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Abstract—Mobile devices, such as smart phones and tablets,
are as popular as never before. Even corporations encourage their
employees to use company services such as email and document
management services on these kinds of devices. However, the
security of mobile devices, especially when used in a professional
environment, is still lacking behind compared to company con-
trolled infrastructures. In our previous work, we described a
novel system for securing mobile devices while leveraging the
potential of seemingly unlimited resources provided by cloud
computing. In this work, we extend this idea and focus on user
identification using touch gesture analysis as part of the MoSeC
architecture. We show that, using artificial neural networks, the
analysis of user’s touch behavior while using a mobile device
can support authentication processes. This technology will also
enable the collection of information for tracing legitimate as well
as malicious access attempts and we will show how our proposed
system may provide digital evidence.

Keywords—Cloud Computing, Digital Forensics, Evidence, Mo-
bile Security, Authentication

I. INTRODUCTION

In our increasingly networked world, IT security plays
a more and more important role, especially in enterprise
environments, where sensitive business information is stored
and processed. Also, the widespread use of mobile devices
such as smart phones and tablets in a professional environment
is no longer limited to management staff. These devices, when
used for work, are usually integrated into the enterprise’s
IT infrastructure and contain possibly sensitive information.
However, these devices are not always under direct control by
the enterprise. For example, employees are often encouraged
to use their devices at home, which essentially means the
risk of loss or theft is significantly higher, because of the
uncontrolled environment. The user identification verification
and assurance is of importance for enterprises providing their
employees access to sensitive data. To support building a chain
of evidence or chain of custody additional information about
the user’s identity is helpful.

Attacks on mobile devices can be classified into two
groups: the ones where an attacker is in possession of the
device and where attacks are carried out remotely. This paper
deals exclusively with the former scenario, where the attacker
has gained possession of the device. In such cases, additional
access protection mechanisms are of utmost importance to
prevent an attacker from accessing data stored on the device as
well as enterprise services, which grant mobile devices access
to the corporate network.

The most common protection for mobile devices against

unauthorized access is locking it down using an additional
password or personal identification number (PIN). This mech-
anism is easy to implement. However, to provide a reasonable
addition to device security, the password must be complex
enough. Secure complex passwords usually are hardly memo-
rable. Additionally, to lock down the device, the user is usually
required to enter the password on every device wake-up or
screen activation and after a defined period of time. This is
not a user-friendly solution.

In case of a breach of security caused by a mobile device,
it is usually most important to gather as much information
about the attack as possible. Therefore, evidence gathering
systems, which monitor certain system and network related
security parameters like unauthorized device accesses or even
authorized device accesses, might prove useful for tracing and
analyzing.

The remainder of this paper is structured as follows: After
this section, we describe related work done in the field of
advanced user authentication on mobile devices and continuous
authentication. The integration of the gesture identification in
the overall framework to give identity evidence can be found
in Section III. In Section IV, we give an overview about touch
gesture recording and analysis of touch attributes. In the fol-
lowing Section V, we describe our approach to using artificial
neural networks (ANN) to analyze collected information in
the cloud. In Section VI, we present our evaluation results,
followed by a conclusion and the description of possible future
research directions in Section VII.

II. RELATED WORK

Wong et al. [1] focus in their work on keystroke analysis for
user authentication by analyzing users typing their passwords.
The analysis process is carried out using artificial neural
networks and the k-nearest algorithm. However, their conclu-
sion is that keystroke analysis is too reliant on the physical
condition of the user. In contrast to this work, their approach
relies on keyboards being used, whereas our approach focuses
on the increasingly popular current smart phone generations,
where there usually is only a soft-keyboard, which is used
rather sparsely in favor of touch gesture control.

Pannell et al. [2] follow a more comprehensive approach.
Besides using keystroke analysis, they include other attributes
like running applications and a classification of users into
ones with basic computer knowledge or profound knowledge.
With this information they build user models. In their system,
intruders do not fit those user models and can therefore be
detected. By including multiple attributes, the detection rate
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can be increased significantly. However, data recording and
analysis is performed locally, whereas, in our work, a remote
proxy instance is used.

A similar approach is followed by Anand et al. [3], where
they try to identify users by using data collected on mobile
devices. This data includes the call history and typing patterns.
Their main conclusion is that a balance has to be found
between the Masquerade Detection Rate, the relation between
detected attacks and all attacks, and the time to detect an attack.
To accomplish this, some parameters need to be adjusted (e.g.,
the time frame for data collection).

