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Abstract—We describe a novel framework for designing and 

implementing agent based simulations of the smart electrical 

grid. The framework is based on two primary concepts. First, the 

eletrical grid system is separated into semi-autonomous 

microgrids, each with their own set of hierarchically organized 

agents. Second, models for automating decision-making in the 

grid during crisis situations are independently supported. 

Advantages of this framework are scalablity, modularity, 

coordinated local and global decision making, and the ability to 

easily implement and test a large variety of decision models. We 

believe that simulators based on this kind of framework will be 

valuable for evaluating the effectiveness and reliability of 

alternative methodologies for configuring automated self-healing 

in the grid with little human intervetion. The primary 

achievement of work is the software design for directly 

supporting decision model independence.  

Keywords-Multi-agent Multi-agent System; SmartGrid; 

Distributed Computing; Intelligent Systems; Self-healing. 

I. INTRODUCTION 

A primary objective of smart grid software architectures is 

to provide intelligence and communications technology to 

support powerful and efficient automation. A power system is 

exposed to faults created by natural calamity, terrorism and 

equipment or operator failures. Once a fault occurs in a power 

system, it is necessary to quickly isolate the malfunctioning 

components from the rest of the network to minimize outages. 

A power failure can range in magnitude and impact from a 

relatively modest curtailment to a catastrophic regional 

blackout. Because most power failures cannot be prevented 

[6], it is desirable for the Smart Grid to have self-healing 

capabilities that respond appropriately to disruptions when 

they occur, restore the power system to a healthy state, 

minimize consumer outages, and involve little or no manual 

intervention. 

Due to the large scale and complexity of the Smart Grid, 

anticipating all possible scenarios that lead to performance 

lapses is difficult [7]. There is a high degree of uncertainty in 

accurately estimating the impact of disruptions on the 

reliability, availability and efficiency of the power delivery 

system. These uncertainties result in hesitation on the part of 

decision makers in committing to smart systems for grid 

management. We report here on research that is focused on the 

use of simulation models to promote trust in Smart Grid 

solutions in safe and cost effective ways. 

Recently developed Smart Grid simulators and analysis 

tools include GridLAB-D and the Graphical Contingency 

Analysis (GCA). Both are projects developed at the U.S. 

Department of Energy's (DOE) Pacific Northwest National 

Laboratory (PNNL). GridLAB-D is a sophisticated simulator 

that provides detailed information of the power grid’s state, 

including power flow, end-use loads, and market functions and 

interactions. The GCA is a visual analytic software tool that 

aids power grid operators in making complex decisions. By 

using human friendly visualizations and classifications of 

critical areas and by allowing the operators to simulate 

possible actions and their consequences, the tool helps human 

operators to analyze large amounts of data and make decisions 

in a reasonable amount of time. Due to the large amounts of 

data representing the grid status at any given time, even when 

aided by simulation and analysis tools, there are still 

limitations on how quickly human operators can make 

efficient decisions in near real time. 

Because of the limitations of human operators in 

comparison with automated control, there is considerable 

research being done on how to fully automate control of the 

electrical grid by using software agents. A software agent is an 

encapsulated software system situated in an environment 

where it can conduct flexible and autonomous actions to meet 

its design objectives [2]. A Multi Agent System (MAS) is 

composed of multiple interacting intelligent agents that can 

sense, act, communicate and collaborate with each other. In 

our previous work [1], we presented guidelines for an agent-

oriented smart grid simulation design. The agents in our MAS 

exhibit autonomy or partial autonomy, are decentralized, and 

have local views and knowledge. This design is related to 

other agent-based simulators that have been developed 

[4][5][16][17].  

