
Estimation of TCP Congestion Control Algorithms

by Deep Recurrent Neural Network

Takuya Sawada, Ryo Yamamoto, Satoshi Ohzahata, and Toshihiko Kato

Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

e-mail: sawada@net.lab.uec.ac.jp, ryo-yamamoto@uec.ac.jp, ohzahata@uec.ac.jp, kato@net.lab.uec.ac.jp

Abstract— Recently, as various types of networks are

introduced, a number of Transmission Control Protocol (TCP)

congestion control algorithms have been adopted. Since the

TCP congestion control algorithms affect traffic characteristics

in the Internet, it is important for network operators to analyze

which algorithms are used widely in their backbone networks.

In such an analysis, a lot of TCP flows need to be handled and

so the automatic processing is indispensable. This paper

proposes a machine learning based method for estimating TCP

congestion control algorithms. The proposed method uses a

passively collected packet traces including both data and ACK

segments, and calculates a time sequence of congestion window

size for individual TCP flows contained in the traces. We use a

classifier based on deep recurrent neural network in the

congestion control algorithm estimation. As the results of

applying the proposed classifier to ten congestion control

algorithms, we obtained high accuracy of classification

compared with our previous work using recurrent neural

network with one hidden layer.

Keywords- TCP; Congestion Control; Deep Recurrent Neural

Network.

I. INTRODUCTION

Along with the introduction of various types of networks,
such as a long-haul high speed network and a wireless mobile
network, a number of TCP congestion control algorithms have
been designed, implemented, and widely spread [1]. Since the
congestion control was introduced [2], a few algorithms, such
as TCP Tahoe [3], TCP Reno [3], and NewReno [4], have
been used commonly for some decades. Recently, new
algorithms have been introduced and deployed. For example,
HighSpeed TCP [5], Scalable TCP [6], BIC TCP [7], CUBIC
TCP [8], and Hamilton TCP [9] are designed for high speed
and long delay networks. TCP Westwood+ [10] is designed
for lossy wireless links. While those algorithms are based on
packet losses, TCP Vegas [11] triggers congestion control
against an increase of Round-Trip Time (RTT). TCP Veno
[12] combines loss based and delay based approaches in such
a way that congestion control is triggered by packet losses but
the delay determines how to grow the congestion window
(cwnd). In 2016, Google proposed a new algorithm called
TCP BBR (Bottleneck Bandwidth and Round-trip
propagation time) [13] to solve problems mentioned by
conventional algorithms.

Since TCP traffic is a majority in the Internet traffic and
the TCP congestion control algorithms characterize the
behaviors of individual flows, the estimation of congestion

control algorithms for TCP traffic is important for network
operators. It can be used in various purposes such as the traffic
trend estimation, the planning of Internet backbone links, and
the detection of malicious flows violating congestion control
algorithms.

The approaches for congestion control algorithm
estimation are categorized into the passive approach and the
active approach. The former estimates algorithms from
packet traces passively collected in the middle of network by
network operators. In the latter approach, a test system
communicates with a target system with a specially designed
test sequence in order to identify the algorithm used in the
target system. Although the active approach is capable to
identify various congestion control algorithms proposed so far,
this approach does not fit the algorithm estimation of real TCP
flows by network operators. On the other hand, generally
speaking, the detecting capability of passive approaches is
relatively low comparing with the active approach.

Previously, we proposed a passive method that can
estimate a number of congestion control algorithms [14][15].
In this proposal, we focused on the relationship between the
estimated congestion window size and its increment. Their
relationship is indicated as a graph and the congestion control
algorithm is estimated based on the shape of the graph. Our
proposal succeeded to identify eight congestion control
algorithms implemented in the Linux operating system,
including recently introduced ones.

However, the identification is performed manually by
human inspectors, and so it is difficult to deal with a large
number of TCP flows. So, we proposed a machine learning
based classifier estimating the TCP congestion control
algorithms using TCP packet traces [16]. It uses a
conventional Recurrent Neural Network (RNN) with one
hidden layer. From a packet trace, we estimate the
relationship of cwnd values and their increment with
congestion control algorithm labels, and apply the results to a
RNN classifier for training. Using the RNN classifier, we
estimate the algorithms for other packet traces. We obtained
a relatively good estimation result from the RNN classifier,
but we could not classify similar algorithms, such as TCP
Reno and Vegas.

This paper proposes a revised version of machine learning
classifier for automatic estimation of congestion control
algorithms. We adopt a Deep Recurrent Neural Network
(DRNN) with multiple hidden layers. We also apply a hyper
parameter tuning for the classifier. We pick up ten congestion

19Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

control algorithms mentioned above and show how those
algorithms can be estimated automatically.

