
Past-based Search Function in Pastry

Wang-Cheol Song

Department of Computer Engineering, RIAT
Jeju National University

Jeju, South Korea
philo@jejunu.ac.kr

Seung-Chan Lee
Department of Computer Engineering

Jeju National University
Jeju, South Korea

this.dreamzinn@gmail.com

Abstract—The P2P technology is very popular to share several
kinds of contents such as mp3 and video in the Internet.
Recently the structured P2P has been studied widely, and there
are many P2P algorithms such as Pastry, CAN, Chord,
Tapestry and so on based on the Distributed Hash Table
(DHT). As these structured P2P provides the context-aware
routing, content can be shared among user-peers without help
of any servers. However, the general users are used to utilize
the keyword-based search engine in the Internet for searching
content, and the structured P2P supports only the exact
matching. Hence, a keyword-based searching algorithm is
required. In this paper we propose a search function in Pastry
– one of the structured P2Ps. The search function is designed
using PAST which is the file storage system of Pastry.

Keywords-Search Function; Structured P2P; Pastry; PAST;
DHT

I. INTRODUCTION
The P2P technology is very popular to share several

kinds of contents such as mp3 and video in the Internet.
From year 2000 various structured P2P technologies have
been announced to access the contents without the server [1-
3]. Most of them are based on the Distributed Hash Table
(DHT), so that if the name of the contents is known, the
location of the contents can be found without help of any
servers.

When we want to use services in the Internet, we are
used to find something using a couple of keywords through
search engine in the web. Because of that, as you know, there
are many search engines in the Internet nowadays. So, some
people may guess the structured P2P does not need the
search function because if we only know the name of
contents, we can be routed to a location of the service that
we want. That is one of the advantages of the structured P2P
over the unstructured P2P. But, the general users are not
familiar with such way. That is, users generally do not know
the exact name of contents they want. They ordinarily know
a couple of keywords or remember only some parts of the
name.

As the structured P2P operates with no servers, the user-
peers cannot ask to search something to a search engine.
With the exact name of the content, they just trust the
structured P2P to take users to where the content is without
searching operation. In other words, if you do not know the
exact name, you never can go to the node having the content.
If we want to provide the search function to users, the

existing server based search algorithms to provide location
information of content cannot be applied because the
structured P2P assumes no server. Therefore, as the nodes of
a peer-to-peer network cannot rely on a central server
coordinating the exchange of content location, they are
required to actively participate by independently and
unilaterally performing tasks such as searching for other
nodes, locating content.

There have been recent works related with the search
function in P2P networks. [11] introduces several structured
P2P technologies and describes required functions and issues
for them. [4] outlines a research agenda for building complex
query facilities on top of the DHT-based P2P systems.
Lundgren et al. [5] propose a search engine called SCAN on
Pastry. [6, 7] says P2P keyword searching based on DHT.
Also, there are other approaches to design new DHTs for
peer to be routed to the content without searching function
[12] [13]. Although these works verify need of the search
function in the structured P2P network, no one has proposed
the keyword-based search function without the server.

Pastry [2] used in this paper is a structured P2P overlay
network as the location and routing substrate that is efficient,
scalable, fault resilient, and self organizing. It represents a
second generation of peer-to-peer routing and location
schemes along with Tapestry [8], Chord [1] and CAN [3].
Pastry assigns the unique identifier from a circular 128-bit
namespace to every node and every object as a nodeId and
key, respectively. When a message and a key are given, the
message can be efficiently routed to the node with the nodeId
numerically closest to the key. It guarantees a definite
answer to a query in a bounded number of network hops.
Also, Pastry assumes an existing infrastructure at the
network layer, and the emphasis is on self-organization and
the integration of content location and routing. In the
viewpoint of scalability, it can be noticed that Pastry nodes
only use local information. The global information exchange
in the routing algorithms limits the scalability, necessitating
a hierarchical routing architecture like the one used in the
Internet. In addition, Pastry achieves network locality so that
the entries in the routing table of each Pastry node are chosen
to be close to the present node according to the proximity
metric. With these merits, we have chosen Pastry as the
platform to develop P2P based applications in the further
research.

