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Abstract—Cyber-physical systems (CPSs) can be checked using
numerous approaches, ranging from algorithmic model checking
for a complete coverage of a finite-state system to extensive
simulation, after which the system’s state is compared with
defined invariants. However, modern CPSs are confronted with
an increased amount of stochastic inputs, from volatile energy
sources in power grids to broad user participation stemming
from markets. The search space for a complete cover of a CPS
becomes too large, while contracts cannot be formulated anymore
considering the potentially erratic behavior of a user, or even in
the face of a cyber attack. At the same time, the goal of resilience
critical infrastructure cannot be eschewed, but the integration
of user behavior and even non-checkable artificial intelligence
algorithms is mandated, even required to meet, e.g., the goal
to satisfy 80% of the gross power consumption from renewable
energy sources by 2050. The concept of Adversarial Resilience
Learning (ARL) formulates a new approach to CPS checking
and resilient operation. It defines two agent classes, attacker and
defender agents. The goal of the attacker is to de-stabilize the
CPS, whereas the defender works to maintain a stable operational
state. The quintessence of ARL lies in the attacker training the
defender on a model of the CPS; as such, it is not a zero-sum
game, but the learning of a resilient operation strategy for a
CPS. This paper introduces the concept and the nomenclature
of ARL, and, based on it, the description of experimental setups
and results of a preliminary implementation of ARL in simulated
power systems.

Keywords—agent systems; reinforcement learning; adversarial
control; resilience; power grid

I. INTRODUCTION

Current newspapers are full of horrific tales of “cyber-
attackers” threatening our energy systems; the December 2015
Ukraine power grid cyberattack is a particularly notable one
[1], [2], which has seen a continuation in 2017 [3]. And, if not
for the notorious “evil state” actor, it is the ongoing digitization
necessary to enable increasing renewable and volatile energy
generation that threatens our energy supply and thus the
stability of our society. While the main approach seems to be
to patch-up the detected vulnerabilities of protocols, software
and controller devices, our approach is to research and develop
the means to systematically design and test systems that are
structurally resilient against failures and attackers alike.

Security in cyber-systems mostly should be concerned with
establishing asymetric control in favour of the operator of
a system. In order to achieve this on a structural level at
design time, reproducible benchmark tests are required. This is
notoriously difficult for intelligent adversaries whose primary
abilities are adaption and creativity. Thus, testing methods

nowadays are either reproducible, but insufficiently model
an attacker; or they involve unreproducible human elements.
Reinforcement Learning (RL) may be useful to provide at least
some adaptability of reproducible attacker models.

This work takes its motivation and first practical imple-
mentation from the power system domain, but the work can
directly be applied to all highly complex, critical systems.
Systems that may benefit from Adversarial Resilience Learn-
ing (ARL) are too complex to be sufficiently described using
analytic methods, e.g., because the number of potential states
is too large and the behaviour is too complex with too many
non-trivial interdependencies. This also includes stochastic
external factors, such as the behavior of market actors.

This work introduces ARL, which provides a method to
analyze complex interdependent systems with respect to ad-
versarial actors. The foremost motivation is to provide a
method for analysis based only on an interface description
of an agent’s sensors and actuators in the cyber-physical
system (CPS). We expect ARL to identify potentially unknown
vulnerabilities. A key part of ARL is to identify the minimal
chain of actions required to reproduce a vulnerability; this
effectively entails both the ARL nomenclature introducted in
the paper as well as careful Design of Experiments (DoE).

The main contribution of this paper is the introduction of
a novel structure for training agents competing against each
other on a model of a CPS without explicitly perceiving
each other’s actions. By setting up RL-based agents in a
competitive situation, the learning-complexity is comprised not
only of a highly complex system, but also of competing agents,
whose changing state, manifested by modified behaviour of
the system under consideration, has to be included in the
trained model. We assume that this provides a very interesting
new problem class for RL, as it introduces a cyclic learning
competition.