Imsand et al. [4] try to identify users by analyzing how
they are using graphical user interfaces. A simple example
is how a user copies text to the clipboard, either by using
primarily keyboard shortcuts or context menus. Similar to
Pannell’s approach, this information is then stored in user
profiles, which are compared to the current user’s behavior.
However, their evaluation didn’t seem to be very successful.
One reason, which the authors are giving is the small amount
of test data sets and the overfitting of their neural network.

Another gesture-based approach for user identification is
followed by Guse et al. [5]. It is based on capturing motions of
users with 3D acceleration sensors and gyroscopes. However,
they acknowledge several problems with this approach. It is
difficult to consistently perform the same gestures for iden-
tification and those gestures have to be performed in secure
locations, because it might be very easy to imitate them.
Nevertheless, Guse et al. come to the conclusion that gesture
based identification could be a viable alternative to PINs and
are significantly less cumbersome than entering PINs. The
main difference to our approach is, that we are focusing on
smart phone touch gestures without any additional hardware.

SenGuard [6] is a system, which leverages virtualization
techniques on mobile devices. It collects information about the
voice of the user, GPS location, multi touch gestures and the
user’s movement. If SenGuard detects possibly non-authorized
usage of the device, traditional authentication mechanisms
(e.g., PINs) are cut in. SenGuard runs on the device and
compared to our approach does not use any external resources.
However, the authors recognized power consumption of their
system as one of the major issues and try to solve this, by
selectively removing data collection sensors the lower the state
of charge gets. SenGuard reaches very good user authentication
results by combining all of the collected attributes. However,
touch gestures on their own are regarded as not sufficient for
reliable user authentication by Shi et al. In our approach, touch
gestures are used in conjunction with additional continuous
authentication mechanisms. As part of the decision making
system, touch gestures may very well add to device security.

Schneier et al. [7] describe an approach to logging informa-
tion while protecting against malicious manipulation to those
logs. Several other papers work on similar systems and extend
the idea of collecting logging information in a tamper-evident
way for making such logs available as evidence. Most of these
approaches build on the idea of hash chaining.

III. USER IDENTIFICATION EVIDENCE ARCHITECTURE

In a previous project called Mobile Security by Cloud
Computing (MoSeC) [8] at the HFU Cloud Research Lab [9],

we addressed these problems by designing a scalable cloud
architecture for enhancing mobile device security. Every mo-
bile device is assigned to a proxy instance inside the cloud.
The proxy is used to offload performance-intensive tasks to
the cloud, where computing resources are seemingly unlimited
or at least can be easily scaled out. The mobile device
uses a lightweight software agent to communicate with its
cloud proxy via a virtual private network (VPN). Besides
other information, the agent transmits recorded and aggregated
touch gesture profiles of the current user to the cloud, where
sophisticated analysis methods are used to detect suspicious
activity.

The primary goal of this MoSeC module is providing
information for the decision making process for whether a
user of a mobile device is authentic or not. In a broader sense,
this also means a theft and loss detection for mobiles devices.
Additionally, this module provides information for assigning
a device to an adequate security level. In MoSeC, security
levels are used to control which corporate services and data are
accessible by mobile devices. The security level is computed
using different information sources like device management,
intrusion detection, malware detection, traffic analysis and the
gesture analysis depicted in this paper. Depending on the
security scores collected in each of these modules devices and
their users are classified ranging from critical to highly secure,
resulting in the previously mentioned access control decisions.
This effectively leads to a more secure integration of mobile
devices (also private devices as in bring-your-own-device) in
enterprise environments while protecting sensitive corporate
information.

Fig. 1. Architecture Overview

Figure 1 depicts an architectural overview of the continuous
authentication process in MoSeC. The Proxy takes control of
communication of mobile devices with enterprise applications
and services. It also provides the runtime environment for the
Inference engine, which uses an ANN specifically trained to
detect gestures not performed by the device owner. ANNs were
chosen based on their ability to provide a reasonably accurate
input about user authenticity to the authentication process.
Additionally, company policies are considered by the inference
engine (e.g., assigning an appropriate security level depending
on the policy, and the analysis results). For further company-
wide evidence collection, an evidence bag [10] is provided,
which allows retrospective analysis of the collected data (e.g.,
tracing authorized as well as suspicious accesses for forensics
in case of an intrusion). The evidence bag may be used
internally, but may also prove useful during the prosecution
of security breaches. One key feature of the digital evidence
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bag is storing information in a tamper-proof or at least tamper-
evident way.