PAST [9] is an application of Pastry as the P2P storage
system. Replicas of an object are stored at the k nodes whose

56

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

nodeIds are the numerically closest to the object’s key as in
Figure 1. PAST also maintains the invariant that the object is
replicated on k nodes, regardless of node addition or failure.
Since nodeId assignment is random, these k nodes are
unlikely to suffer correlated failures.

Figure 1. PAST operation in the Pastry ring

In order to develop the search function in Pastry, first we
need to summarize the characteristics of the DHT in the
aspect of search function.

· When the id of an object is known, we can access
the node having the object directly and get it. That is,
Pastry is content-addressable. It is because Pastry
uses a name space for both nodes and objects and the
object is stored in a node with nodeId identical to the
object id.

· The id is uniquely generated by the hash function.
As a similar keyword does not generate a similar
hash code, an object’ id is independent from id of
other objects with the similar name.

· Pastry supports DHT based exact matched searching,
but provides no facilities to search objects or nodes
with related keywords.

We can easily imagine that when a user uses network
based applications, he or she may want to begin with
searching some contents by related keywords. As the exact
content names are not usually known in most of cases and
some people may want to know a list of more things than the
exact content as what they want, keyword-based search
function must be supported, although Pastry provides the
content-addressability.

The rest of this paper is organized as follows. Section 2
describes the related work. Section 3 presents the design of
search function in Pastry and Section 4 briefly explain it with
a scenario. Section 5 shows performance evaluation and we
conclude in Section6.

II. RELATED WORK
There have been recent works for search function in P2P

networks. A system to support complex queries over

structured peer-to-peer systems is proposed in [4]. This
approach relies on the underlying peer-to-peer system for
both indexing and routing, and implements a parallel query
processing layer on top of it.

[5] proposes a search engine called SCAN to effectively
perform distributed user lookup based on Pastry. This paper
has the same approach as the keyword-based search engine,
but it encodes Content meta-data e.g., keywords using ASCII
table, into a set of Pastry keys for NodeIds that are inserted
into the network. [6, 7] says peer-to-peer keyword searching
and are based on DHT. But they propose the mechanisms for
collaboration among peers as the search engine servers
sharing indices.

[13] is the searching algorithm for a structured P2P -
CAN in [3]. It proposes a searching algorithm named
Recursive Partitioning Search (RPS) and develops the DHT
properly modified for the searching function. This approach
is intended to build the modified DHT and perform the
blind searching. [12] proposes a peer-to-peer information
retrieval system to support content- and semantic-based
full-text searches. It also modifies the DHT of CAN, and
presents resources and queries as vectors so that documents
in the network are organized around their vector
representations using a ranking algorithm. [14] is a
extension from [12] to use a two-phase distributed semantic
indexing method. [15] also proposes to modify the DHT,
but it takes the Ontology approach.

Compared to the above works, we intend to design a
keyword-based searching function. Usually such a search
function is supposed to need the server operation, but we
are sure that if we utilize PAST - the P2P storage of Pastry
we can develop an efficient and scalable searching function
specified to Pastry.

III. DESIGN OF SEARCH FUNCTION IN PASTRY
The structured P2P uses the DHT to find the requested

contents by using the content’s exact name without servers
such as DNS. It supports only the exact matching. It is
because as the DHT is based on the hash function, similar
keywords produce entirely different results. However, users
usually want to search what they want by using a couple of
interesting keywords and get the list of the available contents.

We have designed the search function in the Pastry. We
assume that every Pastry object has one or more keywords
and the owner of the object register the keywords when he
joins the Pastry ring. A couple of points should be
considered for design of the search function as follows: As
the node id and the object id are hashed in the Pastry, every
id is independent each other. So, object ids hashed with
keywords related to the object must be independent from an
object id hashed with object’s name. But the general users
want to search objects by using one or more related
keywords. Secondly, we should find where the owner of the
object can store the keywords. This question arises because
we do not want to lean on any server storage.

In this paper we have resolved them by using the P2P
storage – the PAST. When an object joins the Pastry ring, it
stores every keyword in the PAST as follows: n hashed
keywords and the object’s id are stored as n pairs of the

57

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

content’s names and the content itself like (h1, N), (h2, N) …
(hn, N) through a PAST command – Insert as in Figure 2.
Then, when a peer wants to find the object by one or more
hashed keywords, he can try to find the object’s id through a
PAST command like Lookup(h3) and get the object’s id, N.
As we can expect, the more popular the keyword is, the more
objects’ ids the Lookup function returns. Then, this search
function returns a list of objects and the most overlapped ids
in the Lookup results are ahead listed up.

