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Abstract—Quality of Service is an important component of 

Internet Protocol traffic as it allows a prioritisation of 

designated applications during periods of high utilisation or 

where there is restricted resource, such that the end-user 

experience can be optimised. Typically, Quality of Service is 

defined through manual policies with expert human input 

required. In this paper, we present initial support for the 

hypothesis that the definition and on-going change 

management of manual Quality of Service policies can be 

replaced through the use of pattern matching techniques, 

which classify traffic in real-time. This paper serves as an 

introduction to concepts, which may be new to many Internet 

Protocol-based network engineers, and as a motivation for 

those in the field of Artificial Intelligence, machine-learning, as 

to where advanced learning functions could be applied. 

 

Keywords-Quality of Service (QoS); self organizing map 

(SOM); k Nearest Neighbour (kNN); agent 

I.  CONCEPT 

Quality of Service (QoS) policies provide for the 

prioritisation of packets on IP networks, partly motivated in 

the early 2001 by the convergence of voice and data traffic.  

Despite the increasing availability of high-speed 

consumer (e.g., xDSL ≈50Mbps) and corporate (e.g., 

Ethernet ≈10Mbps) data links, Internet Protocol (IP) 

engineers now face the conundrum, once seen in the 

Personal Computer (PC) world, where a faster network 

resource is rapidly consumed at an increasing rate by 

bandwidth hogging applications, such as Videoconferencing 

or Tele-presence. As a result little planned capacity 

overhead remains and QoS mechanisms continue to be 

required. 

With no end in sight, the dependence of QoS 

implementation upon expert judgement leaves organisations 

exposed to high salary costs and a potential loss of critical 

knowledge resulting from staff churn. In addition, these 

existing optimisation techniques lead to increasingly 

complex network operations regards the service mechanisms 

required to deliver appropriate application performance. 

Including those supporting activities such as ‗requirements 

analysis‘ and ‗policy change management control‘. Verma 

[1] states ―as networks make the transition from all traffic is 

equal to the new model in which some traffic is more equal 

than others‖, a way must be found in which to specify 

differentiate and service traffic types on the network whilst 

maintaining a simplified abstraction. 

Whilst optimisation of traffic-flow is a valid and well 

researched field, simplification of its engineering and on-

going management has, in the first author‘s experience as 

the IT Operations Manager for a UK FTSE 250 company, 

been long overdue at the coalface of network support.  

For some years now machine learning, and in particular 

‗neural-networks‘, have been used within many industries 

[2][3][4]. However, it is in the field of data mining that 

neural networks have been most productive, being used to 

―extract new information, from existing data, thus providing 

innovative insights and tactical commercial benefit‖ [5]. 

The authors‘ previous work [6][7] highlighted those 

issues corporate organisations face regarding this 

‗requirements analysis phase‘ necessary to collate that 

information required to build network traffic services (e.g., 

QoS policy statements). This work demonstrated how these 

policies in practice remain sub-optimally implemented 

through lack of a facility to allow their dynamic adaptation 

responsive to changing circumstances and thus changing 

priorities of different business data traffic types. 

In this report the authors‘ present paper results from 

initial experimentation regards how varying traffics differ in 

sensitivity, and how that ‗footprint‘ within IP packets could 

be used to characterise data for machine-learning. 

This shows how autonomous agents could be devised 

such that they were capable of traffic categorisation and 

dynamic differential, reallocation of computer network 

bandwidth, to various business data streams according to 

their relative dynamic priorities. Such agents could then 

reduce the reliance and complexity of current (human) 

expert QoS policy definition through the deployment of 

machine-learning techniques for the re-classification of the 

IP traffic. This paper also introduces the platform on which 

further experimentation will be completed. 

II. APPLICATION SENSITIVITY, DELAY AND PROCESSING 

Certain Internet traffic applications are time-critical. The 

stutter arising from delayed packets often renders 
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videoconferencing unusable. For any System for Intelligent 

Network Control (SINC) to be adopted it must satisfy the 

end-user delivery requirements [6]. A summary of 

sensitivities is given in Table 1. 

