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Abstract—In this paper, problems of privacy protection and
power pricing for a new generation of electric power networks
are addressed simultaneously. For an adopted electric power cost
function, effects of the application of a privacy algorithm are
studied. It is illustrated that a privacy algorithm can affect the
price of the electric power by modulating the consumer’s demand.
It turns out that the effect is more pronounced for the networks
with high uncertainty and inefficiency in power production.
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I. INTRODUCTION

The smart grid is a recent paradigm representing a large
number of different technologies aiming at revitalizing the
electric power network. One of the goals of the smart grid
is to bring intelligence into the existing aging network to
improve its efficiency and robustness such that it will be more
capable to respond to new higher consumption demands. (It is
expected that the electric power consumption will be tripled
worldwide by 2050 [1].) One way to achieve this is to employ
communication networks which will enable the scanning of
the power network state and carrying out appropriate actions
to provide its stability and functionality.

Other factors that necessitate this metamorphosis is the
introduction of renewable resources and electric vehicles into
the network. The power production based on the renewable
resources, such as solar and wind energy, may experience
rapid changes due to weather conditions. This may cause large
voltage variations which is not desirable from the point of
view of the network stability. On the other hand, the electric
vehicles represent a considerable new load, but in the same
time they can serve as storage units for energy.

The new nature of the electric power network in terms
of the production uncertainty and digitalization will affect
overall network design including two network features, privacy
and electric power price. The focus of this paper is an
interplay between the consumer privacy protection and pricing
of the electric power subject to the previous conditions which
characterize the new electric power networks.

A. Contributions

To study the effect of privacy algorithms on the pricing of
the electric power, we adopt the pricing model found in [2].
This model relates the price with the power consumer demand,
and in the same time reflects the efficiency (or equivalently,
uncertainty) of the power production. We employ the algorithm
found in [3], and compute the price of the electric power for
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a given demand. This price is compared with the price when
the algorithm is not used.

The results and contributions of this paper are the following:

e« We use a Markov chain (which has already been tested
in [4] for a single user power consumption modeling) to
model a consumer group demand.

o The privacy algorithm is applied for different number of
users, different sizes of batteries and for different levels
of the network efficiency.

« Empirical cumulative distribution functions for the elec-
tric power demand and electric power price are computed
for different model parameters.

« Relative changes in the power price which compare the
case when the privacy algorithm is used and not used are
computed for different battery sizes and different power
production efficiencies.

o The effect of the new network architecture on the privacy
algorithms applications is discussed.

The paper is organized as follows. Section II contains
background material on the smart grid privacy and the pricing
of the electric power. Section III gives the privacy system
model. Section IV describes how the consumers’ demand
can be modeled by Markov chains. Section V introduces the
electric power price model. In Section VI, the simulation
results are provided accompanied with the result discussion.
Section VII gives concluding remarks.

II. RELATED WORK
A. Consumer Privacy Protection

As mentioned above, the main assumption for the func-
tioning of the smart grid is its ability to collect and store
the information from the network continuously (such as
power consumption) at even household level with increased
granularity [5]. Although current policy regulations in the
US and elsewhere are restrictive from the point of view of
the collected data reuse [5], the storage of these data gives
a possibility of their misemployment. If, in addition, the
collected and stored data become available to other parties
(besides utility companies) such as law enforcement agencies,
marketing and malicious individuals, this could represent a
privacy and security risk for consumers. A potential threat
can be illustrated by the following example; the amount of
information obtained from the household smart metering data
may be demonstrated with the use of non-intrusive appliance
load monitors (NALM), which analyze collected power con-
sumption data to track appliance usage patterns [6], [7]. The
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author of [8] argues that frequently collected metering data,
e.g. at 15 minute intervals, may provide a window into the
activities within homes, exposing a wealth of private activities
to anyone with access to energy usage information.

To protect privacy, Kalogridis et al. [3] proposed a simple
home power load management scheme. The power flow within
a home may be controlled by running a portion of a consump-
tion demand off a rechargeable battery, rather than directly off
the grid. That is, smart metering data privacy can be protected
by using a battery to mask power usage profiles.

B. Pricing of Electric Power and Privacy

As shown in [3], a consequence of the privacy algorithm
usage is that it modifies the probability distribution of a
power consumption (demand) as seen by the utility company.
Because the electric power production cost depends on the
demand [2], this means that the price of the electric power
production can be different comparing to the case when the
privacy algorithms are not used. Even more, in the smart grid,
other factors to influence the probability distribution of the
demand are the renewable resources and the battery storage
implying that the privacy algorithms are only one part of this
price equation.

