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Abstract— Recently, as various types of networks are 

introduced, a number of Transmission Control Protocol (TCP) 

congestion control algorithms have been adopted.  Since the 

TCP congestion control algorithms affect traffic characteristics 

in the Internet, it is important for network operators to analyze 

which algorithms are used widely in their backbone networks.  

In such an analysis, a lot of TCP flows need to be handled and 

so the automatic processing is indispensable.  This paper 

proposes a machine learning based method for estimating TCP 

congestion control algorithms.  The proposed method uses a 

passively collected packet traces including both data and ACK 

segments, and calculates a time sequence of congestion window 

size for individual TCP flows contained in the traces.  We use a 

classifier based on deep recurrent neural network in the 

congestion control algorithm estimation.  As the results of 

applying the proposed classifier to ten congestion control 

algorithms, we obtained high accuracy of classification 

compared with our previous work using recurrent neural 

network with one hidden layer.   

Keywords- TCP; Congestion Control; Deep Recurrent Neural 

Network. 

I. INTRODUCTION 

Along with the introduction of various types of networks, 
such as a long-haul high speed network and a wireless mobile 
network, a number of TCP congestion control algorithms have 
been designed, implemented, and widely spread [1].  Since the 
congestion control was introduced [2], a few algorithms, such 
as TCP Tahoe [3], TCP Reno [3], and NewReno [4], have 
been used commonly for some decades.  Recently, new 
algorithms have been introduced and deployed.  For example, 
HighSpeed TCP [5], Scalable TCP [6], BIC TCP [7], CUBIC 
TCP [8], and Hamilton TCP [9] are designed for high speed 
and long delay networks.  TCP Westwood+ [10] is designed 
for lossy wireless links.  While those algorithms are based on 
packet losses, TCP Vegas [11] triggers congestion control 
against an increase of Round-Trip Time (RTT).  TCP Veno 
[12] combines loss based and delay based approaches in such 
a way that congestion control is triggered by packet losses but 
the delay determines how to grow the congestion window 
(cwnd).  In 2016, Google proposed a new algorithm called 
TCP BBR (Bottleneck Bandwidth and Round-trip 
propagation time) [13] to solve problems mentioned by 
conventional algorithms.   

Since TCP traffic is a majority in the Internet traffic and 
the TCP congestion control algorithms characterize the 
behaviors of individual flows, the estimation of congestion 

control algorithms for TCP traffic is important for network 
operators.  It can be used in various purposes such as the traffic 
trend estimation, the planning of Internet backbone links, and 
the detection of malicious flows violating congestion control 
algorithms.   

The approaches for congestion control algorithm 
estimation are categorized into the passive approach and the 
active approach.  The former estimates algorithms from 
packet traces passively collected in the middle of network by 
network operators.  In the latter approach, a test system 
communicates with a target system with a specially designed 
test sequence in order to identify the algorithm used in the 
target system.  Although the active approach is capable to 
identify various congestion control algorithms proposed so far, 
this approach does not fit the algorithm estimation of real TCP 
flows by network operators.  On the other hand, generally 
speaking, the detecting capability of passive approaches is 
relatively low comparing with the active approach.   

Previously, we proposed a passive method that can 
estimate a number of congestion control algorithms [14][15].  
In this proposal, we focused on the relationship between the 
estimated congestion window size and its increment.  Their 
relationship is indicated as a graph and the congestion control 
algorithm is estimated based on the shape of the graph.  Our 
proposal succeeded to identify eight congestion control 
algorithms implemented in the Linux operating system, 
including recently introduced ones.   

However, the identification is performed manually by 
human inspectors, and so it is difficult to deal with a large 
number of TCP flows.  So, we proposed a machine learning 
based classifier estimating the TCP congestion control 
algorithms using TCP packet traces [16].  It uses a 
conventional Recurrent Neural Network (RNN) with one 
hidden layer.  From a packet trace, we estimate the 
relationship of cwnd values and their increment with 
congestion control algorithm labels, and apply the results to a 
RNN classifier for training.  Using the RNN classifier, we 
estimate the algorithms for other packet traces.  We obtained 
a relatively good estimation result from the RNN classifier, 
but we could not classify similar algorithms, such as TCP 
Reno and Vegas.   