A fully automated grid relying on a multi-agent system will 

also presents some challenges and disadvantages along with its 

many advantages however. For example, developing agents 

able to function on par with human experts for the various 

scenarios that can happen in the smart grid, this will require a 

significant amount of research and experimentation. Relying 

on autonomous agents will also introduce a number of security 

issues. An agent could be hacked and controlled by an attacker 

who could manipulate the decisions and communications of 

the agent to perform malicious behavior. The trustworthiness 

of any particular agent or even the system as a whole could be 

called into question because of both the security risks and the 

general difficulty in replicating human expertise. Much must 

be done in order to overcome these inherent disadvantages of 

autonomous agent based systems. 
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Supporting knowledge bases and decision-making 

capabilities within individual agents is a key challenge in 

Smart Grid designs. In order to successfully evaluate 

intelligent systems that allow agents to employ appropriate 

decision models for self-healing scenarios that can occur in the 

Smart Grid, intensive testing should be done using simulators. 

We are carrying out extensive experimentation with our own 

simulator based on the discussed framework. The following 

types of questions are being answered through 

experimentation within the simulator.  

 What decision model is most appropriate for handling 
self-healing in a particular situation in the smart grid?  

 What decision model can guarantee that reliability and 
efficiency is maximized for a given power system?  

 How can decisions be made quickly enough to avoid 
potential cascading failures, yet be deliberate enough to 
maintain high efficiency in the overall system?  

Unfortunately, previous smart grid simulators, despite 

their valuable contributions, do not provide suitable simulation 

frameworks for answering these kinds of questions. 

In this work, we present a simulator design aimed at 

directly supporting the research and experimentation required 

for full automation of distributed decision making in the grid. 

Our design assumes that the Smart Grid is naturally 

modularized into microgrids. A microgrid is a regional 

grouping of electrical generation, storage and consumption 

units that can be isolated from the centralized grid. microgrids 

typically have some ability to function autonomously if 

necessary. The new framework is fundamentally based on 

Distributed Control and Decision Model Independence. This 

paper is divided as follows: Section II discusses the previous 

research works in more details. Section III discusses the 

Distributed Control aspects of the simulation framework, 

including its advantages challenges. Section IV discusses 

Decision Model Independence. In section V we present our 

conclusions and describe future work. 

II. LITERATURE REVIEW 

There have been several attempts to create simulation 

systems for a smart grid using multi agent systems. In one of 

the earliest works [3], the authors created an accurate hardware 

simulation of a simple microgrid using MATLAB and 

Simulink to model the functionality of low level electrical 

circuits. Their agent implementation was very simple, with 

voltage monitoring to activate a circuit breaker and secure 

critical loads, with no complex decision making. Their focus 

was on showing that a microgrid can be managed as part of the 

global grid and is still able to work autonomously in an 

islanded mode. Their simulation of agent interaction and 

collaboration was not thoroughly tested, evaluated or 

analyzed. Their contribution was valuable in showing that the 

smart grid could be modularized into smaller independent 

units with their own agents and that those modules could work 

autonomously and as part of the whole. 

In [10], a centralized multi-agent framework for power 

system restoration was designed. In [11] and [12], 

improvements were done to the framework while still 

maintaining a centralized design. Multi-Agent systems that 

utilize centralized control are typically not able to respond 

quickly enough to perform global decisions and actions in near 

real time. Thus, such systems fall short of being able to 

address critical situations like a cascading failure that could 

have catastrophic consequences if not dealt with promptly. In 

[13] and [14], new multi-agent frameworks for the power grid 

based on decentralized multi-agent systems are presented. The 

frameworks presented in [13] and [14] are decentralized multi-

agent systems, but have the disadvantage of only allowing 

nodes to communicate with their neighbors. When nodes only 

acquire information from their neighbors, it greatly limits the 

quality of the decisions that the nodes can make, due to 

insufficient data. In [15], a hybrid multi agent framework that 

combined centralized and decentralized architectures was 

proposed. All of these approaches are topology dependent, 

with the exception of [14] and [15], which used a topology 

independent framework. By allowing the framework to work 

irrespective of the physical structure of the grid, a high level of 

flexibility and scalability can be obtained. Other agent-

oriented Smart Grid designs are described in [4] and [5]. 

