
Cooperative Computing for Mobile Platforms 

 
 

Jing Chen*,                    Jian-Hong Liu,               Tin-Yen Lin#, 

Institute of Computer and Communication Engineering 
Department of Electrical Engineering, National Cheng Kung University 

1 University Road, Tainan City 70101 
 Taiwan, R.O.C. 

e-mail: jchen@mail.ncku.edu.tw* , {liuken, q36001169#}@rtpc06.ee.ncku.edu.tw 
 
 
 

Abstract— While mobile platforms with increasing computing 
power nowadays have become popular, applications running 
on mobile platforms, however, still suffer from the limitations 
of resource availability and architecture variety imposed by 
mobile platforms. Offloading mobile application to a virtual 
machine deployed on a server or cloud computing environment 
is effective only for the cases of running stand-alone applica-
tions and is not able to achieve cooperative computing across 
platform boundary. In attempting to address the issue, this 
paper considers cross-platform Inter-Process Communication 
(IPC) to be an essential capability towards achieving coopera-
tive computing at application level and, as a demonstrative 
example, expands the IPC mechanism of Android system to be 
the foundation of building a collaborative and cooperative 
working environment. This expanded IPC mechanism is called 
XBinder. The main contribution of this work is providing a 
way for mobile applications to cooperate with local or remote 
services without developing complicate network transmission 
mechanism. Mobile applications are able to effectively and 
efficiently communicate with services which execute either on 
local node or remote node. 

Keywords- Cooperative Computing; Mobile Computing; IPC; 
Resource sharing; Remote Service. 

I.  INTRODUCTION 

With advances in hardware and software technologies, 
consumer embedded system products, in particular mobile 
platforms, are everywhere around our daily life. It has been 
envisioned that the next generation of computing systems 
would be mobile while embedded, in a virtually unbounded 
number, and dynamically connected [6]. This is getting true 
especially for mobile platforms such as smart phones and 
pad platforms which not only have become very popular 
embedded system products but also serve as personal mobile 
multifunctional platforms. It is also observed that desktop 
applications are being moved to run on mobile platforms. 
For example, accessing Internet services by using browser 
software or apps running on mobile platforms is now very 
common. However, a long existent issue is that most mobile 
platforms impose limitation on available resources such as 
computing capability, memory, storage, power supply (due 
to battery life), etc. In general, when application on mobile 
platforms is running in stand-alone manner, there would be 
some restrictions limiting its benefit or advantage. 

Mobile applications which are executed on cloud server 
can overcome the limitations mentioned above [9]. Building 
a virtual mobile platform in cloud computing environment is 
another solution for resource limitation [12]. When a mobile 
application is offloaded to run on a server deployed on cloud 
side, the server pushes the screen display of execution results 
directly to the user side [18][21]. The disadvantage is that in 
general a lot of image data transmission is required. Another 
effective approach is developing, in a case-by-case manner, 
mobile application with specific constructs [8]. However, it 
usually needs to establish some protocols between server and 
mobile applications for the purposes of exchanging data or 
cooperating. This approach appears comparatively not only 
quite complicated but also generally error-prone. In general, 
resources can be shared and processes can be cooperative. 
When the capability of cooperative computing, which is one 
type of distributed computing model and in which resources 
are shared among processes running on different connected 
platforms (called nodes), is taken into consideration, the 
approaches mentioned above do not fit. 

In this paper we consider that, in supporting cooperative 
computing at application level, cross-platform Inter-Process 
Communication (IPC) is essential, and present XBinder as an 
example of cross-platform IPC mechanism in attempting to 
address the issue of cooperative computing on networked 
mobile platforms. Fig. 1 illustrates an application scenario of 
XBinder, in which a number of services are shared among 
applications running on different networked platforms. 

XBinder expands the IPC mechanism of Android system 
to help set up the foundation of building a collaborative and 
cooperative working environment. Its development shows 
the following desirable features: 

 Remote process communication: A local process can 
communicate and cooperate with a remote process. 

 Easy application development with remote objects: 
Remote services can be built without developing new 
complicate network transmission mechanism. 

 Peer-to-peer communication: Every mobile platform 
with XBinder installed is a peer node. A peer node is 
able to directly transmit network packet to other ones, 
which may provide and apply remote service. 

 Multiple concurrent connections: XBinder supports 
concurrent operations for multiple connected nodes. 
The IPC of a connection will not be interfered when 
there are other connections working concurrently. 

91Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence



 

App 4 
(use 

serviceC)

ServiceD
(for remote 

app3)

XBinder

ServiceA
(for app1)

App1 
(use ServiceA 

&
ServiceB)

ServiceA
(for remote 

app2)

XBinder

App3
(use serviceB 

& 
serviceD) 

ServiceC
(For remote 

app4)

XBinder

ServiceB
(for remote 

app1)

App2
(use 

ServiceA)

ServiceB
(for remote 

app3)

XBinder

 
Figure 1.  Cooperative computing with XBinder 

 
The rest of this paper is organized as follows. Section II 

gives a brief discussion on related works. Section III presents 
the development of XBinder which serves as an example for 
demonstrating the fundamental capability to help achieve co-
operative computing. Section IV describes the evaluation of 
XBinder. Finally, Section V concludes this paper. 

II. RELATED WORKS 

This section briefly discusses some works related to 
solving the issues of resource limitation and cooperative 
computing on embedded systems or mobile platforms. 

Android as a Server Platform (AASP) [13] proposed to 
deploy Android applications on servers which work in cloud 
computing environment. The approach effectively addressed 
the issues, as described above, of resource constraint, power 
consumption and battery life through achieving a server of 
Android system. However, AASP did not take into account 
the operation requirements of data sharing, nor cooperation 
in either client-server or distributed computing styles. 

Reference [17] presented Distributed IPC using Virtual 
Device Driver in Monolithic Kernel (DIPC) to realize an IPC 
mechanism for distributed computing systems and achieved 
communication among processes in different systems. DIPC 
was implemented in kernel space and showed advantages of 
high priority and reducing extra copying or movement in 
data sharing. The disadvantage, nevertheless, comes from its 
operating in kernel space because it can use only kernel level 
function library. In addition, security becomes another issue. 

Borcea [6] and Iftode [11] both presented a distributed 
computing model for programming large networks which are 
composed of embedded systems and implemented prototypes 
for two applications on sensor networks. Their distributed 

computing model and the proposed architecture showed the 
main features of cooperative computing. In their works, co-
operative computing applications are composed of migratory 
execution units (including both code and data), called Smart 
Messages, working together to accomplish a distributed task. 
Their model showed generality and worked based on the IPC 
through message passing. The work described in this paper is 
mainly motivated by their contributions. 

Android system is developed based on Linux operating 
system [20]. It has its own IPC mechanism, called Android 
Binder, which demonstrates many desirable features such as 
stability, efficiency, security, and good resource management 
[3][19]. However, Android Binder adopts an object-oriented 
communication approach which put burdens on application 
developers by requiring case-by-case defined details. Never-
theless, this is considered quite suitable for remote process 
communication [10] and Android has shown its potential of 
being popular in the world of mobile platforms. Therefore, it 
is adopted in this work. 

III. THE DEVELOPMENT OF XBINDER 

The development of XBinder adopts the IPC mechanism 
of Android system as its base. The reasons are mainly that 
many software components of Android system, including the 
Binder driver and its associated software components, are 
open source software and freely available, and that Android 
has a large, and still growing, share in the arena of mobile 
platforms. XBinder has as its components XBinder Manager 
and XBinder Driver. Its architecture is depicted in Fig. 2 in 
which the dotted squares indicate the components which are 
modified from Android Binder framework [7], and the other 
parts are the components that are developed in this work. 

92Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence



User
Space

Kernel
Space

XCOMM  Manager

Node

Service 
Provider

Service
 Manager

XBinder Manager

XBinder Driver

Remote Communication 
Interface

IPC Manager

ServiceServiceAPP
ServiceAPPAPP

 
Figure 2.  XBinder Architecture 

A. XBinder Driver 

 The IPC Manager manages all the communication 
between processes, such as applications and services, 
including allocating message space for processes, and 
helps transfer messages. Its functionality is achieved 
by modifying the mechanisms in Android for message 
delivery, process management, and space allocation. 

 XCOMM Manager is responsible for setting up node-
to-node connections and maintaining the connections. 
In addition to delivering services for those active 
connections, it handles the messages received from 
remote nodes. 

 The Remote Communication Interface, which is part 
of XCOMM manager, allows the XCOMM Manager 
to establish connections with XBinder of other nodes 
and exchange messages through the connections. 