This paper proposes a revised version of machine learning 
classifier for automatic estimation of congestion control 
algorithms.  We adopt a Deep Recurrent Neural Network 
(DRNN) with multiple hidden layers.  We also apply a hyper 
parameter tuning for the classifier.  We pick up ten congestion 
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control algorithms mentioned above and show how those 
algorithms can be estimated automatically.   

The rest of this paper is organized as follows.  Section 2 
gives some background information including the 
conventional studies on the congestion control estimation and 
the machine learning applied for the network areas.  Section 3 
describes the proposed method and Section 4 gives the 
performance evaluation results.  In the end, Section 5 
concludes this paper.   

II. BACKGROUNDS 

A. Studies on TCP Congestion Control Algorithm 

Estimation 

The proposals on the passive approach in the early stage 
[17-19] estimate the internal state and variables, such as cwnd 
and ssthresh (slow start threshold), in a TCP sender from 
bidirectional packet traces.  They emulate the TCP sender’s 
behavior from the estimated state/variables according to the 
predefined TCP state machine.  But, they considered only 
TCP Tahoe, Reno and New Reno and did not handle any of 
recently introduced algorithms.  [20] proposed a method to 
discriminate one out of two different TCP congestion control 
algorithms randomly selected from fourteen algorithms 
implemented in the Linux operating system.  This method 
keeps track of changes of cwnd from a packet trace and to 
extract several characteristics, such as the ratio of cwnd being 
incremented by one packet.  Although this method targets all 
of the modern congestion control algorithms, they assumed 
that the discriminator knows two algorithms contained in the 
packet trace.   

Prior to our previous proposal, the only study that can 
identify the TCP congestion control algorithms including 
those introduced recently was a work by Yang et al. [21].  It 
is an active approach.  It makes a web server send 512 data 
segments under the controlled network environment, and 
observes the number of data segments contiguously 
transmitted.  From those results, it estimates the window 
growth function and the decrease parameter to determine the 
congestion control algorithm.   

Our previous proposals [14][15] estimated cwnd in RTT 
intervals from bidirectional packet traces, in the similar way 
with the other methods.  Different from other methods, we 
focused on the incrementing situation of estimated cwnd 
values.  From the definition of individual congestion control 
algorithms, the graph of cwnd increments vs. cwnd has their 
characteristic forms.  For example, in the case of TCP Reno, 
the cwnd increment is always one segment.  In the case of 

CUBIC TCP, the graph of cwnd increment follows a √𝑐𝑤𝑛𝑑23
 

curve.   In this way, we proposed a way to discriminate eight 
congestion control algorithms in the Linux operating system.   

B. Studies on Application of Machine Learning to TCP 

Recently, several papers focus on applying the machine 
learning to TCP analysis.  [22] proposes a method to estimate 
RTT using the fixed-share approach from measured RTT 
samples.  [23] estimates the future throughput of TCP flow 
using the support vector regression from measured available 
bandwidth, queueing delay, and packet loss rate.  [24] 

proposes a machine learning based multipath TCP scheduler 
based on the radio strength in wireless LAN level, wireless 
LAN data rate, TCP throughput, and RTT with access point, 
by the random decision forests.   

These proposals focused on the control aspects of TCP.  
As far as we know, our previous work [16] is only an attempt 
for the congestion control algorithm estimation based on the 
machine learning.   