The rest of this paper is organized as follows. Section 2
gives some background information including the
conventional studies on the congestion control estimation and
the machine learning applied for the network areas. Section 3
describes the proposed method and Section 4 gives the
performance evaluation results. In the end, Section 5
concludes this paper.

II. BACKGROUNDS

A. Studies on TCP Congestion Control Algorithm

Estimation

The proposals on the passive approach in the early stage
[17-19] estimate the internal state and variables, such as cwnd
and ssthresh (slow start threshold), in a TCP sender from
bidirectional packet traces. They emulate the TCP sender’s
behavior from the estimated state/variables according to the
predefined TCP state machine. But, they considered only
TCP Tahoe, Reno and New Reno and did not handle any of
recently introduced algorithms. [20] proposed a method to
discriminate one out of two different TCP congestion control
algorithms randomly selected from fourteen algorithms
implemented in the Linux operating system. This method
keeps track of changes of cwnd from a packet trace and to
extract several characteristics, such as the ratio of cwnd being
incremented by one packet. Although this method targets all
of the modern congestion control algorithms, they assumed
that the discriminator knows two algorithms contained in the
packet trace.

Prior to our previous proposal, the only study that can
identify the TCP congestion control algorithms including
those introduced recently was a work by Yang et al. [21]. It
is an active approach. It makes a web server send 512 data
segments under the controlled network environment, and
observes the number of data segments contiguously
transmitted. From those results, it estimates the window
growth function and the decrease parameter to determine the
congestion control algorithm.

Our previous proposals [14][15] estimated cwnd in RTT
intervals from bidirectional packet traces, in the similar way
with the other methods. Different from other methods, we
focused on the incrementing situation of estimated cwnd
values. From the definition of individual congestion control
algorithms, the graph of cwnd increments vs. cwnd has their
characteristic forms. For example, in the case of TCP Reno,
the cwnd increment is always one segment. In the case of

CUBIC TCP, the graph of cwnd increment follows a √𝑐𝑤𝑛𝑑23

curve. In this way, we proposed a way to discriminate eight
congestion control algorithms in the Linux operating system.

B. Studies on Application of Machine Learning to TCP

Recently, several papers focus on applying the machine
learning to TCP analysis. [22] proposes a method to estimate
RTT using the fixed-share approach from measured RTT
samples. [23] estimates the future throughput of TCP flow
using the support vector regression from measured available
bandwidth, queueing delay, and packet loss rate. [24]

proposes a machine learning based multipath TCP scheduler
based on the radio strength in wireless LAN level, wireless
LAN data rate, TCP throughput, and RTT with access point,
by the random decision forests.

These proposals focused on the control aspects of TCP.
As far as we know, our previous work [16] is only an attempt
for the congestion control algorithm estimation based on the
machine learning.

III. PROPOSED METHOD

A. Estimation of cwnd values at RTT interval

In the passive approach, packet traces are collected at
some monitoring point inside a network. So, the time
associated with a packet is not the exact time when the node
focused sends/receives the packet. Our scheme adopts the
following approach to estimate cwnd values at RTT intervals
using the TCP time stamp option.
 Pick up an ACK segment in a packet trace. Denote this

ACK segment by ACK1.
 Search for the data segment whose TSecr (time stamp

echo reply) is equal to TSval (time stamp value) of
ACK1. Denote this data segment by Data1.

 Search for the ACK segment that acknowledges Data1
for the first time. Denote this ACK segment by ACK2.
Denote the ACK segment prior to ACK2 by ACK1’.

 Search for the data segment whose TSecr is equal to
TSval of ACK2. Denote this data segment by Data2.

From this result, we estimate a cwnd value at the timing
of receiving ACK1 as in (1).

𝑐𝑤𝑛𝑑 = ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋ (segments) (1)

Here, seq means the sequence number, ack means the
acknowledgment number of TCP header, and MSS is the
maximum segment size (MSS). ⌊𝑎⌋ is the truncation of a.

Figure 1 shows an example of cwnd estimation. In this
figure, MSS is 1024 byte. Data segments are indicated by
solid lines with sequence number : sequence number + MSS.
ACK segments are indicated by dash lines with
acknowledgment number. When “ack 1” is picked up, data
segment “1:1024” is focused on as Data1 above. ACK
segment “ack 2049” responding the data segment
corresponds to ACK2. The ACK segment before this ACK
segment (ACK1’ above) is “ack 1” again. Data2 in this case
is “2049:3073.” So, the estimated cwnd is (2049 – 1)/1024 =
2. Similarly, for the following two RTT intervals, the
estimated RTT values are (5121 – 2049)/1024 = 3 and (10241
–5121) /1024= 5.