IV. COLLECTING INPUT DATA ON ANDROID

To demonstrate the recording of touch gesture information
and the evaluation using an artificial neural network, an
Android application has been developed. In this section, we
will describe how touch gestures are recorded in our prototype
application. Furthermore, a list of different touch attributes
are presented and discussed according to their suitability for
identifying users of mobile devices.

A. Data Collection

Touch gestures are characterized by the movement of one
or more fingers (multi-touch) on a touch-sensitive display and
result in actions performed by the device. The Android SDK
provides developers with the ability to capture information
about touch gestures using the MotionEvent class. The most
important gestures are scrolling (usually performed by swiping
horizontally or vertically over the touchscreen, this is also
called flicking), zooming-in (the movement of two fingers
away from each other) and zooming-out (the movement of
two fingers towards each other). Figure 2 illustrates these basic
touch gestures. Starting with scrolling on the left, followed by
zooming-in and zooming-out.

Fig. 2. Multi Touch Gestures [11]

To identify users according to their different touch gesture
behavior, a profile of the user has to be created first. In our
case, this means that an ANN has to be trained for every
user. For this purpose, an Android App has been developed,
which records the touch characteristics of users. For gestures
like scrolling and zooming, parameters like x/y-coordinates,
pressure applied by the finger on the screen, and the length
of the gesture are recorded. To get a precise profile of the
users touch gestures, this gesture collection course has to be
completed multiple times.

B. Touch Attributes

Touch gestures have multiple attributes, which characterize
different users. The course App records a total of 87 attributes
(e.g. position, no. of fingers, pressure, speed, etc.). Depending
on the performed touch gesture, a subset of these attributes is
included. For the simple scrolling gesture 23 of the total 87
attributes are used. Zooming-in uses 32 and zooming-out an
additional 32. The most significant difference between normal
touch gestures like scrolling and multi-touch gestures like
zooming is the amount of different attributes, which can be
identified. This is reasonable, because normal touch gestures

only use one finger and therefore inherently have less attributes
which need to be considered.

Additionally, some of the attributes are more significant
than others. For example, the overall duration, distance, aver-
age pressure applied by the fingers and distance between the
fingers during gestures have been identified as very significant
and at least in combination possibly unique to a user.

V. ANALYZING TOUCH GESTURES USING NEURONAL
NETWORKS

For making the decision whether or not the current user
of a mobile device is the actual owner of the device, an
interconnected feed forward neural network is used. In this
section we describe the structure, training (supervised) and
validation process.

A. Structure of the Neural Network

The neural network consists of three layers (input, hidden
and output). The input layer consists of 87 input neurons,
each of them representing one of the touch gesture attributes
(see Sec. IV). The activation function for the input neurons
is the identical function. Additionally, there are three hidden
layers with each of them having 60 hidden neurons. The hidden
neurons use the logistic function:

f(x) =
1

1 + e−3∗x

The output layer consists of two neurons. The value “one” sig-
nals that the neural network suspects that the user is authentic,
the other neuron signals the opposite case. The number of
input and output neurons have been decided according to the
input attributes and the two possible results. The amount of
hidden layers and number of neurons contained within them
have been chosen carefully during the design process of the
neural network. The resulting network is rather huge, but the
size is justified by the promising results.

B. Training the Neural Network

Artificial neural networks in the MoSeC architecture oper-
ate according to a specific life cycle depicted in Figure 3.

In the Data Collection Phase (DCP) (1) touch gesture data
generated by the user is recorded. Subsequently, the ANN is
trained using this data. One essential requirement in this phase
is that the device is used exclusively by the legitimate owner.
Otherwise, the training data gets tainted, which may lead to
the ANN not being able to detect gesture patterns and to a
significantly higher rate of false positives.

After the DCP, follows the Kickoff Learning Phase (KLP)
(2), during which the ANN is trained the first time using the
previously collected data. The target network error and desired
count of learning iterations is determined empirically. This
process is described in Section VI.

After the ANN has been trained, the Monitoring Phase
(MP) (3) is started. This phase constitutes the main operational
phase, where the ANN is actually used to identify unauthorized
device access. Touch gesture data, which is collected during
the normal usage of the device, is validated against the
previously trained ANN during this phase. If irregularities
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Fig. 3. ANN Lifecycle

are detected, strong authentication mechanisms (such as PIN
request, biometric authentication etc.) are triggered. To adapt
the ANN to possible changes in behavior of the user, new
learning data is collected during the Monitoring Phase.