Figure 2. Storing and Searching keywords in PAST

PAST itself provides the robust P2P storage system by
storing the replicas in the leaf set nodes. And, the objects
stored in PAST are maintained as replicated on k nodes,
regardless of node addition or failure. Therefore, the
proposed search function based on the PAST is expected to
be robust, too.

IV. A SIMPLE SCENARIO
If we think a rose as a Pastry content, it may have some

keywords such as flower, red and thorn. And, if codes of the
keywords – flower, red and thorn can be hashed as h1, h2 and
h3, the pairs of (h1, rose), (h2, rose) and (h3, rose) can be
stored using PAST command – Insert. Also, for keywords -
star, red, energy and center hashed as h4, h2, h5, h6 in case of
sun, the pairs of (h4, sun), (h2, sun), (h5, sun) and (h6, sun)
can be stored in PAST.

Then, when a user want search an object with two
keywords – flower and red, by using the hashed id h1 of
flower and the hashed id h2 of red we can search the object
like Lookup(h1) and Lookup(h2). Two lookup commands
may return results as (rose) and (rose, sun) respectively.
From these results the user can get a list as the search result
in a way that the most overlapped object is first displayed. So,
the user gets rose as the most related object.

V. PERFORMANCE EVALUATION
As the proposed search function is based on PAST, we

think it could be robust and scalable like the characteristics
of PAST. In order to evaluate the performance, we have
simulated it on the open source code of the FreePastry [10].

For the simulation environment, we have run the
FreePastry version 2.1 with JAVA JDK 6 on a Microsoft
Window XP machine. The FreePastry is implementation of
the Pastry as well as PAST. It could operate on the real
network, but we have done the simulation on the Network
Simulator of the FreePastry. We have selected the
EuclideanNetwork as the network topology in the simulator.
As we use the virtual clock in this simulation environment,
we assume there is neither error nor delay in the network.

Figure 3. Time for Creating nodes in Pastry ring

As the starting point, we have measured time for creating
nodes in the Pastry ring as in Figure3. We have measured
time for the following number of nodes: 10, 20, 30, 50, 100,
300, 500 and 1000. Although measured time increases
according to the number of nodes, we can know the averaged
time per a node is almost constant near 4 seconds.

Figure 4. Time to retrieve five keywords

58

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

We have measured time to retrieve keywords as the
Lookup time. We have assumed each node has five
keywords. Every node simultaneously puts the Lookup
command to retrieve a keyword five times, and measures
time for a node to retrieve all of five keywords in cases of
the following number of nodes: 10, 20, 30, 50, 100, 300, 500
and 1000. Figure 4 shows the measured time for the Lookup.
The Lookup time for querying five keywords is almost flat
near 2 seconds regardless of the number of nodes. From this
figure we can say this search function is scalable.

Figure 5. Insert time in 100 nodes

Figure 6. Lookup time in 100 nodes

Figure 5 and Figure 6 show the Insert time and the
Lookup time when varying number of keywords for 100
nodes. In Figure 5 every node simultaneously issues the
Insert commands of the number of keywords to store a
keyword, and measures time for a node to store all keywords
in cases of the following number of keywords: 5, 10, 50 and

100. The Insert time is shown to increases according to the
number of keywords. However, the measured time per a
keyword is 1.07, 1.04, 1.61 and 1.34 seconds in each case.
These values look rather flat.

Figure 6 is the same case as the Figure 5, except the
Insert command is replaced with Lookup. The Lookup time
increases according to the number of keywords. But, the
Lookup time per keyword is just 24, 26, 8.4 and 5.4
milliseconds, and it looks decreasing. We think it is due to
parallel processing of retrieving keywords. When the number
of keywords is small, its effect is a little shown, but as the
number of keywords increases the parallel processing gets
the effect. Therefore, we think the Lookup time get no effect
from the number of keywords.