In [8] and [1], we describe our MAS simulator, including 

innovations in supporting power grid topology, dynamic agent 

generation, and scalability. The simulator is based on a 

topology independent framework that places the physical 

aspects of the power grid and the actual agents in separate 

independent layers.  

A major goal of our simulator is to support the appropriate 

decision models for the various self-healing scenarios that can 

occur. This addresses the previously unmet need to allow 

researchers to easily configure the type of decision model used 

by the agents, to compare how agents perform in the same case 

scenario when using different reasoning processes. More 

importantly, we also address the need for researchers to 

develop their own models and easily integrate them in the 

simulator for testing. 

The framework we present in this research work addresses 

many of the shortcomings of traditional centralized and 

decentralized schemes by utilizing a hierarchical distributed 

control scheme. It also supports direct comparisons among 

different decisions models, by implementing them in a 

separate independent layer from the agents. We see 

considerable potential for the simulator to help in the building 

of smarter electrical grid architecture.  

III. DISTRIBUTED CONTROL 

To address the large size and complexity of the smart grid, 

we break the problems that were handled by a centralized 

controller into smaller problems handled by multiple 

distributed controllers. It is critical to utilize a granularity that 

allows the units to work independently and autonomously as 

well as to integrate and coordinate with each other in order to 

guarantee that the system works efficiently as a whole. 

Our design is inspired by the concept of an Intelligent 

Autonomous Distributed Power System (IDAPS) that was 

proposed by the Advanced Research Institute of Virginia 

Tech. [9]. An IDAPS is essentially a microgrid that contains 

sufficient intelligence and resources to be fully autonomous, 

yet function within the global grid. We specifically design 

microgrids so that they are capable of disconnecting 

themselves from the rest of the grid under certain situations 

and work autonomously in islanded mode [3].The intelligence 

in the microgrid handled by the multi-agent system associated 

with the microgrid and its quality depends directly on the 

multi-agent design employed. 

A. Multi-Agent Design 
In our design, we establish hierarchical relationships 

among the agents, where the agents on higher levels supervise 
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those in the levels below. With this arrangement, an agent can 

either be entirely autonomous (acts on its own) or semi-

autonomous (works under direction from a supervisor) [18]. In 

our framework, we implement a three level hierarchical 

system of agents, in which the agents in the second level are 

supervised by the agents in the first level and agents in the 

third level are supervised by those in the second. In general, 

this means that the agents in the first level exhibit full 

autonomy in that they act of their own accord without direct 

instruction, while the agents on the second and third layer act 

semi-autonomously in that they receive instructions form their 

supervisory agents. 

In our modeling of autonomous micro-grids, we use a three 

layered design, the two upper layers of which consist of the 

two hierarchical agent levels as described above. The bottom 

layer is a simple hardware simulation called the physical layer. 

The purpose of this bottom layer is to mimic the behavior of 

the electrical components themselves. This layer simulates 

devices such as relays, transformers, capacitors, power lines, 

consumers and generators that run on their own, with no 

intervention or added intelligence. This separation between the 

intelligent agent layers and the physical simulation allows 

researchers to run two basic scenarios in the simulator, one, at 

the base hardware level without autonomous actions like the 

grid would normally operate, and another, using intelligent 

autonomous agent support. 

The top layer, called the management layer, hosts the 

management agents that make the high level decisions. These 

agents are continuously sending data that represents the status 

of the microgrid at a given point in time. A management agent 

organizes, analyzes, and parameterizes models with the data, 

in order to detect situations in the grid that require healing. If 

such a situation is detected, it creates a strategy to handle the 

disruption and heal the system. This strategy is expressed as a 

set of different roles to be performed by the middle layer 

agents, known as corrective behaviors. The management agent 

is the main decision maker in our simulation framework, but 

the agents in the middle layer do have a certain amount of 

autonomy in how they carry out the high level decisions 

generated by the management agent. 