The paper is structured as follows. First, a brief introduction
into related techniques in machine learning and related work
for complex system analysis is given in Section II. The paper
then defines the concept of ARL in Section III, and introduces
its application to adversary testing in power system control
in Section IV. The paper is completed by a presentation of
lessons learned and results from an early proof-of-concept
demonstrator in Section IV-B. It concludes with a discussion
and an outlook in Section V.
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Figure 1. Resilience Process for system performance

II. RELATED WORK

This work aims at exploring the feasibility of improving
resilience of complex systems using machine learning to train
adaptive agents. The term resilience is lacking a coherent
and precise definition across fields. Generally, it denotes the
ability of a system to withstand unforseen, rare and potentially
catastrophic events, recover from the damage and adapt by im-
proving itself in reaction to these events. Ideally, resilience is
increasing monotonously throughout system improvement. A
useful simplification is observation of the changing behaviour
of system performance as an artefact resulting from resilience
processes. Different formalization of resilience processes exist,
but most distinguish subprocesses for planning, absorption
of damage, recovery (or self-healing) and improvement (or
adaption) [4].

See Figure 1 for an expression of a hypothetical system’s
performance suffering twice from damaging events. Resilience
is modelled as a sequential process: plan, absorb, recover, and
adapt [5]. As consequence of the first event, the performance
of the system is pushed below a failure threshold, i.e., the
system fails to provide its service. Improvement of the system
is then achieved after recovery as the system is able to keep
the performance above the failure threshold during the second
event.

A. Analysis and Stochastic Modelling

The main distinction of our approach as compared to
game theoretic modelling and stochastic analysis is the use
of co-simulation and heuristic approaches instead of formal
abstraction of complete systems. The underlying assumption
is that a system-of-systems is too complex and malicious
adversaries are too unpredictable to be sufficiently analyzed.

Traditional analysis of CPSs has either checked for liveness
(“something good eventuall happens”) or safety requirements
(“nothing bad ever happens”) through mathematical modelling
and model checking, using temporal logic, decision trees, or
similar devices, or by employing discrete simulations over
k timesteps and checking against formulated invariants [6],

through which stochastic effects can be introduced. Complex-
ity has usually been abstracted away by contracts; combining
contracts and simulation is still a topic of research [7].

Compared to Attacker-Defender Models, described by, e.g.,
Brown et al. [8], that aim at analyzing an equilibrium between
attackers and defenders in dynamic systems, our work heuristi-
cally approaches an estimate of the asymmetry of attacker and
defender in these systems. The approach of ARL is structurally
similar to the concept of Stackleberg Competitions and related
applications of stochastic analysis, e.g., pursuit-evasion in
differential games [9]. These approaches seem to only be
applicable to scenarios that can be restricted to few degrees of
freedom. More realistic behaviours of opportunistically acting
threat agents within complex system-of-systems leads to an
explosion of states in analytic approaches.

Recent surveys seem to support this view. Referenced
approaches on power systems by Do et al. [10] provide no
details on the used game-theoretic model and use ambiguous
terminology of the researched threat scenarios. Approaches in
Machine Learning (ML) to tackle complex problems, on the
other hand, have been very successful in providing practical
solutions.

B. Machine Learning

Artificial Neural Networks (ANNs) are universal function
approximators, meaning that they can be used as a statistical
model of any Borel-measurable function Rn 7→ Rm with
desired non-zero error [11]–[13]. Already the standard Recur-
rent Neural Network (RNN) has the capacity to approximate
any non-linear dynamic system; Siegelmann and Sonntag have
shown that RNNs are turing-complete [14]–[16].

In practice, a typical problem for which RNNs, espe-
cially structures containing Long-Short Term Memory (LSTM)
cells [17] or Gated Recurrent Units (GRUs) [18], [19] are
used, is time series prediction. Predicting a time series with
an RNN constitutes the instantiation of a (non-linear) dynamic
system [20]–[22], i.e., the prediction is the result of the sys-
tem’s behavior, which is, in turn, modeled and approximated
by the RNN. Cessac has examined ANNs from the perspective
of dynamical systems theory, characterizing also the collective
dynamics of neural network models [23].

For ARL, we assume a common model that is used by two
distinct agents: while one probes the model for weaknesses
in order to find attack vectors, the other monitors the system
and, unbeknowing of the presence of the attacker or its actions,
works at keeping the system in its nominal state. Through this
structure, the notion of ARL assumes that the model—i. e.,
each agent’s environment—is not completely known to the
respective agent. Therefore, the usage of RL readily suggests
itself. In a setup such as ARL provides, RL is the natural
choice for learning algorithms [24]–[26].