That is why the goal of this paper is to explore to what
extent the privacy protection can modulate the consumers’
demand and the price of the electric power.

III. SMART GRID PRIVACY SYSTEM MODEL
A. Appliance load signature masking

In this section we give a brief overview of the privacy
protection scheme introduced in [3]. The system assumes the
existence of 1) An energy storage facility, such as Electric
Vehicle (EV), and 2) An ‘electrical power routing’” mechanism,
where this term is taken to mean the selective control and
power mixing of a number of electricity sources to cover con-
sumption demands [9]. The system may be implemented with
a rechargeable battery and a bidirectional inverter to optimize
the flow and storage of electricity. Optionally, the system may
also control energy generated locally from photovoltaic (PV)
panels or wind turbines.

An overview of the privacy system can be seen in Fig. 1,
comprising the following sub-systems.

o Metering mechanism: is used to obtain a set of electric-
ity measurements from the smart meter or from smart
appliances.

o Event detection: analyzes metering data in order to detect
an occurring, or predict an imminent, event that may
contain ‘privacy information’. For example, this may be
a power trigger generated by a particular event, such as
a change in power consumption (e.g. appliance switch-
on/off event).

e Privacy protection algorithm: configures power routing to
mask a detected consumption event. Different protection
settings may be edited with the help of an in-home display
(IHD).
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Fig. 1. Privacy protection system overview.
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Fig. 2. Battery power mixing moderation model.

o Power routing: mixes a private (i.e. non-utility) energy
resource (e.g. rechargeable battery) with utility energy to
meet appliance demands.

The main objective is to ‘detect a privacy threat’ and
respond by ‘configuring power routing’ in order to mask
appliance load signatures. For simplicity, we assume that the
system can perform such tasks in real-time.

B. Privacy protection water-filling algorithm

We consider the simple case where a battery is discharged
or recharged with a pp(t) average power over a At metering
interval in order to ‘disguise’ a given consumption load p(t).
With the use of battery power mixing, the home power trace
becomes p; = p—pp—prL, where pr.(t) is the (average) battery
power loss due to charging/discharging during (¢ — At, t); this
model is illustrated in Fig. 2. (In this paper the assumption is
that a battery can fully discharge/recharge without any losses,
i.e. pr, = 0.) We say that p; is introduced by a transformation
G on the (real-time) load demand p such that p; = Gp. We
then refer to G as privacy (protection) algorithm.

In our experiments we use the privacy algorithm in [3],
which simulates water-filling [10], as outlined in Table I
Energy e(t) denotes the (cumulative) energy consumed up to
time ¢, with e(0) = 0, and p(t) = w.

Suppose that the battery has a finite capacity F¢o, and
a maximum discharge and recharge power of Pp and Pg,
—Pr < pgp(t) < Pp, for all t. The proposed algorithm uses
the battery in order to resist against power load changes. That
is, the algorithm will force the battery to either discharge or
recharge when the required load p(t) is either larger or smaller
(respectively) than the previously metered load p;(t — At).
The power and duration of battery charging/discharging are
configured to equal the power differences, unless battery
bounds are reached.
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TABLE I
BATTERY WATER-FILLING ALGORITHM.

Current battery charge level: pp(t) = e;(t) — e(t — At) + p(t)At
if D(t) = p(t) — p;(t — At) > 0 (discharging case) then
if There is enough battery energy/power to provide D(t) for A¢ then
Mix in battery power so that p; (t) = p;(t — At)
else
Use maximum battery power while B(t) > 0
end if
end if
if C(t) = p;(t — At) — p(t) > O (charging case) then
if Enough battery ‘emptiness’ to absorb C'(t) for At then
Recharge battery so that p; (t) = p;(t — At)
else
Fully recharge battery
end if
end if
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Fig. 3. Load signatures before and after the water-filling algorithm using

different batteries: a) B1 = 500W/1kWh and b) Bz = 2kW/4kWh.

The effect of the water-filling algorithm can be seen in
Fig. 3: the bigger the battery size, the more p is masked. In
Fig. 3, it is assumed that Pr = Pp, and the battery is denoted
by B = PD/Ec.