XCOMM Manager is the core component in handling 
remote services. Its architecture is shown in Fig. 3. For each 
established connection, XCOMM Manager creates a Remote 
Request Handler and a corresponding Remote Node Object. 
There are two types of established connections: connecting 
the local node as requested by a remote node, and connecting 
a remote node requested by the local node. Remote Request 
Handler receives through Remote Communication Interface 
a message and processes that message. The Remote Request 
Handler puts the processed message into the corresponding 
Remote Node Object to be dispatched, by IPC Manager, to 
the destination process. 

Service Provider 
Requset Handler

Remote Request 
Handler

Remote Node List

Remote Node
object

Remote Node
object

Remote Request 
Handler

Remote Communication Interface

Check PID 
List

 
Figure 3.  The Architecture of XCOMM 

B. XBinder Manager 

 The Service Manager manages all the services that are 
either executing on local node or provided by remote 
nodes. Its functions include acquiring, adding, and 
deleting services in order to serve processes. 

 The Service Provider is responsible for servicing user 
demands by setting up and closing connection with 
remote nodes, allocating and releasing services. 

Service Provider works internally with XCOMM Manger 
and IPC Manager in XBinder to achieve providing remote 
services. The main steps are depicted in Fig. 4. When user 
issues a request to access a remote service, Service Provider 
passes the connect command with the IP address of the 
remote node to local XCOMM Manager which attempts to 
establish the connection and returns the status of connection 
to Service Provider. At the time when the connection from a 
remote note is accepted, XCOMM Manager informs Service 
Provider in order to start the requested service by creating all 
needed processes to run the service and passes the identifiers 
of all these processes to XCOMM Manager for recording 
purpose. The IPC Manager is designed such that, for a 
launched service, there is no difference in serving requests 
from local node or remote nodes. An advantage of this is that 
existing services need not be modified in order to fit the 
operations with XBinder. When a connection of utilizing a 
service is to be closed, the local XCOMM Manager informs 
Service Provider to terminate all the processes associated 
with that service. 

Remote 
XBinder

Socket 
Connection

Service 
Provider

Service

F
ork &

 E
xec

K
ill

Open & Mmap

1

2

3

4

Release

IPC Manager

Driver 
Interface

XBinder

XCOMM 
ManagerConnection Establish

Connection Close

 
Figure 4.  The steps in providing remote services 

XBinder is implemented using C programming language 
with GNU library functions so that not only the required 
network operations can be realized using sockets without 
difficulty but also the implementation can be installed to 
work in both Linux and Android systems. The modification 
done to the components in Android is accomplished by using 
Android software development kit [1][2][4][5]. 

IV. EVALUATION 

The evaluation of XBinder, including its functionality 
and performance, was conducted for the purpose of serving 
the proof of concept. A working environment of four nodes 
was set up, as shown in Fig. 5, in which two Wii sticks were 
connected to a desktop computer and serve as the controllers 
of user input devices [15]. In order to reduce the interference 
from possible yet unpredictable variation in the quality of 
network communication, wired Ethernet was adopted. The 
configuration of this environment is listed in Table I. 

93Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence



Wireless Access 
Point

Phone

Pad

Desktop PC

User Input 
Controller

Laptop

Switch

 

Figure 5.  The environment for evaluating Xbinder 

TABLE I.  THE CONFIGURATION OF THE EVALUATION ENVIRONMENT 

Node Desktop PC Laptop PC Nexus 7 Nexus 5 

CPU 
Intel Core 2 

Quad 
(2.5 GHz) 

Intel Core 
i5-540M 

(2.5 GHz) 

Nvidia Tegra 3 
(1.3 GHz) 

Qualcomm 
Snapdragon 
(1.5GHz) 

Memory 4 GB 4 GB 1 GB 2 GB 

O/S Ubuntu 12.04 Ubuntu 11.10 Android 4.4 Android 4.4

Network Wired Wired Wi-Fi Wi-Fi 

Devices Wii stick N/A 
 Accelerator 
 GPS 

 Accelerator
 Vibrator 
 GPS 

 
In testing the functionality of XBinder, Fig. 6 shows the 

case in which multiple nodes were concurrently using remote 
services and Fig. 7 demonstrates the operations in the test. In 
Fig. 7, while the smart phone (Nexus 5) and the Smart Pad 
(Nexus7) were accessing concurrently the sensor service 
provided by the right Wii stick which was connected to the 
desktop PC [15], the Smart Pad is providing a remote service 
to the laptop computer [16]. The test conducted in this case 
verified the concurrent operations of multiple nodes (users), 
the IPC with Linux and Android systems, and the connection 
functions in peer-to-peer style. 