Even though in theory, the notion of RL is not tied to
ANNs per se [27], the incremental training process makes
them suitable for RL in contrast to other structures, such as
decision trees, which usually need the full data set for effective
training. For training ANNs and RNNs supervisedly, which is
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a core task in RL, gradient-decent-based algorithms of the
Backpropagation-of-Error family are leading by far [28]–[32],
followed by evolutionary algorithms, such as CMA-ES [33]–
[35] or REvol [36], [37]. In theory, RNNs have the capacity
to simulate arbitrary procedures, given the proper set of
parameters; in practice, this training task has proven to be com-
plicated. Neural Turing Machines, such as the Differentiable
Neural Computer (DNC) introduced by Graves et al. [38], [39],
counter the complexity with a vastly increased addressable
memory space and have shown to be able to simulate simple,
but complete algorithms like sorting. In theory, DNCs at the
core of ARL would make the concept itself transferable to
similar CPSs once trained, as well as to allow a variable set
of sensors and actuators over time.

However, all optimization methods adapt the ANN to min-
imize a cost function and not directly to create a model of a
problem; this happens only indirectly. As a result, ANNs can
still be “foiled,” i.e., made to output widely wrong results in
the face of only minor modifications to the input. This effect
and how to counter it is the subject of Adversarial Learning
(AL) research. Even though seemingly similar by name, ARL
should not be confused with AL, as the core problem of ARL
is not the quality of sensory inputs, but the unknown CPS
being subject to ARL execution. The concept we propose in
this paper is related to AL only insofar, as both concepts use
two distinct ANNs with conflicting objectives [40].

A second concept that is potentially similar in the name
only is that of Generative Adversarial Networks (GANs):
With unsupervised learning, the ANN tries to detect patterns
in the input data that diverge from the background noise.
Unsupervised learning does not use the notion of expected
output [41]. In GANs, a modern application of unsupervised
learning has emerged. Here, one network, called the generator
network, creates solution candidates—i.e., maps a vector of
latent variables to the solution space—, which are then evalu-
ated by a second network, the discriminator [42]. Ideally, the
results of the training process are virtually indistinguishable
from the actual solution space, which is the reason GANs
are sometimes called “Turing learning.” The research focus of
ARL is not the generation of realistic solution candidates; this
is only a potential extension of the attackers and defenders
themselves. ARL, however, describes the general concept of
two agents influencing a common model but with different
sensors (inputs) and actuators (output) and without knowing
of each others presence or actions.

The abstract notion of a model can see multiple instan-
tiations; one such instantiation of ARL would be using a
power grid as the model considered by both agents. Ernst
et al. employ RL for stability control in power grids [43]. In
their paper, they design a dynamic brake controller to damp
large oscillations; however, since the reward function is easily
well-defined, there is no need for using an ANN for function
approximation.

III. ADVERSARIAL RESILIENCE LEARNING

ARL is distinguished from AL by the recurrent structure
in which adversary and defender are interacting. While GAN
directly connect a generating adversary with a detecting de-
fender, ARL adversary and defender interact only through the
system they are using for input and output. In this interaction
adversaries are identified as agents inserting disturbances into
the system, while defenders provide resilience control.

Definition 1 (Adversarial Resilience Learning (informal)).
ARL is an experimental structure comprised of two disjoint
groups of agents and a system or simulated system. The
agents are distinguished as attacker and defender by adhering
to conflicting optimization objectives. Both groups of agents
receive their input from a, potentially overlapping, set of
measurements from the system. They influence the system
through two disjunct sets of outputs connected to controls in
the simulated system.

A. Fundamental Notation and Model

The basic abstract scenario using ARL consists of two
competing agents and a system model. Each of the three
elements resembles a state transition. In order to establish a
sound formal base, a definition of notation and processes of
ARL is provided here. A summary of notations used is given
in Table I.

ARL consists of a set of agents, where each agent has a
model, denoted by A, and a model of a system,M. The agent
model A serves as a “blue-print” for the actual behavior of
a running system; similarly, M denotes a static model of a
world. An index identifies a particular agent model, e. g., AA

denotes the category of attacker models, AΩ serves to denote
the category of defender models. At run-time, the models are
instantiated. We denote instances of a model with lower-case
letters a, where the superscript denotes a particular state of
the model, such as a(t), with t commonly referring a point in
simulation time. In the same vein, m(t) denotes an instance
of a world model at t.

Each agent tries to maximize its rewards by approximating
the agent-specific performance function,

pa

(
m(t)

)
. (1)

For an agent, the performance function pa(·) is equal to
its reward function in RL terminology. However, the notion of
the performance function lets us decouple agent behavior from
the desired/intended or undesired performance of the world,
denoted by

p
(
m(t)

)
, (2)

as the difference between the world’s current performance to
its nominal performance, p∗.