We refer to agents in the middle layer as distributed energy 

resource (DER) agents, user agents, device agents, and control 

agents. These agents collaborate with each other as well as 

report to and follow the instructions of the management 

agents. We describe each in turn. 

1) User agents: act on behalf of consumers to ensure that 

businesses, organizations, homes, or other electricity 

consumers have the power they need. 

2) DER agents: act on behalf of the DERs within the 

microgrid. DERs are generation sources that are independent 

from the main power distribution circuit. These generators are 

typically small companies or special consumers that also 

participate in the power market, such as a wind power unit or 

geothermal generator. DER agents act on behalf of their 

generators by engaging in power supply negotiations with 

users. 

3) Device Agents: act on behalf of the individual electrical 

grid components (such as switches and transformers). The 

device agent reports the device’s sensor and meter readings to 

the control agents. It also has the ability to perform actions 

such as using a relay to reroute power, or closing a circuit 

breaker. 

4) Control agents: are in charge of monitoring a section 

of the grid by collecting data from all of the agents in that area. 

These agents carry out data fusion and are sent on to the 

management agent as the representation of the current status of 

the system. 

In order for the agents in the middle layer to communicate 

with simulated physical components in the first layer, it is 

fundamental to have middleware to facilitate the 

communication. This is achieved by encapsulating the bottom 

layer within an environment agent. An environment agent 

contains all information about the grid topology and all device 

status information at any given time. Middle layer agents can 

query the environment agents to gain information about the 

physical grid. They also communicate with the environment 

agent when they seek to alter the behavior of the physical grid. 

This simulates, at an abstract level, how the agents can be 

integrated with smart meters and other sensors in a real grid. 

 
 

Figure 1 shows a graphic representation of the communication 

flow between the layers, illustrating the kinds of intelligence 

that is integrated into each layer. High level decisions are 

carried out by a management agent, and the physical 

components with no intelligence reside at the bottom. The 

middle layer agents have limited intelligence. 

IV. THE PRIMARY ADVANTAGES OF THIS FRAMEWORK 

USING DISTRIBUTED CONTROL ARE MODULARITY, 

SCALABILITY AND EFFECTIVE LOCAL AND GLOBAL 

DECISION MAKING 

A. Modularity 
The complexity of large systems such as the smart grid can 

be managed with a divide and conquer approach. As much as 

possible, each autonomous unit is responsible for managing 

and solving local problems that pertain to the unit itself. When 

a critical situation occurs in the unit it is simple to isolate that 

unit from the global grid to prevent the crisis from propagating 

to other sections of the grid, which happens easily for 

cascading failures. Modularity also allows the different agents 

within the microgrid to tune themselves and adapt to use the 

decision models and strategies that optimize resource usage 

and maximize efficiency for that particular microgrid, with its 

own topology, organization and operation.  

Management 

Agent 

Control 

Agent 

DER 

Agent User 
Agent 

Device 

Agent 

Environment 

Agent 

Management 

Layer 

Middle 

Layer 

Physical 

Layer 

Figure 2. Graphical representation of communication 

between layers 
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B. Scalability 
Separation into well-defined independent autonomous 

units simplifies the process of testing at the unit level. 

Integration testing, referring to testing how the modules 

coordinate and integrate together, is also facilitated. The 

design supports the scalability of the system, because every 

microgrid enjoys autonomy in that all the subordinate agents 

in the microgrid report to their management agents and 

communication is done exclusively between elected 

management agents in each microgrid. This means that if we 

verify that a number of units work properly when tested 

independently and also work properly together when tested 

through integration testing, that is good evidence that adding 

more units would also scale well.  The main purpose of our 

design is to allow for easy scaling of the system. With our 

approach we can create a larger macrogrid by connecting 

several microgrids together. It is convenient for a user to 

create a simulation of a large grid by developing several 

different microgrids in the simulator, followed by connecting 

them together.  