TABLE I.  APPLICATION SENSITIVITIES 

Traffic Type 
Sensitivities 

Bandwidth Loss Delay Jitter 

Voice (set-up) Very low Medium High High 

eCommerce Low High High Low 

Transactions Low High High Low 

Email Low High Low Low 

Telnet Low High Medium Low 

Casual browsing Low Medium Medium Low 

Serious browsing Medium High High Low 

File transfer High Medium Low Low 

ICA Medium Medium High Medium 

Video conferencing High Medium High High 

Multicast High High High High 

 

Any rule-based system must therefore respect such end-

user observable concerns such as: delay, defined as a lapse 

of time, which includes jitter, often defined as a packet delay 

variation (PDV) used as a measure of the ‗variability over 

time‘ of the packet latency across a network. In traditional 

QoS deployments a set of common applications, group of 

users, or business performance requirements, can be profiled 

and a template developed for that application and each 

resulting flow. Thus each flow which fits that profile can be 

treated the same, reducing the cost of replicating flow 

information for similar flows. The authors‘ previous paper 

[7] drew on an observation-action pair mapping, or ―policy 

of an agent‖ [8], shown in equation 1 below: 

 

                                  
(1) 

 

in which a stateless function F maps its current 

observation (of network traffic and available resource) to a 

new action, representing a classification of the data, and t is 

the budget (e.g., time) in which the observation is made and 

the mapping completed. As an example of relevance to this 

paper, consider the rule for an attribute found within IP 

traffic, such as packet length, shown in equation 2 below: 

 

 
 

   (2) 

where y, in this instance is packet length in Bytes and a 

and b exhaust all possible classifications of that packet. An 

illustration being packets ≤ 80 Bytes are classified a, where 

a equals a classification of ‗Expedite Forward‘, and all other 

packets (e. g., > 80 Bytes) are classified b, where b equals a 

classification of, in this instance, ‗AF21‘. 

Such tests are, however, dependent on a known typing of 

net packets: given variability of the packet structure, simple 

rules are likely to misclassify traffic, with a resulting 

incorrect prioritisation. This motivates our research to 

classify packets based on a ―black-box‖ (unsupervised) 

approach, by which a priori unknown packet structures can 

be presented to the learning-function for classification based 

on learned characteristics (e.g., voice packets which have a 

high QoS priority, have these known sensitivities). Where 

this characterisation is completed using some or all of those 

attributes available within an IP packet, but where the 

attribute choice is not fixed, thus allowing for an assessment 

of belief in a hypothesis to be updated with new data at each 

observation epoch. This set of attributes provides a ‗frame 

of discernment‘ Θ [9]. 

III. LEARNING FOR AN INTELLIGENT NETWORK CONTROL 

There are many well-known mechanisms for the useful 

characterisation of data [10][11][12] including: 

 Supervised learning 

 Unsupervised learning 

 Reinforcement learning 

 

Evidence from the authors‘ background research 

indicated that the use of pattern matching is effective at 

finding previously unseen patterns within the dataset, and 

given IP networks have vast sums of data traversing 

networks, with each packet or frame having an inherent 

footprint resultant from its header(s), this would appear to 

offer a suitable mechanism for intelligent network control. 

There is no lack of data in the typical network [13] 

making statistical analysis techniques of traffic a relatively 

easy task. The challenge to the data classification is to 

accurately classify traffic in real-time. Initial 

experimentation with the first author‘s corporate network 

has focused on the classification of traffic flows using a k-

Nearest Neighbour (kNN) clustering feature. Tarassenko 

[14] defines the objective of any clustering as: 

 

“Given P patterns in n-dimensional space, find a partition 

of the patterns into K groups, or clusters, such that the 

patterns in a cluster are more similar to each other than to 

patterns in different clusters.” 

 

Clustering requires the characterisation of input data 

within a multidimensional space; in the context of this 

research we characterise data as the five-tuple: 

 source IP address; 

 destination IP address; 

 source port number; 

 destination port number; 

 protocol; 

t tF

y a

y b
packet_length: 
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 plus additional attributes including length and 

frame_time_delta. 

 

The authors‘ have adapted the framework of [15] to 

identify a classification process that isolates differences 

within a population of network traffic, each having different 

a model (or description). The process by which this is 

achieved is defined below, and whilst the final realisation of 

this research is expected to be deployed using Application 

Specific Interface Card (ADIC) or Programmable Logic 

modules, integrated within internetwork devices in much the 

same way as the WAN Interface Cards (WIC) seen in 

routers, Fig. 3 shows the current system in development: 

 

1. Sensing: input to the system, the packets arriving on 

the ingress interface 

2. Pre-process: signals are pre-processed such that 

they can be transposed for subsequent operations 

without loosing relevant processing information. 