This new learned data is used to further train the ANN in
the Subsequent Learn Phase (SLP) (4). To trigger the SLP,
different approaches are possible:

• After the user has been authenticated using strong
authentication mechanisms (e.g., PINs), the SLP is
triggered. This can be done after each or n-th authen-
tication in a given duration.

• Regardless of the authentication state of the user, the
SLP is triggered in set intervals.

• The SLP is triggered manually by an administrator
either to reset the state of the ANN.

Selecting data, which is being used during the SLP, can be
selected using different strategies:

• Learning all previously recorded data including the
data collected during the KLP may prove problematic,
because more recent changes in behavior are not
weighed strong enough (overfitting of old data).

• Only recently recorded data is used to generate train-
ing lessons for the ANN. This approach reacts to
behavior changes in a very agile way, but may “forget”
old behavior too soon.

• The middle-ground between the previous two ap-
proaches is using newly acquired data as well as old
data collected over a given duration, merged into a
lesson for the ANN.

After the SLP is complete, the operation mode is switched
back to the MP. To address the problem of a user changing in
behavior over time, a backup AAN can be trained in parallel.
When needed, the running ANN is replaced by the backup
ANN. Another approach would be to introduce a forgetting-
factor. However, in our work we focused on the first approach.

The last operation mode is Sleep Mode (SM) (5). This
deactivates the gesture authentication process temporarily. This
mode is supposed to be used by an administrator or by the user
after he has been authenticated using a strong mechanism. But,
after switching to this mode, the security level of the mobile
device is reduced significantly, which results in blocked access
to corporate services and information.

VI. EVALUATION

As previously mentioned, an application which records
information about touch gestures has been developed to show
whether or not using artificial neural networks on the cloud
for identifying mobile device users is a feasible approach. In
this section we will describe our evaluation methodology and
results.

The pattern recognition for the detection of unauthorized
users is done using neural networks. During the implemen-
tation process “Membrain” [12], a neural network editor and
simulator which also provides JAVA bindings, has been used
for editing and simulating neural networks. The Samsung
Nexus S served as a development platform.

A. Results

To test the effectiveness of our approach, 6 persons were
selected for testing the application. The number of people
has been chosen arbitrarily. Table I shows how often each
test person completed the course for recording touch profile
information sorted by whether the data is collected for network
training or actual testing.

TABLE I
NUMBER OF COURSE PASSED BY TEST PERSON

Courses
Passed
(learning)

Courses
Passed
(checking)

Person 1 15 15
Person 2 15 15
Person 3 22 15
Person 4 76 15
Person 5 20 20
Person 6 50 15

An example for how data sets for the training phase of
the neural network look like is shown in Table II. The at-
tribute columns contain the normalized values of the attributes
extracted from the touch gesture (e.g., coordinates, length,
applied pressure etc.). The learning behavior of the network is
heavily dependent on the amount and quality of learning data
as well as the ratio between positive and negative learning data
and the network error. Because our approach to training the
network involves observed learning, a learning data set also
contains the values of the output neurons. Positive learning
data sets have the value “1” for the “yes” output neuron and
negative ones vice versa. It is obviously very important to find
the right ratio between positive and negative patterns to get the
best results. To get negative patterns for each person, patterns
from the other test persons were included.

To find a suitable ratio between the amount of positive and
negative patterns, 4 training passes have been carried out. The
amount of positive learning patterns remains constant for each
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TABLE II
EXEMPLARY LESSON STRUCTURE

Attribute 1 Attribute 2 Attribute 3 . . . Output
YES

Output
NO

0.4979 0.7892 0.1983 . . . 1 0
0.5043 0.7721 0.2112 . . . 1 0

0.3094 0.9798 0.6983 . . . 0 1
0.3176 0.9943 0.7002 . . . 0 1

TABLE III
POSITIVE AND NEGATIVE LEARNING PATTERNS COUNT BY PASS

Positive
Pattern
Count

Negative Pattern Count

Pass 1 Pass 2 Pass 3 Pass4
Person 1 15 10 10 15 20
Person 2 15 10 10 15 20
Person 3 22 10 15 20 25
Person 4 76 55 60 65 70
Person 5 20 10 15 20 25
Person 6 50 35 40 45 50

pass, while the amount of negative patterns has been varied
arbitrarily. Table III depicts the evaluated ratios.