Once a user has generated several microgrids and 

established connections between them, the simulator should 

give him/her some flexibility on how to run those microgrids. 

Many microgrids could be set to run on the same computer or 

one microgrid per computer. Therefore, the only limits to the 

scalability of the system are the resources available to the user. 

The simulator itself shouldn’t have specific limits, since 

different instances of it can be run to support each microgrid, 

and the microgrids if connected can communicate and interact 

with each other. 

C. Local and Global Decision Making  
In designing a distributed control system, it is often very 

difficult to coordinate effective local and global decision 

making. For example, in distributed systems, if agents are only 

able to communicate with neighboring agents, there is a severe 

restriction on the quality and quantity of the data that can be 

collected. For local decisions this restriction of data is 

acceptable for the decisions that are correspondingly limited in 

scope, but for global decisions this data restriction can easily 

result in ineffective and potentially harmful decisions. 

However, centralizing decision making and forcing the nodes 

to report to and be controlled by a single entity is also 

problematic due to excessive communication requirements. 

Our design combines the two extreme approaches by allowing 

local microgrid-based decisions to be handled locally, while 

still supporting certain global interactions.  

Separating the extremely large and complex electrical grid 

system into small independent microgrids facilitates effective 

local decision making. These decisions are handled by the 

management agents contained in every microgrid. These 

agents constantly receive data reflecting the status of the local 

microgrid in near real time, and therefore are enabled to make 

decisions that optimize the local performance of the microgrid. 

However, there are circumstances under which it is desirable 

for microgrids to adjust their level of autonomy. This tuning of 

autonomy levels depends greatly on the specific decision 

model in effect in the management agents. We describe this in 

more detail in the next section.  

 
 

In the electrical grid, it is highly desirable to distribute 

decision-making.  Our design allows each microgrid to 

essentially act as a single node in the larger grid. For example, 

If an individual microgrid requires electrical power from 

outside, it can communicate and negotiate with its connected 

neighbors establish a contract for that power. Under outage 

conditions, a microgrid node can island itself from its 

neighbors to avoid propagation of the disruption. Islanding to 

avoid cascading failures is described in [19]. A key advantage 

of a Smart Grid is the ability to access an open market for 

power with speed and agility [20]. This means that a microgrid 

node that requires additional power can access the power 

market, select its preferred provider based on attributes such as 

price or location, and then negotiate an automated contract 

with the provider in near real time. This ability can make 

significant advances in removing inefficiencies that are 

pervasive in the standard grid. 

V. DECISION MODEL INDEPENDENCE 

We envision that the true promise of the Smart Grid lies in the 

development of multiple types of decision models that carry 

out their calculations automatically and trigger actions that are 

appropriate to the situation with little or no human 

intervention. The following types of decisions are candidates 

for automation: 

 Power rerouting. When devices or power lines fail, 
models that are equipped with details of the network 
topology and distribution costs and parameters can be 
charged with rerouting power along alternative 
pathways. The decisions must avoid exceeding the 
capacities of the available lines and devices, honor 
reliability requirements, and head off possibilities for 
cascading failures. 

 Resource allocation. When it is critical to rapidly 
access new or reserve power supply sources, the 
decisions must consider many available combinations 
and prioritize them in terms of their advantages and 
disadvantages. Cost, transmission distance and routing 
options, risks and reliability, and contract terms are all 
factors that must be included in parameterizing these 
models. 

 Dynamic pricing. When it is advantageous to shift 
power sources or limit power consumption at 
prescribed times to achieve cost savings, dynamic 
pricing models can negotiate and establish new power 
supply schedules at reduced cost. 

An important new innovation of our simulation framework 

is that of supporting the decision models independently within 

the design. By placing the decision model agents on an 

independent layer, the monitoring and action-oriented agents 

can carry out their functions with no encumbrance from 

extensive special interactions and communications. This is 

Figure 3. Local and Global Control Interactions  
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accomplished through middleware that adheres to 

communication standards between the decision support agents 

and the others.  