This may use a segmentation function to isolate the 

features of the data from each other or from 

background noise. One such segmentation would be 

to separate UDP from TCP traffic as each has a 

differing underlying network requirement. 

3. Feature Extraction: whose purpose is to reduce the 

data by measuring certain features or properties, 

which in turn are passed to a 

4. Classifier: which evaluates the evidence and makes 

a decision as to the queue in which the traffic will be 

transmitted 

5. Post-processing: Are those processes engaged after 

the classifier required to return the newly classified 

traffic to a network egress interface 

 

Of course, the use of kNN is not new, however, with 

networks and the data they handle within a QoS setting 

highly time critical, we cannot allow the real-time 

classification of data detrimentally to slow it. In particular, 

there are industry standards for node processing: the optimal 

decision boundary which accepts a level of error within the 

classification to ensure any process keeps within any overall 

budget defined (e.g., RTD) should be less than 150ms 

according to ITU-T G.114 [16]. The novelty in our research 

includes, therefore, the engineering of a classification 

algorithm which will prevent the modelling of extremely 

complex dimensional dependencies. It was this requirement 

of visualisation that led the authors to the thought of Pattern 

Matching for QoS, and which the authors‘ can now model 

using that framework of [15] where: 

 

1. Sensing: 

a. Traffic is generated from a production 

network or simulated on a laboratory 

environment, using client>server 

transactions, or application simulation 

software 

b. That traffic generated is captured using 

network protocol analysis software (e.g., 

Wireshark; Etherpeek) and saved as a .cap 

file for analysis 

 

2. Pre-process: 

a. The traffic is exported as an .XML 

compliant .pdlm file such that it can be 

imported into spread-sheet applications for 

statistical analysis 

b. The resultant .xml file is loaded into a text 

reader (e.g., textpad) and searched for non 

ASCII characters, which would prevent 

import to those spread-sheet applications 

c. At this stage the .xml data requires to be 

transposed such that each attribute (e.g., 

frame_length) is a column header, and 

each instance of that attribute (per packet 

or frame) is a row of known variable type 

(e.g., nominal, string etc.). This is 

completed by a SQL transpose routine, the 

output of which is a reordered .xml file. 

d. That .xml file is opened within Microsoft 

Excel to ensure consistency of data. This 

includes missing or errored cells, 

inconsistent format or corrupt file. 

e. This data file is presented to SPSS PASW, 

Weka, and Matlab software which enables 

a number of statistical analysis 

visualisations to be completed, such as a 

scatterplot of Frame_length over Time, 

shown at Fig. 1, ―Visualisation of 

Captured Data in WEKA‖ below. 

f. A suitable file (e.g., Weka .arf; Matlab 

.mat) can now be built such that varying 

learning processes can be explored and 

evaluated. 

3. Feature Extraction: 

a. Feature exaction then is the reduction of 

data to its principle features. In the case of 

Internetwork traffic this has previously 

been defined as the five tuple with 

additional attributes, including but not 

exclusive to: 

o ip_src 

o ip_dst 

o ip_srcport (tcp or udp) 

o ip_dstport (tcp or udp) 

o prot 

o frame_pkt_length 

o frame_time_delta 

o frame_time_relative 
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Figure 1.  Visualisation of Captured Data in WEKA. 

Equation 3 illustrates how three ‗characterisation 

features‘, say packet_length (xa), time_frame_delta (xb) and 

ip_dstport (xc), could be used to characterise a packet as 

distinct from any other packet not within the same cluster. 