Agents are categorized through their performance function,
an agent model is identified as attacker model AA if his reward
function pa behaves inverse to the systems performance. The
opposite is true for agents from AΩ. Thus, we can define:
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Figure 2. ARL sequence of execution

Definition 2 (Attacker and Defender Classes). For all times
t and model instances m ∈ M, the following provides a
classification rule for attackers and defenders:

a ∈ AA ⇒ pa
(
m(t)

)
� p

(
m(t)

)
,

a ∈ AΩ ⇒ pa
(
m(t)

)
∼ p

(
m(t)

)
.

(3)

The performance of an agent is tightly coupled to an agent’s
view of its environment, which can change over time as an
agent gains control over more sensors (or looses it). Thus,
each pa(·) can only be defined in terms of the agent’s sensory
inputs. The portion of the state of a system instance an agent
a can observe is denoted by

x(t)
a = ψa

(
m(t)

)
. (4)

The agent can act by approximating its reward function
pa(·). This approximation is the agent’s activation of its
internal dynamic system approximator act(·); implemented
through, e.g., an RNN or DNC, expressed in a mapping such
that

acta :
(
at,x

(t)
a

)
7→
(
a(t+1),Y (t)

a

)
, (5)

where we assume that an agent can choose not to act, just as in
a classical RL approach, and where y denotes the probabilities
of an agent’s action policy, i.e., ∀y1, . . . , yi, . . . , yn, yi ∈ [0; 1]
denotes the probability that the agent uses its ith actuator. In
ARL, Y (t)

a denotes a matrix, in which the aforementioned y
constitutes the first column vector, and all other elements are
set points of the agent’s actuators. Each agent defines an action
policy for controlling its actuators.

However, this direct mapping of each yi to an actuator
constitutes only the simplest case. In general, an action policy
takes on a form that is suitable for the whole action search
space, such as a policy network steering a monte carlo
tree search as has been shown in [44]. Thus, an agent is
acting through the evaluation and application of its system
approximator. This happens for each agent individually. In
brief, the systems behavior is heavily influenced by the set of
all actuators that can be controlled by the respective agents.
Thus, an agent does not simply perceive a model (or a
part thereof), but the state of the model as the result of
all agents acting upon it. Thus, an agent does not simply
create an internal representation of a dynamic system, but of
a dynamical system-of-systems.

TABLE I. ARL NOTATION.

Symbol Description

m of M An instance of a system model
a of A An instance of an agent model
AA,AΩ Attacker model, defender model (Definition 2)
p(·) ∈ R+ Performance function
p∗, pf Reference performance of normal operation, of failure

threshold
p
(
m(t)

)
Overall performance of a system instance m at time
t, (2)

pa
(
m(t)

)
Performance with respect to the objectives of agent
instance a at t given the system instance m, (1)

ψa
(
m(t)

)
Observation function mapping a system model to the
inputs available to agent a, (4)

x
(t)
a Inputs to agent a at t, (4)

Y
(t)
a Actions y of a at t, (5)

Finally, the simulator evaluates the actions of all agents
applied to the world model at t, m(t). This is represented
by the evaluation mapping,

eval :
(
Y (t),m(t)

)
7→ m(t+1) . (6)

Note that if the activation vectors of the participating
agents consider a disjoint set of controllers, i.e., the actions
application is commutative, the transition of the world state
from m(t) to m(t+1) is the result of an aggregation of all
agents’ actions Y (t). Non-commutative application of actions
is out of scope of this work.

B. Formal Definition

Using the notation introduced here and summarized for
reference in Table I, we define the concept of ARL as model
and connection setup with transition process in the following
way.

A setup in ARL is comprised of agents a1, a2, . . . , an
instantiated from a models A ∈ {A ∪Ω} with |A| > 0 and
|Ω| > 0. Each agent is related to a set of inputs Xa and a set
of outputs Ya. Further, the setup requires a world model M
that provides a set of sensors Xm and controls Ym.

The central process of ARL is the dynamic system-of-
systems view of a set of agents a0, a1, . . . , an acting upon a
shared instance of a world model. Activation functions acta(·)
of agents and application eval(·) of agent agents to a world
model form a cyclic sequence of activation and application
that transforms the states of model and agents into a sequence
of states as shown in Figure 2.