IV. POWER CONSUMPTION MODELING

In [4], we demonstrated how a simple Markov chain
model could be applied in representing the power consump-
tion within a household. This representation relies on the
clustering analysis of the measured data obtained from the
measurement campaign performed during 30 days in several
apartments [4]. Denote the Markov chain representation by the
sequence of Markov chain states X := {X(k)}r>0, where
the state X (k) € {z1,...,xzn}. The Markov chain X is
completely defined by the transition probability matrix A (k)
and the vector of state probabilities P(k) := [Pr{X (k) =
x1},...,Pr{X (k) = xx}|T, where T denotes the transpose
of the vector. The transition probability matrix A contains con-
ditional probabilities a;; := Pr{X(k + 1) = z;| X (k) = z;}.
Under the assumption that the power consumption can be
described by a stationary process, the evolution of the state
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probability vector is given by
P(k+1) = AP(k), (1)

when P(0) is known.

It is shown in [4] that an accurate prediction of the power
consumption can be carried out via its Markov chain represen-
tation. The Markov model is used in Section VI to describe
the electric power demand of large number of consumers.

V. ELECTRIC POWER PRICE MODEL

The price model adopted in this paper had already been
used in the smart grid literature [11], [12], to adapt power
consumption demand in order to optimize its utility function.
Next, this model will be briefly described, and for more details,
readers are referred to [2].

The price model assumes that there are N, power producers,
which use the same technology to produce the power. Between
the power producers and the consumers, there are several re-
tailing companies which buy the power from the producers and
sell it to final consumers. Both, the producers and the retailers
can sell the power at a current moment or in forward market
(in future). When the physical production of the producers is
equated to the total retailer demand (which depends on the
consumer demand), profit-maximizing price of each producer
is given by

Py = a(2>c ; @
N P

Here, (Q is the total retailer demand, a is a proportionality
constant, and ¢ > 2 is a constant which is related to the energy
production efficiency. The expression given by (2) reflects a
few important characteristics of the power production. First,
the price is an increasing function of the demand (), which
captures the fact that the electric power comes from a variety
of different sources such as hydro, nuclear, oil and coal plants
each having a different cost of production. Second, when
the power comes from inefficient resources, the constant c is
chosen to be larger than 2 which implies an increasing price
rate vs demand (). In current systems, ¢ can take value up to
5 [2].

VI. SIMULATION RESULTS ANALYSIS

To study the influence of the privacy algorithm on the price
of the electrical power production, we assume that the number
of homes (consumers) within one area is 300. According to
Section IV, each consumer’s power demand is modeled by a
Markov chain with appropriately chosen transition probability
matrix A. Here, the consumers are considered to have a similar
pattern of consumption, and the matrix A is taken from [4].

It is assumed that each house will apply the same algorithm
and a battery of the same size to protect its privacy. The algo-
rithm will be tested for three battery sizes, By = 500W/1kWh
By = 1kW/2kWh and Bs = 2kW/4kWh. It is interesting to
note that charging rates for EVs could be from 7kW to 10kW
leaving opportunity for usage of larger batteries if needed.
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The results are generated in the following way. First, the
power demands of all 300 consumers obtained when the
privacy algorithm is not applied are summed up, generating the
overall cumulative power demand for one area. Thereafter, the
price of the electrical power production is obtained from (2)
*on an hourly’ (OAH) basis; the time axis of 30 days is divided
into the hour intervals, and the value of the cumulative energy
demand for each hour interval is replaced in (2). The same
procedure is repeated when the privacy algorithm is applied
to modulate the demand of each of all 300 consumers. This
OAH approach is in line with [2], since the most active electric
power markets are for the next-hour and next-day delivery.
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Fig. 4. From top to bottom: 1) The instantaneous power demand for 300
consumers, original and transformed (porg (t) and pyra(t)), 2) Energy demand,
original and transformed (Qorg () and Qrq (¢)), computed on an hourly basis,
3) The OAH relative price difference between the original and transformed
demand §(t). The battery size is Ba = 1kW/2kWh.

Fig. 4 shows the instantaneous power demands (porg(t) and

Ptra(t)), the energy demands (Qorg(t) and Qyry(t)), and the
OAH relative price difference

6(t) = (Pw,org(t) — Pw,ra(t))/Pw,org(t) 3)

for 300 users for a fraction of time measured (14 hours) out
of 30 days. The battery size is By = 1kW/2kWh. The figure
compares two cases, when the privacy algorithm is not used
(original demand giving rise to the subscript ‘org’), and when
the privacy algorithm is used (transformed demand giving rise
to the subscript ‘tra’). It can be seen that due to the application
of the privacy algorithm, the OAH price Py (ra(t) may vary
by even 50% ((t) = £0.5) as compared to Py ,org(t). Here,
the parameter ¢ = 4 implying high uncertainty of the electric
power production. That the cumulative distribution (cdf) of the
transformed demand fg (ra is indeed changed as compared to
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the cdf of the original demand fq org is depicted in Fig. 5
and 6.
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Fig. 5. The cdfs of the demand fq org and fg (ra for the 200 consumers.
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Fig. 6. The cdfs of the demand fq org and fg (ra for the 300 consumers.