This would present a feature vector in a two-dimensional 

feature space [14], where: 

                    

a

b

c

x

x

x

 

(3) 

 

This use of feature extraction can be illustrated with an 

adaptation of [14] shown in Fig. 2, where these three 

attributes are presented to the clustering function (F) which 

has then defined the packets in two distinct clusters with an 

individual mean of X, where: 

 

Xn = the packets captured within time t  

(where time t is from the start of capture to the end of the 

capture processed) with features 

X = {xa, xb, xc} 

Cn = the clusters of the set K = {C1, C2, ……, Cn} 

= the cluster centre characterised in this instance using 

the mean vector mk 

 

 
Figure 2.  Adaption of Features of a Cluster [14] 

This difference between clusters typically measured by 

the distance between them (such as Euclidean distance or 

Pearson correlation) to define a closeness or 

interrelationship of the traffic. The known issue of 

Euclidean distance, which assigns more weight (i.e., 

preference) to features with large range could be further 

optimised through the use of Manhattan (or block) distance, 

such that higher powers increase the influence of large 

(neighbour) differences at the expense of small ones. An 

example being, if presented with two features: ip_dstport 

and frame_pkt_length, with Euclidean distance there would 

likely be a preference to the former. This is due to the legal 

range of IP ports being in the range is 0 to 65,535, compared 

to a standard Ethernet frame Maximum Transmission Unit 

(MTU) of only 1500 (bytes). 

That traffic, which is clustered based on its perceived 

characteristic, as demonstrated in Fig. 2, can then be marked 

using coding such as Differentiated Services Code Point 

(DSCP). That cluster of traffic which is defined as being the 

most sensitive (such as voice traffic) or of having the highest 

business importance would then be marked with an 

appropriate classification, such as Expedite Forward (EF). 

Each of the six clusters (0-5) would then be forwarded to 

one of six pre-configured virtual hardware queues within the 

network devices egress interface.  

IV. SUMMARY AND CURRENT RESEARCH 

This paper built on an early ―feasibility study‖ to 

investigate how the agent models, as conceived in the 

authors‘ previous papers [6][7], would be implemented to 

influence internetwork traffic management. Whilst the 

technique is promising, the current manual transposition of 

data for the machine-learning application means that only 

off-line processing is possible. However a realistic 

implementation requires a platform with the ability to 

perform online, real-time automated transposition of QoS 

targets for various data steams intended for presentation to 

the machine-learning mechanism. 

Such a system, initially online if not real-time, has been 

implemented on a Linux based server running the Snort 

Intrusion Detection System (IDS) [17]. Ingress network 

traffic is sensed (captured) and updated within a MySQL 

database table. From the database, rather than using the 

traditional Snort rule-base, the instances (packets) within the 

various tables are JOINED and a Python language script 

presents the data to an Orange k-means clustering algorithm 

[18]. This algorithm performs the function F described, 

completing the pre-processing, feature extraction, and 

classification including visualisation. Further research 

investigates those activities related to post-processing, such 

as the marking of that traffic based on Differentiated 

Services Code Point (DSCP), and dispatch routines which, 

at present, is the re-population of the database with the 

newly reordered traffic ready for network transmission on 

the appropriate egress interface. 
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In addition, further investigation into other Python-based 

pattern classification applications, such as pyMVPA [19], 

PyBrain [20], and OpenElectrophy [21] will be progressed 

to see whether they can perform the work more efficiently. 

 

 
 

Figure 3.  Oinker: Snort-based Systen for QoS Route Forwarding using 

Pattern Classification 

ACKNOWLEDGMENT 

The authors‘ would like to express their sincere thanks to 

Dr. Jon Hall, Open University, for his assistance in the 

completion of this paper. 

REFERENCES 

[1] D. C., Verma, ―Policy-based networking architecture and 
algorithms‖, Technology Series, New Riders, Indianapolis, 
Indiana, pp. 6, November 2000. 

[2] S. De Lurgio, ―Predicting micro-loan defaults using 
probabilistic neural networks‖, Credit & Financial 
Management Review, (Internet), 2002, 
http://www.allbusiness.com/finance/1049916-1.html, 
(accessed 19th July 2010). 

[3] M. Buchanan, ―Why complex systems do better without us‖, 
New Scientist, Reed Business Information Ltd.,  Issue 2668, 
pp. 28-31, August 2008. 

[4] C. J., Tebelskis, "Speech recognition using neural networks", 

an unpublished thesis, (Internet), 1995, 

http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&co

ll=GUIDE&CFID=97551353&CFTOKEN=37801874, 

(accessed 26th July 2010). 
[5] I. H, Whitten and E. Frank, ―Data mining: practical machine 

learning tools & techniques, Second Edition, Elsevier, San 
Francisco, 2005 

[6] D. Legge and A. Badii, ―Conceptualisation of an application 
of adaptive synthetic socioeconomic agents for intelligent 
network control‖, 2nd PERADA Workshop on Pervasive 
Adaptation, Edinburgh, AISB, pp. 14-21, April 2009. 