Phone

Pad

Desktop PC
Sensor_service

Sensor_service

Sensor_service

Laptop

Freg_service

UseFreg_service

 
Figure 6.  Multiple nodes concurrently access remote service 

 
Figure 7.  Applications concurrently access a remote service 

The performance evaluation of this implementation was 
done by comparing the time of transmitting data blocks. Java 
RMI [14] was selected as the metric of comparison for the 
cases that involve remote communication, while the original 
Android Binder was the metric for the cases of local service.   
The transmission time measured starts from a data request is 
issued to the requested data is received, and for each selected 
data block size, 100 transmissions were separately measured. 
To avoid interference in measuring the transmission time, no 
file operations were involved. Table II lists the average time 
of transmitting data in different sizes, while Fig. 8 depicts the 
comparison of XBinder versus Java RMI. It can be observed 
that XBinder maintains similar performance compared with 
Android Binder and performs better than Java RMI in most 
test cases. When the data size grows larger, Java RMI shows 
better performance than XBinder. The reason is that XBinder 
needs two more copy operations during its operation in order 
to copy the data to the assigned address space. 

TABLE II.  COMPARING XBINDER WITH JAVA RMI 

Remote Communication Local Communication Data 
Size XBinder Java RMI XBinder Android Binder

16 B 255 797 20 18 

1 KB 555 995 21 19 

64 KB 6095 6250 146 144 

256 KB 23404 23132 531 516 

1 MB 92788 90388 3669 3663 

2 MB 185066 179943 N/A N/A 

Time Unit: micro-second (s) 

 
XBinder VS. RMI (Time)

0

20

40

60

80

100

120

140

160

180

200

1KB 64KB 256KB 1MB 2MB

Data Size

Tr
an
sf
er
 T
im
e 
(m

se
c)

XBinder RMI  
Figure 8.  Performance comparison of XBinder with Java RMI 

94Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence



V. CONCLUSION AND FUTURE WORK 

Mobile platforms usually run applications with limitation 
on available resources. While sharing can be one solution for 
the issue of limited resources, cooperative computing across 
platform boundary is very beneficial for mobile platforms. In 
this paper, we consider cross-platform IPC to be the essential 
capability in achieving cooperative computing at application 
level and, as one demonstrative example, present XBinder to 
provide Android-based mobile platforms the functionality of 
IPC over network connections. 

 The design and implementation of XBinder are based on 
Android Binder which is the default IPC mechanism for pro-
cesses running in Android-based platforms. XBinder extends 
the Binder Driver of Android to support network communi-
cation mechanism in order to form a multi-node working 
environment in which each node is an Android-based mobile 
platform. In addition, each node with XBinder installed can 
simultaneously function assuming both the roles of “client” 
and “server”. The results of evaluating its implementation 
showed that a process can communicate with other process 
running on remote node over network connection effectively 
and efficiently. 

An additional benefit of XBinder is that XBinder can be 
installed easily into any Linux-based platform to support 
cross-system IPC between Linux and Android systems. This 
is because Linux is the basis of Android and XBinder is built 
in the kernel space of Linux. Therefore, XBinder can run in 
Linux or Android system to provide a high-level abstraction 
of IPC mechanism and help programmers develop remote 
cooperative applications and services with ease. 

 

ACKNOWLEDGMENT 

This work is partially sponsored by Ministry of Science 
and Technology (MOST) of Republic of China (ROC) under 
the contract MOST105-3011-E-006-001. 

 
 

REFERENCES 
[1] Android, “Android Interface Definition Language (AIDL)”, 

https://developer.android.com/guide/components/aidl.html. 
[retrieved: July, 2016] 

[2] Android Developers, https://developer.android.com, accessed 
on 2016-07-22. 

[3] A. Gargenta, “Deep Dive into Android IPC/Binder 
Framework”, Android Builders Summit, 2013. Available 
from: https://events.linuxfoundation.org/images/stories/slides/ 
abs2013_gargentas.pdf. 

[4] Android Studio, “Control the Emulator from Command 
Line”, https://developer.android.com/studio/run/emulator-
commandline.html, accessed on 2016-07-20. 