An experiment of ARL is the execution of this se-
quence. The resulting data of an experiment is the se-
quence of states and outputs as well as the initial setup
m(0),a(0). The vector of evaluations, i.e., states and outputs,
[eval(1)

a , . . . , eval(t)a , . . . , eval(n)
a ] ∀a, contains the minimal

chain of actions necessary to exploit a CPS, iff this is the
final result of an ARL execution. Thus, we can finally strive
to formalize the idea by collecting all components in a single
scenario:

27Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-713-9

ENERGY 2019 : The Ninth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies



Optimized
Threat Agent ARL Optimized

System

Attack Abilities

Threat Tests
Survivability/Self-
Healing

Scenario

Figure 3. Optimization Objectives

Definition 3 (Adversarial Resilience Learning Scenario). Any
experimental setup is comprised of agent instances a of A of
two opposing classes, A and Ω, and a system model M, as
well as, for each agent instance a, a reward function pa

(
m(t)

)
,

a mapping of observable states x
(t)
a and action matrices Y

(t)
a .

Thus, ARL is the application of RL, as introduced in Sec-
tion II-B, to iteratively improve the internal decision structure
that determines the behaviour of an agent’s acta(·). The output
of ARL then is, depending on the exerimenters objectives, an
observation of the performance of the system model M or a
set of agents trained towards the defined objectives.

C. Optimization Problem Statement

This section describes possible optimization problems that
provide the motivation for ARL.

ARL resembles a closed-loop control situation with (at
least) two conflicting controls. Herein are distinguished two
different optimization objectives that provide different uses of
ARL. The different uses, as depicted in Figure 3, improve
different elements to achieve either an improved threat test,
or a more resilient system. The primary distinction is between
evolving parameters of ANN in order to optimize individual
agents or step-wise advancing the structure of the system
model. Our concept itself is oblivious to the algorithms used
for optimization.

1) System Optimization: The primary objective is to find
the inherent control asymmetry of a given control system to
finally recommend system designs that favor the defender over
the attacker. In control theory this could be expressed as a
system, where, for all possible sequences of actions by the
attacker for a given system model M, there is at least one
corresponding sequence of actions for the defender, and the
resulting performance of the system will never drop below a
given failure threshold. This requirement can be relaxed by
defining a finite measure of failure that may be acceptable,
for example during an initiation phase.

The objectives of defender and attacker in control scenarios
are focused on system states measured by a model perfor-
mance function (2), as formally given in Definition 2. In
general, we call an agent defender if its objective is to keep the
performance at least above the failure threshold. We denote an
agent as attacker if it aims at pushing the performance below
a expression for a failure threshold, as seen in Figure 1.

We denote the objective of asymmetry—favouring defence
of a system—given a candidate system model instance m and
defender agent aΩ as:

pf < p
(
m(t)

)
for all t > t(0) . (7)

Hence, given any attacker, there exists an (optimal) defender
a∗Ω that ensures that the system performance never falls below
a failure threshold pf . To account for a learning period, we
allow for a finite initialization time until t(0). Note that this
potentially also excludes black starts. For fully initialized
agents competing in a black-start scenario, (7) must hold for
all t.

Improvement is achieved by evolutionary changes to the
system model M, improved defensive agent models A or
training of defensive agents aΩ, as discussed in the following
section.

2) Agent Training: Training of threat agents aims at im-
proving attack abilities, including the identification of previ-
ously unknown attack vectors, in order to provide testing capa-
bilities. Improved threat tests allow to define test requirements
for system designs that improve systems resilience against
security threats. One objective is to train threat agents that
can be used as benchmarks for future system designs.

An agent’s objective is implemented through a reward
function that is used within a RL process that successively
improves the agent’s behaviour towards that objective.

One particularly surprising success of RL algorithms has
been the identification of solutions unthought-of by experts,
especially if applied to zero-information initial states. A two-
agent, conflicting-objectives game only one potential learning
structure usable with ARL. But the concept allows potentially
for all combinations of one-or-many zero-information RL
agents and static or even human-controlled competition.

IV. APPLICATION TO POWER SYSTEMS

Applied to power systems, the performance function is
expressed as a diversion from a specified range of acceptable
state values. Such state values include voltage, but can also
be frequency response in dynamic simulation. The attacker’s
objective is to force the system to a state where one or more
values are outside allowed ranges; its success is measured
by the amount and duration of the deviation. The defender
has lost the competition if the attacker is able to divert
any of the system’s parameters beyond the acceptable range.
Specific objectives for attackers can vary widely as there are
many different parts of a power system that can be affected
in order to disrupt service and reduce system performance.
Attackers may aim at the demolition of connected machines
or components of the transmission and control system. Thus, to
strive for a more general specification of objectives, we better
consider the objectives of defenders and specify a deviation
from these objectives as success for the attackers.