Another parameter, which had to be evaluated is the desired
network error. The lower the network error, the longer it takes
to train the ANN. Therefore, several different values (3%,
6%, 9%, 12% and 15%) have been evaluated using different
ratios of learning patterns. In our experiments we came to the
conclusion that a ratio of 1:1 regarding positive and negative
learning data results in a minimal occurrence of false positives
and false negatives during the MP. Figure 4 shows the trend
for the ratios described in Table III. Figure 4 also depicts the
summed up values (and therefore seems unusually high) for
false-positives and shows how results change depending on
different combinations of positive-negative learning patterns.
Therefore we restricted our further evaluation to the use of
the 1:1 ratio for positive and negative learning patterns. Based
on this information, Table IV shows a detailed evaluation of
the detection rate for unauthorized users. It shows for each
user and lesson the output values of the neurons: The higher
value wins. For example, for person 1 and the learning data
of person 1 (first row, column) the YES-neuron fires 70 times
whereas the NO-neuron fires 30 times. Therefore, the user is
successfully authenticated. However, we also detected some
false positives. For instance, person 2 is the authorized user
and checking patterns of person 5 fed to the neural network
results in a false positive. The same applies to person 5.

TABLE IV
RESULTS OF EVALUATION WITH NETWORK ERROR 0.12

P1 P2 P3 P4 P5 P6
P1(learn) 72/30 7/95 32/41 12/85 19/75 27/93
P1(verify) 64/39 28/38 24/60 10/89 31/71 31/86
P2(learn) 18/90 85/4 35/66 9/78 16/84 1/96
P2(verify) 15/85 44/12 39/67 1/80 16/86 52/67
P3(learn) 28/78 18/93 74/21 61/73 10/80 42/73
P3(verify) 26/86 26/60 69/19 5/75 13/69 33/70
P4(learn) 16/87 3/99 22/77 71/45 18/67 19/75
P4(verify) 14/86 18/56 19/88 92/24 18/79 36/61
P5(learn) 21/91 26/88 7/88 34/78 88/20 9/92
P5(verify) 23/88 58/21 14/93 32/89 83/63 6/89
P6(learn) 20/81 16/95 47/79 4/79 18/66 75/20
P6(verify) 10/87 23/79 32/98 1/61 87/22 75/27

Fig. 4. False Positives and False Negatives for Different Ratios

B. Data Collection Optimisation and Compression

Currently, learning data sets as well as actual input for
the neural network during normal usage of the mobile device
is collected and recorded into simple CSV files. This may
prove to be a problem regarding the size of collected data.
Transmission of data using WLAN or 3G networks is a very
expensive task in terms of power consumption. Therefore,
compression techniques may need to be applied on the device
to reduce the size of transmitted data. However, this has not
been considered to date.

VII. CONCLUSION

In this paper, we analyzed whether or not and to which
certainty users of mobile devices can be authenticated based
on their touch gesture attributes. As a part of the MoSeC
architecture this module is not required to achieve a 100%
success rate, but rather serves as a supporting mechanism
for detecting possibly unauthorized accesses in combination
with other techniques. One major aspect of this system is to
offload as much resource-intensive tasks as possible into the
cloud to preserve battery power. Therefore, we use the mobile
device only to record and save touch gesture information. After
transmitting the data to a proxy virtual machine in the cloud, a
neural network evaluates this data. Depending on the result, the
agent on the mobile device is informed on which action must
be taken (e.g., force re-authentication using strong mechanisms
like passwords). Additionally, the authentication information is
used to trace usage of the device retrospectively for evidence
collection, when a breach of security is detected.

As we have shown, touch gesture analysis based on ar-
tificial neural networks is a suitable solution for detecting
unauthorized access to mobile devices. However, the inherent
uncertainty of the analysis results provided by the network
need to be considered. We have shown that by choosing a 1:1
ratio between positive and negative learning patterns relatively
stable results can be reached. Another important factor is the
training time. Because users might change their touch gesture
behaviour over the time, the network has to be re-trained in
defined intervals.

In our future work, we focus on widening our pool of
test users, to achieve even more stable results. Also, further
optimisation needs to be considered. This includes the integra-
tion of tamper-proof recording of touch gesture information,
compression of data as wells as finding the right balance
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between transmission frequency and power consumption due
to active WLAN or 3G. Also, network traffic generated by
our solution is a big concern and needs to be measured and
quite possibly optimized in our application to reduce resource
consumption to a minimum, which in turn would also reduce
power consumption.
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