B. Selection and Normalization of Input Data to Classifier

When a packet is lost and retransmitted, cwnd is
decreased. In order to focus on the cwnd handling in the
congestion avoidance phase, we select a time sequence of
cwnd between packet losses. We look for a part of packet
trace where the sequence number in the TCP header keeps
increasing. We call this duration without any packet losses
non-loss duration. We use the time variation of estimated
cwnd values during one non-loss duration as an input to the
classifier. However, the length of non-loss duration differs
for each duration, and the range of cwnd values in a non-loss

20Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

duration also differs from one to another. So, we select and
normalize the time scale and the cwnd value scale for one
non-loss duration.

The algorithm for selecting and normalizing input to
classifier is given in Figure 2. In this algorithm, the input E
is as time sequence of cwnd values estimated from one packet
trace. The input InputLength is a number of samples in one
input to the classifier. In this paper, we used 128 as
InputLength. This is because we think that the cwnd vs time
curve can be drawn by 128 points. In the beginning, the time
sequence of cwnd is divided at packet losses, and the divided
sequences are stored in a two dimensional array S. Next, the
first sequence S[0] is removed, because we focus only on the
congestion avoidance phase. Then S is reordered according
to the length of cwnd sequence. Then the cwnd values for
one sequence S[t] are normalized between 0 and 1. The
normalization is performed in the following way.

Let 𝑤𝑚𝑎𝑥[𝑡] = max (𝑆[𝑡][𝑢])
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1, and

𝑤𝑚𝑖𝑛[𝑡] = min (𝑆[𝑡][𝑢])
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1.
Each cwnd value in S[t] is normalized by

𝑆[𝑡][𝑢] ←
𝑆[𝑡][𝑢]−𝑤𝑚𝑖𝑛[𝑡]

𝑤𝑚𝑎𝑥[𝑡]−𝑤𝑚𝑖𝑛[𝑡]
.

After that, the cwnd values are resampled into the number
of InputLength (128 in this paper). This is done by the loop
between step 11 and step 15. As a result, a cwnd sequence in
S[t] is converted to an array I[t] with 128 elements. By this
algorithm, all of the time sequences of cwnd values are the
arrays with 128 elements whose value is between 0 and 1.

Figure 3 shows some examples of cwnd estimation.
Figure 3 (a) and (b) show the estimated cwnd time sequences
for TCP Reno and CUBIC TCP, respectively. We focus on
the non-loss durations as described above. Reno 1, Reno 2,

CUBIC 1, and CUBIC 2 in the figure are examples. The size
of these sequences differ from each other, both for the time
scale and the scale of cwnd. Therefore, it is necessary to
normalize these sequences.

Figure 4 shows the results of the normalization for the
examples shown in Figure 3. Different scale of cwnd time
sequences are transformed into a canonical form with 128
samples in the range of 0 through 1.

C. DRNN Based Classifier for Congestion Control

Algotithm Estimation

We used DRNN for constructing the classifier, which has
three hidden layers and whose output layer defines the TCP

Figure 1. Example of cwnd estimation.

ACK1,
ACK1’

Data1

ACK2

Data2

Figure 2. Selection/normalization algorithm.

Algorithm 1

1. function Normalize (E, InputLength)
2. S <- DivideAtLoss(E)
3. Delete(S[0])
4. S <- SortBySequenceLength(S)
5. for t = 0 to Len(S) - 1 do
6. S <- MinMaxNormalization(S)
7. end for
8. I <- Array(Len(S))
9. for t = 0 to Len(S) - 1 do
10. I[t] <- Array(InputLength)
11. for u = 0 to InputLength - 1 do
12. SurjectiveMap <- InputLength/Len(S[t])
13. Index <- Trunc(u / SurjectiveMap)
14. I[t][u] <- S[Index]
15. end for
16. end for
17. return I
18. end function

(a) Estimated cwnd for TCP Reno

(b) Estimated cwnd for CUBIC TCP

Figure 3. Examples of cwnd estimation.

21Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

congestion control algorithms. Among the RNN
technologies, we pick up the long short-term memory
mechanism [25], which was proposed to handle a relatively
long time sequence of data. The input is a normalized time
sequence of cwnd as described above, with using labels of
congestion control algorithms represented by one-hot vector.