A. Decision Process 
The management agents play a central role in the decision-

making process. Management agents receive extensive near-

real time data that characterizes the state of the system. The 

management agents are equipped with meta-level reasoning 

capabilities that determine if the current state of the grid is 

acceptable or in need of healing. In the latter case, it generates 

a strategy that is evaluated by calling upon decision model 

agents that carry out and return results aimed at corrective 

actions. 

Multiple decision models have been designed and 

prototyped and are at some stage of maturity. These include 

the following:  

 Integer linear programming. These models are capable 
of identifying optimal rerouting options and resource 
allocations. They are designed for decomposition so 
that local management agents can invoke only the 
portions of the global model that pertains to their 
microgrid. 

 Fuzzy logic. These models are based on fuzzy set 
membership functions that capture degrees of fit with 
key resource allocation parameters, such as cost, 
distance, risk and reliability. The fuzzy sets drive a 
rule-based expert system that produces the suggested 
allocations. Although heuristic in nature, this type of 
decision model can function very quickly and easily in 
near-real time decision making. 

 Bayesian Belief Networks. These models are based on 
probabilities associated with system states. These 
models are capable of polling the grid for additional 
information that forms the basis for producing posterior 
probabilities with enhanced accuracy. 

 Market-driven pricing models. These models work 
within a maket economy in which energy resources are 
traded. This type of model includes dynamic pricing 
based on smart building and smart meter infrastructure, 
and provides an area of great promise in improving 
grid performance and efficiency. 

In general, state variable data is made available via 

middleware in an Application Programming Interface (API). A 

key advantage of this approach is that researchers are free to 

readily test the models above as well as any other developed 

decision model. The model builder must convert data from the 

API to match the data types of the decision model. This 

method is analogous to the presentation layer in the OSI 

networking model. 

 

After a decision model is invoked, it has defined a set of 

actions and corrective behaviors that can ultimately be carried 

out middle layer agents. 

B. Adjustable Agent Autonomy 
In some cases it is desirable for certain agents to be only 

semi-autonomous in that they make decisions only in a context 

controlled by a management agent.  For example, a semi-

autonomous user agent may have preferences and 

configurations that can be compromised by a decision model 

for the betterment of the microgrid. Fully autonomous agents 

must adhere to their settings regardless of decision model 

recommendations. . Semi-autonomous agents have a “wait” 

state in which they take actions to deal with a problem only 

upon a directive from a management agent. 

Management agents can strategically choose to elevate the 

autonomy level of a semi-autonomous agent, based on the 

current decision model and system state. For example, a 

component of a management agent strategy to heal the system 

could be to promote some semi-autonomous agents to fully 

autonomous status either temporarily or permanently. The 

inherent flexibility of adjustable autonomy is a powerful 

capability that allows an agent-oriented system to respond to 

events that cannot be foreseen. It is critical that an agent-based 

system for a large complex system such as the Smart Grid 

support only agents with a high level of trust, to alleviate 

suspicions expressed by people that agent decisions could go 

awry. Adjustable, situated autonomy increases the level of 

trust. Thus, we believe that adjustable autonomy is an 

important element of decision making in the Smart Grid.  

The key advantage of Decision Model Independence is 

the ease in experimenting with and evaluating alternative 

decision models. Any single scenario can be evaluated with 

multiple models for side-by-side comparisons.  

VI. CONCLUSIONS 

Distributed multi-agent control accomplishes modularity, 

scalability, and a balance between locally and globally 

effective decisions. We have discussed the advantages of an 

agent-based framework as a methodology for fully automating 

the electrical grid. By supporting decision models separate 

from the monitoring and action agents, alternative models can 

be easily evaluated. Adjustable and situated agent autonomy 

adds further depth and power to the design.  
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