference) to features with large range could be further

optimised through the use of Manhattan (or block) distance,

such that higher powers increase the influence of large

(neighbour) differences at the expense of small ones. An

example being, if presented with two features: ip_dstport

and frame_pkt_length, with Euclidean distance there would

likely be a preference to the former. This is due to the legal

range of IP ports being in the range is 0 to 65,535, compared

to a standard Ethernet frame Maximum Transmission Unit

(MTU) of only 1500 (bytes).

That traffic, which is clustered based on its perceived

characteristic, as demonstrated in Fig. 2, can then be marked

using coding such as Differentiated Services Code Point

(DSCP). That cluster of traffic which is defined as being the

most sensitive (such as voice traffic) or of having the highest

business importance would then be marked with an

appropriate classification, such as Expedite Forward (EF).

Each of the six clusters (0-5) would then be forwarded to

one of six pre-configured virtual hardware queues within the

network devices egress interface.

IV. SUMMARY AND CURRENT RESEARCH

This paper built on an early ―feasibility study‖ to

investigate how the agent models, as conceived in the

authors‘ previous papers [6][7], would be implemented to

influence internetwork traffic management. Whilst the

technique is promising, the current manual transposition of

data for the machine-learning application means that only

off-line processing is possible. However a realistic

implementation requires a platform with the ability to

perform online, real-time automated transposition of QoS

targets for various data steams intended for presentation to

the machine-learning mechanism.

Such a system, initially online if not real-time, has been

implemented on a Linux based server running the Snort

Intrusion Detection System (IDS) [17]. Ingress network

traffic is sensed (captured) and updated within a MySQL

database table. From the database, rather than using the

traditional Snort rule-base, the instances (packets) within the

various tables are JOINED and a Python language script

presents the data to an Orange k-means clustering algorithm

[18]. This algorithm performs the function F described,

completing the pre-processing, feature extraction, and

classification including visualisation. Further research

investigates those activities related to post-processing, such

as the marking of that traffic based on Differentiated

Services Code Point (DSCP), and dispatch routines which,

at present, is the re-population of the database with the

newly reordered traffic ready for network transmission on

the appropriate egress interface.

4

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

In addition, further investigation into other Python-based

pattern classification applications, such as pyMVPA [19],

PyBrain [20], and OpenElectrophy [21] will be progressed

to see whether they can perform the work more efficiently.

Figure 3. Oinker: Snort-based Systen for QoS Route Forwarding using

Pattern Classification

ACKNOWLEDGMENT

The authors‘ would like to express their sincere thanks to

Dr. Jon Hall, Open University, for his assistance in the

completion of this paper.

REFERENCES

[1] D. C., Verma, ―Policy-based networking architecture and
algorithms‖, Technology Series, New Riders, Indianapolis,
Indiana, pp. 6, November 2000.

[2] S. De Lurgio, ―Predicting micro-loan defaults using
probabilistic neural networks‖, Credit & Financial
Management Review, (Internet), 2002,
http://www.allbusiness.com/finance/1049916-1.html,
(accessed 19th July 2010).

[3] M. Buchanan, ―Why complex systems do better without us‖,
New Scientist, Reed Business Information Ltd., Issue 2668,
pp. 28-31, August 2008.

[4] C. J., Tebelskis, "Speech recognition using neural networks",

an unpublished thesis, (Internet), 1995,

http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&co

ll=GUIDE&CFID=97551353&CFTOKEN=37801874,

(accessed 26th July 2010).
[5] I. H, Whitten and E. Frank, ―Data mining: practical machine

learning tools & techniques, Second Edition, Elsevier, San
Francisco, 2005

[6] D. Legge and A. Badii, ―Conceptualisation of an application
of adaptive synthetic socioeconomic agents for intelligent
network control‖, 2nd PERADA Workshop on Pervasive
Adaptation, Edinburgh, AISB, pp. 14-21, April 2009.

[7] D. Legge and A. Badii, ―A primer for an application of
adaptive Synthetic Socioeconomic Agents for Intelligent
Network Control‖, in press, 2nd School of Systems
Engineering Conference, University of Reading, December
2009.

[8] N. Vlassis, ―A concise introduction to multi-agent systems
and distributed artificial intelligence, Morgan & Claypool,
California, pp. 55-57, 2007.

[9] R. Callan, ―Artificial Intelligence‖, Palgrave Macmillan,
Basingstoke, Hampshire, pp. 163, 2003.

[10] J. P, Bigus, ―Data mining with neural networks: Solving
business problems-from application development to decision
support‖, Computing McGraw-Hill, New York, pp. 6-29,
1996.

[11] J. F, Sowa, ―Conceptual structures: InformationpProcessing in
mind and machine‖, The Systems Programming Series,
Addison-Wesley Publishing, Reading, Massachusetts, pp.
281-292, 1986.

[12] G. Marshall, ―Advanced students‘ guide to expert systems‖,
Heinemann Newnes, Oxford, pp. 128-142, 1990.

[13] S. Sui, and C. Zhixiong, ―Adaptive network flow clustering‖,
IEEE International Conference on Networking, Sensing and
Control, pp. 596-601, April 2007.

[14] L. Tarassenko, ―A guide to neural computing applications‖,
Arnold, London, pp. 20-23, 1998.

[15] R. O. Duda, P. E. Hart, and D. G., Stork, ―Pattern
classification‖, Chichester, Wiley, New York, pp. 3-23, 2000.

[16] ITU-T G.114 ―One-way transmission time, series G:
Transmission systems and media, digital systems and
networks international telephone connections and circuits–
general recommendations on the transmission quality for an
entire international telephone connection‖,
Telecommunication Standardization Sector of the
International Telecommunication Union, pp. 2-12, May 2003.

[17] Snort, ―a lightweight open source network intrusion
prevention and detection system (IDS/IPS)‖, (Internet), 2010,
http://www.snort.org, (accessed 26th July 2010).

[18] Orange, Laboratory of Artificial Intelligence, Faculty of
Computer and Information Science, University of Ljubljana,
Slovenia,
http://www.ailab.si/orange/doc/modules/orngClustering.htm,
(accessed 20th July 2010).

[19] M. Hanke, Y. O. Halchenko, P.B. Sederberg, S.J. Hanson,
J.V. Haxby, and S.Pollmann, ―PyMVPA: A Python toolbox
for multivariate pattern analysis of fMRI data‖,
Neuroinformatics, volume 7, pp. 37-53, 2010.

[20] T. Schaul, J. Bayer, D. Wierstra, and Y. Sun, ―PyBrain‖,
Journal of Machine Learning Research 11, pp. 743-746
Submitted 11/09; Published 2/10, (Internet), 2010,
http://www.idsia.ch/~tom/publications/pybrain.pdf, ((accessed
26th July 2010).

[21] S. Garcia and N. Fourcaud-Trocmé, ―OpenElectrophy: an
electrophysiological data- and analysis-sharing framework‖,
Frontiers in Neuroinformatics, Volume 3:14, (Internet), 2010,
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.
2009/full,(accessed 26th July 2010).

5

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

http://www.allbusiness.com/finance/1049916-1.html
http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&coll=GUIDE&CFID=97551353&CFTOKEN=37801874
http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&coll=GUIDE&CFID=97551353&CFTOKEN=37801874
http://www.ailab.si/orange/doc/modules/orngClustering.htm
http://www.idsia.ch/~tom/publications/pybrain.pdf
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.2009/full
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.2009/full