In our previous work, we selected the hyper parameters
given in Table I. In the work presented in this paper, we
select the hyper parameter ranges shown in Table II. The
input length is the same as that of the previous work. We use
three hidden layers and the number of neurons are as
specified in the table. As for the optimizer, the learning rate
and the weight decay, we propose the alternatives shown in
the table. We perform the hyper parameter tuning based on
the target area in this table.

In the training of the classifier, we use the mini-batch
method, which selects a specified number of inputs randomly

from the prepared training data. The mini-batch size will be
determined for individual training. The training will be
continued until the result of the loss function becomes smaller
than the learning rate.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

 Figure 5 shows the experimental configuration for
collecting time sequence of cwnd values. A data sender, a
data receiver, and a bridge are connected via 100 Mbps
Ethernet links. In the bridge, 50 msec delay for each direction
is inserted. As a result, the RTT value between the sender
and the receiver is 100 msec. In order to generate packet
losses that will invoke the congestion control algorithm,
packet losses are inserted randomly at the bridge. The
average packet loss ratio is 0.01%. The data transfer is
performed by use of iperf3 [26], executed in both the sender
and the receiver. The packet traces are collected by use of
tcpdump at the sender’s Ethernet interface. We use the
Python 3 dpkt module [27] for the packet trace analysis. We
changed the congestion control algorithm at the receiver by
use of the sysctl command provided by the Linux operating
system.

The targeted congestion control algorithms are TCP Reno,
HighSpeed TCP, BIC TCP, CUBIC TCP, Scalable TCP,
Hamilton TCP, TCP Westwood+, TCP Vegas, TCP Veno,

and BBR. We collected more than 1,500 samples for

Figure 4. Examples of normalization.

TABLE I. HYPER PARAMETERS OF CLASSIFIER IN OUR PREVIOS

WORK.

TABLE II. HYPER PARAMETER RANGES IN THIS WORK.

Figure 5. Experiment configuration.

Sender Receiver
100 Mbps
Ethernet

Bridge

inserting
100msec RTT

and 0.01%
packet error

100 Mbps
Ethernet

capturing
packets

22Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

individual algorithms, and prepared 1,000 samples as training
data, 250 samples as verifying data, and 250 samples as test
data.

B. Results of Congestion Control Algorithm Estimation

First, we re-evaluated the performance of our previous
approach. The result is shown in Figure 6. The total
accuracy for ten congestion control algorithms was 42.8%,
which is rather worse than the result described in our previous
paper [19]. This means that our previous classifier will
depend largely on the prepared training data.

So, we applied the same training data and verifying data
for a DRNN based classifier with three hidden layers and
selected optimal values for the hyper parameters mentioned
in Table II. We tried to look for optimal values 100 times by

the mini-batch method using 256 as the mini-batch size.
Table III shows the values of hyper parameters obtained by
this tuning.

Figure 7 shows the learning curve for ten congestion
control algorithms using the DRNN based classifier with the
selected hyper parameter values. The horizontal axis of this
figure indicates the epoch, which is the number of training
and verifying trials. The vertical axis indicates the accuracy
for the training process and the verifying process. The blue
line is the accuracy for the training process and the green line
is for the verification process. This result shows that the
classifier learns the model for estimating congestion control
algorithms. Figure 8 shows the confusion matrix for this
experiment. By comparing Figures 6 and 8, we can conclude
that the DRNN based classifier estimates the congestion
control algorithms much better than our previous classifier.
The total accuracy was 82.9%, which is higher than that of
our previous work. The only problem is that it still confuses
TCP Reno and TCP Vegas. The further studies are required.

As the last analysis, we evaluated the generalization
accuracy for our previous work and this work using the 10-
fold cross-validation. We divided the training data into ten
folds, and selected one fold for the validation and used the
rest folds for the training. Figure 9 shows the result. The
vertical axis is the validation accuracy. In our previous
classifier, the validation accuracy sometimes drops to 40%,
although it goes up 70%. On the other hand, our new
classifier provides 70% through 80% accuracy stably.

V. CONCLUSIONS

In this paper, we showed a result of TCP congestion
control algorithm estimation using a Deep Recurrent Neural
Network (DRNN) based classifier. From packet traces
including both data segments and ACK segments, we derived
a time sequence of cwnd values at RTT intervals without any
packet retransmissions. By ordering the time sequences and

Figure 6. Confusion matrix for previous approach.

Figure 8. Confusion matrix for this approach.

TABLE III. TUNED UP HYPER PARAMETER VALUES.

Figure 7. Confusion matrix for previous approach.

23Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

normalizing in the time dimension and the cwnd value
dimension, we obtained the input for the DRNN classifier.
As the results of applying the proposed classifier for ten
congestion control algorithms implemented in the Linux
operating system, we showed that the DRNN based classifier
can estimate ten algorithms effectively, with a problem that
TCP Reno and TCP Vegas are difficult to discriminate. This
result is much better than our previous classifier that used a
simple recurrent neural network.

REFERENCES

[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP,” IEEE Commun. Surveys & Tutorials,
vol. 12, no. 3, pp. 304-342, 2010.

[2] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM
Comp. Commun. Review, vol. 18, no. 4, pp. 314-329, 1988.

[3] W. R. Stevens, “TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algotithms,” IETF RFC 2001, 1997.

[4] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification
to TCP’s Fast Recovery Algorithm,” IETF RFC 3728, 2004.

[5] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” IETF
RFC 3649, 2003

[6] T. Kelly, “Scalable TCP: Improving Performance in High-speed Wide
Area Networks,” ACM SIGCOMM Comp. Commun. Review, vol. 33,
no. 2, pp. 83-91, 2003.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” Proc. IEEE INFOCOM 2004,
vol. 4, pp. 2514-2524, 2004.

[8] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no.
5, pp. 64-74, 2008.

[9] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long
distance networks,” Proc. Int. Workshop on PFLDnet, pp. 1-16, 2004.

[10] L. Grieco and S. Mascolo, “Performance evaluation and comparison of
Westwood+, New Reno, and Vegas TCP congestion control,” ACM
Computer Communication Review, vol. 34, no. 2, pp. 25-38, 2004.

[11] L. Brakmo and L. Perterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun.,
vol. 13, no. 8, pp. 1465-1480, 1995.

[12] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for Transmission
Over Wireless Access Networks,” IEEE J. Sel. Areas in Commun., vol.
21, no. 2, pp. 216-228, 2003.

[13] N. Cardwell, Y. Cheng, C. S. Gumm, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue vol. 14
no. 5, pp. 20-53, 2016.

[14] T. Kato, A. Oda, S. Ayukawa, C. Wu, and S. Ohzahata, “Inferring TCP
Congestion Control Algorithms by Correlating Congestion Window
Sizes and their Differences,” Proc. IARIA ICSNC 2014, pp.42-47,
2014.

[15] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected Packet
Traces,” Proc. IARIA ICSNC 2015, pp. 145-151, 2015.

[16] N. Ohzeki, R. Yamamoto, S. Ohzahata, and T. Kato, “Estimating TCP
Congestion Control Algorithms from Passively Collected Packet
Traces using Recurrent Neural Network,” Proc. ICETE DCNET 2019,
pp. 33-42, 2019.

[17] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27, no. 4,
pp.167-179, 1997.

[18] T. Kato, T. Ogishi, A. Idoue, and K. Suzuki, “Design of Protocol
Monitor Emulating Behaviors of TCP/IP Protocols,” Proc. IWTCS ’97,
pp. 416-431, 1997.

[19] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” Proc. INFOCOM 2004, pp. 1582-1592, 2004.

[20] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP Versions
Based on Cluster Analysis,” Proc. ICCCN 2009, pp. 1-6, 2009.

[21] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Congestion
Avoidance Algorithm Identification,” In Proc. ICDCS ’11, pp. 310-321,
2011.

[22] Y. Edalat, J. Ahn, and K. Obraczka, “Smart Experts for Network State
Estimation,” IEEE Trans. Network and Service Management, vol. 13,
no. 3, pp. 622-635, 2016.

[23] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Macine Learning
Approach to TCP Throughput Prediction,” IEEE/ATM Trans.
Networking, vol. 18, no. 4, pp. 1026-1039, 2010.

[24] J. Chung, D. Han, J. Kim, and C. Kim, “Machine Learning based Path
Management for Mobile Devices over MPTCP,” Proc. 2017 IEEE
International Conference on Big Data and Smart Computing (BigComp
2017), pp. 206-209, 2017.

[25] S. Hochreiter and J. Schimidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[26] iPerf3, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/.

[27] dpkt, “dpkt,” https://dpkt.readthedocs.io/en/latest/.

Figure 9. Generalization accuracy of previous work and this work.

24Copyright (c) IARIA, 2023. ISBN: 978-1-61208-993-5

EMERGING 2022 : The Fourteenth International Conference on Emerging Networks and Systems Intelligence