In addition, the cdfs of the prices fporg and f pitra are
shown in Fig. 7 and 8. For a smaller value of ¢ (¢ = 2 meaning
smaller production uncertainty), the difference in the cdf of
the original fporg and transformed demand fp ra is not so
obvious. However, when ¢ = 4 (meaning larger production
uncertainty), the difference between cdfs is obvious as well as
the difference between the cases of ¢ = 2 and ¢ = 4.

The tables II, IIT and IV contain the relative price differences

Om = (Plyvl,org - P%l,tra)/P;Ir/l,org “

of cumulative (30 days) prices between the original and
transformed demands for different numbers of the consumers
and for 3 different battery sizes. Py g and Py, are the
cumulative 30 day prices of the original and transformed
demand, respectively. The results suggest that: 1) For larger

uncertainty in the electric power production (c =4 or ¢ = 5),
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Fig. 7. The cdfs of the price fporg and fp (ra for the 200 consumers.
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Fig. 8. The cdfs of the price fporg and fp tra for the 300 consumers.

the relative price difference is susceptible to the value of
the consumer number, and it gets smaller as the number of
consumers grows, 2) For smaller uncertainty in the production,
the relative price difference is small, 3) At least for this
example, the price of the transformed demand P&tra is larger
than the price of the original demand P%,org for larger
uncertainty (¢ = 4 or ¢ = 5) for all three batteries.

TABLE 11
CUMULATIVE PRICE RELATIVE DIFFERENCE FOR B1 = 500W/1KWH
Consumer # 100 150 200 250 300
om (%) forc=2 024 0.26 0.24 0.24 0.23
om (%) forc=4 -258 -1.65 -1.29 -0.84 -0.61
om (%) forc=5 -542 -368 296 -2.08 -1.62

Hence, we next discuss the influence of two parameters
on the price, the number of consumers and the production
uncertainty as described by c. The results suggest that if the
same pricing model is applied for large number of consumers,
the cumulative price for longer time period will be similar
regardless of the application of the privacy algorithm. How-
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TABLE III
CUMULATIVE PRICE RELATIVE DIFFERENCE FOR Bz = 1KW/2KWH

Consumer # 100 150 200 250 300
Om (%) for c =2 0.56 0.62 0.62 0.6 0.6
O0m (%) forc=4 -642 382 -266 -187 -1.25
Om (%) forc=5 -1406 -88 -646 -481 -3.54

TABLE 1V

CUMULATIVE PRICE RELATIVE DIFFERENCE FOR B3 = 2KW/4KWH

Consumer # 100 150 200 250 300
om (%) forc=2  0.68 0.69 0.69 0.66 0.64
Om (%) for c =4 -3.7 -1.69  -1.05 -046 -0.29
O0m (%) forc=5 -8.52 -4.5 -3.32 207 -1.66

ever, it is an open question if this will remain the same when
dynamic pricing models (demand-response) are applied per
consumer and not to one large group of consumers. From
the point of view of the production uncertainty, it could be
expected that, due to the presence of the electric vehicles
and new sources of the electric power, the parameter ¢ might
be larger. Therefore, the effect of the application of privacy
algorithms on pricing could be more pronounced.

Although, the cumulative price relative difference &,, is
small for long time interval, it is interesting to notice that OAH
relative price difference §(¢) can be large. For three different
battery sizes discussed earlier and ¢ = 4, §(t) € [—0.56,0.89]
for By, 6(t) € [—1.35,0.97] for By and 6(¢) € [—1.48,0.98]
for Bs. Therefore, it seems that this interval size increases as
the battery size increases. This instantaneous difference could
be important for the electric power producers and retailers
when they negotiate the deal between themselves.

VII. CONCLUSION

The smart grid should transform existing electric power
network into very efficient, robust and flexible network which
will use some of the latest achievements in the communication
and control engineering and computational science. This paper
considers the interaction between two important problems
related to the design of the smart grid, privacy and pricing. We
show by means of simulations that privacy algorithms affect
the cdf of consumers’ demand, and in that way can change the
price of the electric power production. The level of influence
depends on: 1) The size of the network, 2) The efficiency of
the power production (through the parameter ¢) and 3) The
length of the observation interval. This could be of interest to
electrical power producers, retailers and designers.
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