III. PROPOSED METHOD 

A. Estimation of cwnd values at RTT interval 

In the passive approach, packet traces are collected at 
some monitoring point inside a network.  So, the time 
associated with a packet is not the exact time when the node 
focused sends/receives the packet.  Our scheme adopts the 
following approach to estimate cwnd values at RTT intervals 
using the TCP time stamp option.   
 Pick up an ACK segment in a packet trace.  Denote this 

ACK segment by ACK1. 
 Search for the data segment whose TSecr (time stamp 

echo reply) is equal to TSval (time stamp value) of 
ACK1.  Denote this data segment by Data1.   

 Search for the ACK segment that acknowledges Data1 
for the first time.  Denote this ACK segment by ACK2.  
Denote the ACK segment prior to ACK2 by ACK1’.   

 Search for the data segment whose TSecr is equal to 
TSval of ACK2.  Denote this data segment by Data2.   

From this result, we estimate a cwnd value at the timing 
of receiving ACK1 as in (1).   

𝑐𝑤𝑛𝑑 =  ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋  (segments)         (1) 

Here, seq means the sequence number, ack means the 
acknowledgment number of TCP header, and MSS is the 
maximum segment size (MSS).  ⌊𝑎⌋ is the truncation of a. 

Figure 1 shows an example of cwnd estimation.  In this 
figure, MSS is 1024 byte.  Data segments are indicated by 
solid lines with sequence number : sequence number + MSS.  
ACK segments are indicated by dash lines with 
acknowledgment number.  When “ack 1” is picked up, data 
segment “1:1024” is focused on as Data1 above.  ACK 
segment “ack 2049” responding the data segment 
corresponds to ACK2.  The ACK segment before this ACK 
segment (ACK1’ above) is “ack 1” again.  Data2 in this case 
is “2049:3073.”  So, the estimated cwnd is (2049 – 1)/1024 = 
2.  Similarly, for the following two RTT intervals, the 
estimated RTT values are (5121 – 2049)/1024 = 3 and (10241 
–5121) /1024= 5.   

B. Selection and Normalization of Input Data to Classifier 

When a packet is lost and retransmitted, cwnd is 
decreased.  In order to focus on the cwnd handling in the 
congestion avoidance phase, we select a time sequence of 
cwnd between packet losses.  We look for a part of packet 
trace where the sequence number in the TCP header keeps 
increasing.  We call this duration without any packet losses 
non-loss duration.  We use the time variation of estimated 
cwnd values during one non-loss duration as an input to the 
classifier.  However, the length of non-loss duration differs 
for each duration, and the range of cwnd values in a non-loss 
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duration also differs from one to another.  So, we select and 
normalize the time scale and the cwnd value scale for one 
non-loss duration.   

The algorithm for selecting and normalizing input to 
classifier is given in Figure 2.  In this algorithm, the input E 
is as time sequence of cwnd values estimated from one packet 
trace.  The input InputLength is a number of samples in one 
input to the classifier.  In this paper, we used 128 as 
InputLength.  This is because we think that the cwnd vs time 
curve can be drawn by 128 points.  In the beginning, the time 
sequence of cwnd is divided at packet losses, and the divided 
sequences are stored in a two dimensional array S.  Next, the 
first sequence S[0] is removed, because we focus only on the 
congestion avoidance phase.  Then S is reordered according 
to the length of cwnd sequence.  Then the cwnd values for 
one sequence S[t] are normalized between 0 and 1.  The 
normalization is performed in the following way.   

Let 𝑤𝑚𝑎𝑥[𝑡] = max (𝑆[𝑡][𝑢]) 
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1, and 

𝑤𝑚𝑖𝑛[𝑡] = min (𝑆[𝑡][𝑢]) 
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1. 
Each cwnd value in S[t] is normalized by 

𝑆[𝑡][𝑢] ←  
𝑆[𝑡][𝑢]−𝑤𝑚𝑖𝑛[𝑡]

𝑤𝑚𝑎𝑥[𝑡]−𝑤𝑚𝑖𝑛[𝑡]
. 

After that, the cwnd values are resampled into the number 
of InputLength (128 in this paper).  This is done by the loop 
between step 11 and step 15.  As a result, a cwnd sequence in 
S[t] is converted to an array I[t] with 128 elements.  By this 
algorithm, all of the time sequences of cwnd values are the 
arrays with 128 elements whose value is between 0 and 1.   

Figure 3 shows some examples of cwnd estimation.  
Figure 3 (a) and (b) show the estimated cwnd time sequences 
for TCP Reno and CUBIC TCP, respectively.  We focus on 
the non-loss durations as described above.  Reno 1, Reno 2, 

CUBIC 1, and CUBIC 2 in the figure are examples.  The size 
of these sequences differ from each other, both for the time 
scale and the scale of cwnd.  Therefore, it is necessary to 
normalize these sequences.   

Figure 4 shows the results of the normalization for the 
examples shown in Figure 3.  Different scale of cwnd time 
sequences are transformed into a canonical form with 128 
samples in the range of 0 through 1.   

C. DRNN Based Classifier for Congestion Control 

Algotithm Estimation 

We used DRNN for constructing the classifier, which has 
three hidden layers and whose output layer defines the TCP 

 

Figure 1.  Example of cwnd estimation.   

ACK1,
ACK1’

Data1

ACK2

Data2

 

Figure 2.  Selection/normalization algorithm.   

Algorithm 1

1. function Normalize (E, InputLength)
2. S <- DivideAtLoss(E)
3. Delete(S[0])
4. S <- SortBySequenceLength(S)
5. for t = 0 to Len(S) - 1 do
6. S <- MinMaxNormalization(S)
7. end for
8. I <- Array(Len(S))
9. for t = 0 to Len(S) - 1 do
10. I[t] <- Array(InputLength)
11. for u = 0 to InputLength - 1 do
12. SurjectiveMap <- InputLength/Len(S[t])
13. Index <- Trunc(u / SurjectiveMap)
14. I[t][u] <- S[Index]
15. end for
16. end for
17. return I
18. end function

 
(a) Estimated cwnd for TCP Reno 

 
(b) Estimated cwnd for CUBIC TCP 

Figure 3.  Examples of cwnd estimation.   
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congestion control algorithms.  Among the RNN 
technologies, we pick up the long short-term memory 
mechanism [25], which was proposed to handle a relatively 
long time sequence of data.  The input is a normalized time 
sequence of cwnd as described above, with using labels of 
congestion control algorithms represented by one-hot vector.   

In our previous work, we selected the hyper parameters 
given in Table I.  In the work presented in this paper, we 
select the hyper parameter ranges shown in Table II.  The 
input length is the same as that of the previous work.  We use 
three hidden layers and the number of neurons are as 
specified in the table.  As for the optimizer, the learning rate 
and the weight decay, we propose the alternatives shown in 
the table.  We perform the hyper parameter tuning based on 
the target area in this table.   

In the training of the classifier, we use the mini-batch 
method, which selects a specified number of inputs randomly 

from the prepared training data.   The mini-batch size will be 
determined for individual training.  The training will be 
continued until the result of the loss function becomes smaller 
than the learning rate.   

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

 Figure 5 shows the experimental configuration for 
collecting time sequence of cwnd values.  A data sender, a 
data receiver, and a bridge are connected via 100 Mbps 
Ethernet links.  In the bridge, 50 msec delay for each direction 
is inserted.  As a result, the RTT value between the sender 
and the receiver is 100 msec.  In order to generate packet 
losses that will invoke the congestion control algorithm, 
packet losses are inserted randomly at the bridge.  The 
average packet loss ratio is 0.01%.  The data transfer is 
performed by use of iperf3 [26], executed in both the sender 
and the receiver.   The packet traces are collected by use of 
tcpdump at the sender’s Ethernet interface.  We use the 
Python 3 dpkt module [27] for the packet trace analysis.  We 
changed the congestion control algorithm at the receiver by 
use of the sysctl command provided by the Linux operating 
system.   