[5] Android Studio, “Android Studio: The Official IDE for 
Android”, https://developer.android.com/studio/index.html. 
[retrieved: July, 2016] 

[6] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L. Iftode, 
“Cooperative Computing for Distributed Embedded 
Systems”, Proceedings of the 22nd International Conference 

on Distributed Computing Systems (ICDCS 2002), July 2002, 
pp. 227-236, doi: 10.1109/ICDCS.2002.1022260. 

[7] D. K. Hackborn, “OpenBinder Documentation Version 1.0”, 
http://www.angryredplanet.com/~hackbod/openbinder/docs/ht
ml/index.html. [retrieved: August, 2016] 

[8] E. Kim, K. Yun, and J. Choi, “RSP: A Remote OSGi Service 
Sharing Scheme”, Symposia and Workshops on Ubiquitous, 
Autonomic and Trusted Computing in conjunction with the 
UIC’09 and ATC’09 conferences, July 2009, pp. 318-323, E-
ISBN: 978-0-7695-3737-5, Print ISBN: 978-1-4244-4902-6 
doi: 10.1109/UIC-ATC.2009.79. 

[9] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: 
Can Offloading Computation Save Energy?”, IEEE 
Computer, Vol. 43, Issue 4, pp. 51-56, Apr. 2010, doi: 
10.1109/MC.2010.98. 

[10] K. Nakao and Y. Nakamoto, “Toward Remote Service 
Invocation in Android”, Proc. of the 2012 9th International 
Conference on Ubiquitous Intelligence and Computing and 
the 9th  International Conference on Autonomic and Trusted 
Computing (UIC-ATC’12), Sept. 2012, pp. 612-617, ISBN: 
978-1-4673-3084-8, doi: 10.1109/UIC-ATC.2012.22. 

[11] L. Iftode, C. Borcea, and P. Kang, “Cooperative Computing 
in Sensor Networks”, in Handbook of Sensor Networks: 
Compact Wireless and Wired Sensing Systems, M. Ilyas and 
I. Mahgoub, Eds. Boca Raton: CRC Press, pp. 26-1--26-19, 
2005, ISBN: 0849319684. 

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ”The 
Case for VM-Based Cloudlets in Mobile Computing”, IEEE 
Pervasive Computing, Vol. 8, Issue 4, pp. 14-23, Oct. 2009, 
doi: 10.1109/MPRV.2009.82. 

[13] M. Toyama, S. Kurumatani, J. Heo, K. Terada, and E. Y. 
Chen, “Android as a Server Platform”, the 8th Annual IEEE 
Consumer Communications and Network Conference, Jan. 
2011, pp. 1181-1185, ISBN: 978-1-4244-8789-9. 

[14] Oracle Inc., “An Overview of RMI Applications”, 
https://docs.oracle.com/javase/tutorial/rmi/overview.html. 
[retrieved: August, 2016] 

[15] P. L. Wang, “The Design and Implementation of a Unified 
Hardware Abstraction Layer for Lunix Operating System”, 
Master Thesis, National Cheng Kung University, Taiwan, 
ROC, 2014. 

[16] R. Stones and N. Matthew, “Beginning Linux Programming”, 
Wrox – Wiley Publishing Inc., 4th edition, 2007, ISBN: 
0470147628. 

[17] S. Bagchi, ”Distributed IPC using Virtual Device Driver in 
Monolithic Kernel”, The 18th IEEE International Conference 
on Embedded and Real-Time Computing Systems and 
Applications (RTCSA 2012), Aug. 2012, pp. 51-57, ISSN: 
2325-1271, E-ISBN: 978-0-7695-4824-1, Print ISBN: 978-1-
4673-3017-6. 

[18] S. Ghorpade, N. Chavan, A. Gokhale, and D. Sapkal, “A 
Framework for Executing Android Applications on the 
Cloud”, The 2nd International Conference on Advances in 
Computing, Communication and Informatics (ICACCI 2013), 
Aug. 2013, pp. 230-235, ISBN: 978-1-4799-2432-5. 

[19] T. Schreiber, “Android Binder: Android Interprocess 
Communication”, Seminar-thesis, Buhr University, 2011. 
[Online]. Available from: https://www.nds.rub.de/media 
/attachments/files/2012/03/binder.pdf. 

[20] Wikipedia, “Android (operating system)”, https://en. 
wikipedia.org/wiki/Android_(operating_system). [retrieved: 
July, 2016] 

[21] Wikipedia, “Thin_client”, http://en.wikipedia.org/wiki/Thin_ 
client. [retrieved: July, 2016] 

 

95Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence


