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Abstract—Power line communication is an emerging commu-

nication technology for the home area network of Smart Grid.
To evaluate the performance of power line communication,

in our previous work, we derived the closed-form probability
density function for the real part of amplitude distribution

of Nakagami-like background noise. With this result, in this
paper, we investigated the bit error rate performance of

binary modulated signal with a single channel transmission.
We derived an expression of bit error rate performance and

verified its validity through simulations.
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I. INTRODUCTION

Smart Grid becomes the focus of public attention as

a next-generation energy efficiency optimization. In Smart

Grid, various communication technologies enable a two-

way exchange of energy consumption and control data via

wired/wireless medium. Power line communication (PLC)

has been adopted as a communication technology for the

automatic meter reading (AMR) [1] and, recently, massively

deployed in Korea. Now, PLC is a candidate technology for

Smart Grid as a home area network (HAN) communication

infrastructure.

To adopt the PLC technology effectively, there is a need

for the channel modeling of background noise, impulsive

noise, etc. [2], [3]. The channel modeling for the power-

line channel has been extensively analyzed and simulated

by many researchers. They tried to find the exact (or

approximated) channel parameters such as noise, impedance,

and attenuation. Among the various parameters for channel

modeling, noise is important to evaluate the performance

of PLC system. However, due to the nature of power-

line channel such as various topologies, connected electrical

appliances, types of electrical loads, etc. , the noise modeling

could not be easily described as a mathematical expression.

Recently, it was proposed that the amplitude of back-

ground noise in power-line channel follows the Nakagami-m

distribution [4] [5]. The bit error rate (BER) performance

of the PLC system was also evaluated for both single and

multi-channel transmission. In [5], however, the BER per-

formances are not expressed as a closed-form mathematical

expression, there is thus work to be done yet. We briefly

review the previous work in Section II and derive the BER

performance in Section III. The mathematical expression

gives the system designer a better understanding of the

system design and a performance prediction for his system.

II. PDF OF BACKGROUND NOISE FOR PLC CHANNEL

We derived the closed-form probability density function

(PDF) of the real part noise, y, for power-line channel [6],
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πΓ(m)
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for 0 < m < 1 and m 6= 1
2

, where Γ(·) is the Gamma

function, m and Ω are parameters defined as Ω = E[α2] =
α2, E[x] = x denoting the expected value of x and m =
(

α2

)

2

(α2−α2)2
> 0 , which comes from the amplitude PDF of a

power-line background noise characterized by Nakagami-m

distribution:

f(α) =
2mmα2m−1

Γ(m)Ωm
e−(m/Ω)α2

, α ≥ 0. (2)

Ω denotes the power of the amplitude, α. Originally, the

Nakagami-m distribution represents the fading amplitude

of wireless communication channel. It spans the one-sided

Gaussian, Rayleigh, Hoyt, Rice and non-fading channel as

m varies [7]. Furthermore, the confluent hypergeometric

function of the first kind, 1F1, as [8, Chap. 9.2] :
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is used for (1). For special case of m = 1
2 , we get

f(y) =
1

π

√

1

2Ωπ
e−
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4Ω K0

(

y2
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)

, (4)

where K0(z) is the modified Bessel function of the second

kind of order 0. The accuracy of the analyzed closed-form

expression in (1) has been verified in [6]. Eqn. (1) shows
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well evaluation of the noise modeling for Nakagmi-like

background noise.

III. DERIVATION OF THE BER PERFORMANCE

In this section, we derive the BER performance of binary

data transmission with the noise as described in section II.

Fig. 1 demonstrates the system model for binary transmis-

sion. A transmitter sends binary data, A or −A, then, the

decision metric at the receiver, r, is defined as

r = ±A + y, (5)

which is added by Nakagami-like background power-line

noise, y. We assumed the perfect time and carrier synchro-

nization in demodulation for the ease of analysis.

Then, the average bit error rate (BER), Pe, can be ex-

pressed as

Pe = p(A)P (E|s = A) + p(−A)P (E|s = −A) (6)

where p(A) is the probability that the transmitter sends data

A, and P (E|s = A) is the probability of error decision at the

receiver when data A is transmitted. With equal probability

of transmitting A and −A, Eqn. (6) is represented as

Pe =
1

2
P (E|s = A) +

1

2
P (E|s = −A). (7)

Since the noise PDF, p(y), is symmetric about y = 0, we

get

Pe = P (E|s = A) = P (E|s = −A) =

∫ ∞

A

f(y)dy. (8)

By substituting Eqn.(1) into Eqn. (8), we obtain
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Letting
√
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√
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Applying Kummer Transform [8, (13.1.27)],

1F1(a, b, z) = ez
1F1(b − a, b,−z), (11)

Threshold

comparison:

+A or - A

+A
or

- A

Background noise, y

Decision

Figure 1. System model for binary transmission

to Eqn. (28) gives
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In Eqn.(31), the first term in the integration is
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Now, we treat the integration of the second term in Eqn.(31),
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and substituting Eqns.(16) and (24) into Eqn. (31) gives Eqn.

(26). Eqn. (26) represents the BER performance of binary

transmitted signal without integration for the Nakagami-like

power-line background noise.

Now, we derive the BER performance for m = 1
2 as

a special case. By substituting Eqn.(4) into Eqn. (8), we

obtain
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Letting y2
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Eqn. (28) can be divided into two terms;
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Figure 2. Simulated and analyzed BER performance under Nakagami-like
background noise with m = 0.5,0.6,0.7,1.0

where Re µ > | Re ν |, Re (α + β) > 0 for µ = 1
2 , ν = 0,

α = 1, β = 1, to Eqn. (29) gives
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Eqn. (31) represents the BER performance of binary trans-

mitted signal with Nakagami-like power-line background

noise for m = 1
2 .

IV. NUMERICAL RESULTS

Numerical examples for the BER performance of binary

modulated receiver under Nakagami-like background noise

are presented through both analysis and simulation. The

analyzed BER performance is obtained using Eqn.(26). For

the ease of analysis, we assumed the transmitted data A = 1.

The simulated performances are obtained by using the Monte

Carlo method with 107 binary transmitted data. Fig. 2

compares the simulated and analyzed BER performance

with m = 0.5, 0.6, 0.7 and 1. As m increases, the BER

performance improves since the Nakagami-like background

noise, y, has the shape of PDF close to Gaussian PDF, with a

result similar to [5]. Thus, the signal-to-noise ratio increases

as m increases. Simulation results with various m values

show good agreement between simulations and analysis up

to the SNR of 10 dB.

V. CONCLUSION

In this paper, the BER performance of binary trans-

mitted signal under Nakagami-like background noise was

presented. We derived the BER performance with conven-

tional functions such as the hypergeometric function and the

Gamma function. Simulated results show the validity of the

derived BER performances. With these results, a PLC system

designer can easily predict and analyze the performance of

HAN system. The BER performance with impulsive noise

and the transmission of multi-channel modulated signal

would be the focus of the future work.
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