The targeted congestion control algorithms are TCP Reno, 
HighSpeed TCP, BIC TCP, CUBIC TCP, Scalable TCP, 
Hamilton TCP, TCP Westwood+, TCP Vegas, TCP Veno, 

and BBR.  We collected more than 1,500 samples for 

 

Figure 4.  Examples of normalization.   

TABLE I.  HYPER PARAMETERS OF CLASSIFIER IN OUR PREVIOS 

WORK.   

 

TABLE II.  HYPER PARAMETER RANGES IN THIS WORK.   

 

 

Figure 5.  Experiment configuration.   

Sender Receiver
100 Mbps 
Ethernet

Bridge

inserting 
100msec RTT 

and 0.01% 
packet error

100 Mbps 
Ethernet

capturing 
packets
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individual algorithms, and prepared 1,000 samples as training 
data, 250 samples as verifying data, and 250 samples as test 
data.   

B. Results of Congestion Control Algorithm Estimation 

First, we re-evaluated the performance of our previous 
approach.  The result is shown in Figure 6.   The total 
accuracy for ten congestion control algorithms was 42.8%, 
which is rather worse than the result described in our previous 
paper [19].  This means that our previous classifier will 
depend largely on the prepared training data.   

So, we applied the same training data and verifying data 
for a DRNN based classifier with three hidden layers and 
selected optimal values for the hyper parameters mentioned 
in Table II.  We tried to look for optimal values 100 times by 

the mini-batch method using 256 as the mini-batch size.  
Table III shows the values of hyper parameters obtained by 
this tuning.   

Figure 7 shows the learning curve for ten congestion 
control algorithms using the DRNN based classifier with the 
selected hyper parameter values.  The horizontal axis of this 
figure indicates the epoch, which is the number of training 
and verifying trials.  The vertical axis indicates the accuracy 
for the training process and the verifying process.  The blue 
line is the accuracy for the training process and the green line 
is for the verification process.  This result shows that the 
classifier learns the model for estimating congestion control 
algorithms.  Figure 8 shows the confusion matrix for this 
experiment.  By comparing Figures 6 and 8, we can conclude 
that the DRNN based classifier estimates the congestion 
control algorithms much better than our previous classifier.  
The total accuracy was 82.9%, which is higher than that of 
our previous work.  The only problem is that it still confuses 
TCP Reno and TCP Vegas.  The further studies are required.   

As the last analysis, we evaluated the generalization 
accuracy for our previous work and this work using the 10-
fold cross-validation.  We divided the training data into ten 
folds, and selected one fold for the validation and used the 
rest folds for the training.  Figure 9 shows the result.  The 
vertical axis is the validation accuracy.  In our previous 
classifier, the validation accuracy sometimes drops to 40%, 
although it goes up 70%.  On the other hand, our new 
classifier provides 70% through 80% accuracy stably.   

 

V. CONCLUSIONS 

In this paper, we showed a result of TCP congestion 
control algorithm estimation using a Deep Recurrent Neural 
Network (DRNN) based classifier.  From packet traces 
including both data segments and ACK segments, we derived 
a time sequence of cwnd values at RTT intervals without any 
packet retransmissions.  By ordering the time sequences and 

 

Figure 6.  Confusion matrix for previous approach.   

 

Figure 8.  Confusion matrix for this approach.   

TABLE III.  TUNED UP HYPER PARAMETER VALUES.   

 

 

Figure 7.  Confusion matrix for previous approach.   
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normalizing in the time dimension and the cwnd value 
dimension, we obtained the input for the DRNN classifier.  
As the results of applying the proposed classifier for ten 
congestion control algorithms implemented in the Linux 
operating system, we showed that the DRNN based classifier 
can estimate ten algorithms effectively, with a problem that 
TCP Reno and TCP Vegas are difficult to discriminate.  This 
result is much better than our previous classifier that used a 
simple recurrent neural network.   
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Figure 9.  Generalization accuracy of previous work and this work.   
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