With the results in the above, we can conclude our search
function is scalable. Therefore, we can say it could be
valuably utilized in the Pastry based applications.

VI. CONCLUSION
Since many structured P2P algorithms are proposed and

developed recently, there are so many tries to use one of
them to develop various P2P systems. Our team has also
tried to develop a system in Pastry, but we realize we need a
search function. We wanted to use some keywords to
discover content object, but we could not. As we have
described, the structured P2P provides only the exact
matching.

We have proposed a search function and evaluate the
performance to be scalable. We can see it gets little effects
from the number of nodes as well as the number of keywords.
Pastry is a popular structured P2P platform and PAST is
provided as an open source as the well matched system. If
the DHT should be developed in other way for the search
function, applying the Pastry to a system development is
difficult. But, as we just use the original Pastry DHT with
PAST, we think we can keep the advantages of Pastry DHT
to apply Pastry to develop a system. PAST itself is already
proven robust and scalable. Therefore, we think our system
can be scalable. Also we expect it could be robust. We
expect the proposed search function could be applied to
various developments in the near future.

ACKNOWLEDGMENT
"This research was supported by the MKE(The Ministry

of Knowledge Economy), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the NIPA(National IT Industry
Promotion Agency)" (NIPA-2010-(C1090-1011-0009))

REFERENCES
[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,

and Hari Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications,”Proc. of the 2001
ACM SIGCOMM Conf., pp. 149-160, 2001.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable,
Decentralized Object Location and Routing for Largescale
Peer-to-Peer Systems,” in IFIP/ACM Int’l Conf. on Distr.
Systems Platforms (Middleware), 2001, pp.329-350.

59

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network,” Proc.
of ACM SIGCOMM, pp. 161-172, 2001.

[4] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica, “Complex queries in DHT-based peer-to-peer
networks,” LNCS Vol. 2429, pp. 242 – 259, In IPTPS 2002.

[5] H. Lundgren, R. Gold, E. Nordström, M. Wiggberg, “A
Distributed Instant Messaging Architecture based on the
Pastry Peer-To-Peer Routing Substrate,” In Proc. of Swedish
National Computer Networking Workshop, Stockholm, Sept.
2003.

[6] Hanhua Chen, Hai Jin, Jiliang Wang, Lei Chen, Yunhao Liu,
Lionel M. Ni, “ Efficient multi-keyword search over p2p
web”, In WWW pp. 989-998, 2008.

[7] Patrick Reynolds and Amin Vahdat, “Efficient Peer-to-Peer
Keyword Searching”, In Middleware, pp. 21-40, 2003.

[8] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry:
An infrastructure for faultresilient wide-area location and
routing,” Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

[9] Peter Druschel and Antony Rowstron, “PAST: A large-scale,
persistent peer-to-peer storage utility,” In Proc. HotOS VIII,
Schloss Elmau, Germany, pp. 75-80, May 2001.

[10] http://www.freepastry.org/FreePastry/, May 2010.
[11] Androutsellis-Theotokis, S. and Spinellis, “A survey of peer-

to-peer content distribution technologies,” ACM Comput. Surv.
36, 4, pp. 335-371, Dec. 2004.

[12] Tang, C., Xu, Z., and Mahalingam, M., “pSearch: information
retrieval in structured overlays,” SIGCOMM Comput.
Commun. Rev. 33, 1, pp. 89-94, Jan 2003.

[13] Vishnevsky, V., Safonov, A., Yakimov, M., Shim, E., and
Gelman, A. D., “Scalable Blind Search and Broadcasting in
Peer-to-Peer Networks,” In Proceedings of the Sixth IEEE
international Conference on Peer-To-Peer Computing P2P.
IEEE Computer Society, Washington, DC, pp. 259-266, 2006.

[14] Y.Chen, Z. Xu, C. Zhai, “A Scalable Semantic Indexing
Framework for Peer-to-Peer Information Retrieval,” in ACM
SIGIR 05 Workshop on Heterogeneous and Distributed
Information Retrieval, 2005.

[15] C. Sangpachatanaruk, T. Znati, “A P2P Overlay Architecture
for Personalized Resource Discovery, Access, and Sharing
over the Internet,” in CCNC’05, pp. 24-29, 2005.

60

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