[7] D. Legge and A. Badii, ―A primer for an application of 
adaptive Synthetic Socioeconomic Agents for Intelligent 
Network Control‖, in press, 2nd School of Systems 
Engineering Conference, University of Reading, December 
2009. 

[8] N. Vlassis, ―A concise introduction to multi-agent systems 
and distributed artificial intelligence, Morgan & Claypool, 
California, pp. 55-57, 2007. 

[9] R. Callan, ―Artificial Intelligence‖, Palgrave Macmillan, 
Basingstoke, Hampshire, pp. 163, 2003. 

[10] J. P, Bigus, ―Data mining with neural networks: Solving 
business problems-from application development to decision 
support‖, Computing McGraw-Hill, New York, pp. 6-29, 
1996. 

[11] J. F, Sowa, ―Conceptual structures: InformationpProcessing in 
mind and machine‖, The Systems Programming Series, 
Addison-Wesley Publishing, Reading, Massachusetts, pp. 
281-292, 1986. 

[12] G. Marshall, ―Advanced students‘ guide to expert systems‖, 
Heinemann Newnes, Oxford, pp. 128-142, 1990. 

[13] S. Sui, and C. Zhixiong, ―Adaptive network flow clustering‖, 
IEEE International Conference on Networking, Sensing and 
Control, pp. 596-601, April 2007. 

[14] L. Tarassenko, ―A guide to neural computing applications‖, 
Arnold, London, pp. 20-23, 1998. 

[15] R. O. Duda, P. E. Hart, and D. G., Stork, ―Pattern 
classification‖, Chichester, Wiley, New York, pp. 3-23, 2000. 

[16] ITU-T G.114 ―One-way transmission time, series G: 
Transmission systems and media, digital systems and 
networks international telephone connections and circuits– 
general recommendations on the transmission quality for an 
entire international telephone connection‖, 
Telecommunication Standardization Sector of the 
International Telecommunication Union, pp. 2-12, May 2003. 

[17] Snort, ―a lightweight open source network intrusion 
prevention and detection system (IDS/IPS)‖, (Internet), 2010, 
http://www.snort.org, (accessed 26th July 2010). 

[18] Orange, Laboratory of Artificial Intelligence, Faculty of 
Computer and Information Science, University of Ljubljana, 
Slovenia, 
http://www.ailab.si/orange/doc/modules/orngClustering.htm, 
(accessed 20th July 2010). 

[19] M. Hanke, Y. O. Halchenko, P.B.  Sederberg, S.J. Hanson, 
J.V. Haxby, and S.Pollmann, ―PyMVPA: A Python toolbox 
for multivariate pattern analysis of fMRI data‖, 
Neuroinformatics, volume 7, pp. 37-53, 2010. 

[20] T. Schaul, J. Bayer, D. Wierstra, and Y.  Sun, ―PyBrain‖, 
Journal of Machine Learning Research 11, pp. 743-746 
Submitted 11/09; Published 2/10, (Internet), 2010, 
http://www.idsia.ch/~tom/publications/pybrain.pdf, ((accessed 
26th July 2010). 

[21] S. Garcia and N. Fourcaud-Trocmé, ―OpenElectrophy: an 
electrophysiological data- and analysis-sharing framework‖, 
Frontiers in Neuroinformatics, Volume 3:14, (Internet), 2010, 
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.
2009/full,(accessed 26th July 2010). 

 

 

 

 

 

5

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-103-8

http://www.allbusiness.com/finance/1049916-1.html
http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&coll=GUIDE&CFID=97551353&CFTOKEN=37801874
http://portal.acm.org/citation.cfm?id=239333&dl=GUIDE&coll=GUIDE&CFID=97551353&CFTOKEN=37801874
http://www.ailab.si/orange/doc/modules/orngClustering.htm
http://www.idsia.ch/~tom/publications/pybrain.pdf
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.2009/full
http://frontiersin.org/neuroinformatics/10.3389/neuro.11.014.2009/full