Different specific requirements apply for different parts
of the power system, also depending on whether steady-
state or dynamic simulation is required. Common parameters
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Figure 4. ENTSO-E Operational Phases

to consider are voltage, frequency and frequency response,
and real and reactive power. In general, phase synchronic-
ity is more important for high-voltage transmission grids,
as asynchronicity leads to harmonics in the power system,
with potentially disastrous large power flows between large
segments of the grid. For the European transmission grid, the
operation guidelines define conditions for four phases: normal,
alert, emergency, and blackout, as shown in Figure 4.

Similarly operational parameters exist for medium- and
low-voltage grids, power generation and connected loads.
DIN EN 50160 specifies parameters for the operation of
distribution grids: Acceptable voltages range from 0.9 pu to
1.0 pu. It is acceptable, by definition in EN 50160, that voltage
drops down to at least 0.85 pu for at most 5% of a week.
Frequency must only deviate from the nominal 50 Hz by at
most 4% above or 6% for not more than 0.5% of the year,
i.e., less than 2 days overall. Normal operation must deviate
no more than ±1 % [45]. Accordingly, an attacker is successful
if any of these values exceeds the defined limits.

Figure 5 shows the refinement of the generic ARL-structure
as described in Section III. Both agents interact only through
sensors and actuators that influence different controls in the
power grid.

In the remainder of this section, we introduce a proof-of-
concept implementation of ARL using pandapower [46] for
stationary grid simulation and the Keras-RL library [47] for
RL algorithms, specifically Deep Q-Learning. First, a brief
description of the control scenario is provided, followed by a
discussion of the preliminary results.

A. Static Control Scenario

The objective of this proof-of-concept is to show the general
feasibility of using (multiple) ANN-heuristics and train them
by RL to modify controls in a stationary power system
simulation towards their objectives.

The simulation uses a simple medium voltage power grid as
model from the grid simulation software pandapower [46]. The
grid contains four generators, six loads, and six transformers.
We chose to only use voltage as state-indicator and input to
the reward of the attacker. The initial configuration of the grid
comprises of a stable, healthy state of the grid that would be

Adversary Defender

Figure 5. ARL ANN structure

held up constantly if no control actions would be initiated.
Actuators in this scenario are: tap positions, reactive power
control, and loads and generation levels as represented by the
commonly deployed and future automated controls in power
systems.

The reward function for the attacker is shown in Figure 7a.
Initial trials pointed towards the inverse of a Poisson Density
Function centered on the nominal voltage unit. The reward
function thus resembles the objective for an attacker, providing
only positive rewards if the mean voltage deviates more than
5 % from the nominal voltage. The single agent in this demon-
stration had been assigned direct control of every transformer,
generator and load in this scenario.

In terms of optimization from Section III-C, the scenario
instantiates m with a single agent a ∈ AA with a parametrized
normal distribution,

pa

(
m(t)

)
= −1[a∈AA] exp

−
(
ψa

(
m(t)

)
− µ

)2

2σ2

−c , (8)

where c, µ and σ parametrize the reward curve, −1[a∈AA]

negates the reward if a is an attacker [48], and ψa(·) is the
arithmetic mean of all inputs. Note that this reward function
does not include any information specific to the energy do-
main. E.g., it treats the difference between 1.0 pu and 0.8 pu
similar to a reduction to 0.5 pu, even though this would mean
a tremendous success to the attacker compared to a reduction
to 0.8 pu. This simplification was done deliberately to verify
the general feasibility of the ARL concept without explicitly
tying it to the energy domain, but to remain useful to any CPS.

B. Demonstrator

In order to show the genearal feasibility of the concept,
we implemented a demonstrator for RL in power control
scenarios. The current implementation uses static simulation in
pandapower [46], supporting free configurability of controlled
sensors and actuators of multiple agents, selection of ANN-
algorithms and -parameters, as well as different logging and
output formats.
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In order to support documentation and reproducibility, each
experiment is specified within a single configuration file.
A experimental configuration defines three major simulation
components: a grid model, one or more agents, and a collection
of result logs that collect results. At the time of writing,
the whole demonstrator is refactored to use the mosaik co-
simulation framework [49], [50].

The interconnection between agents and grid simulation,
i.e., xa and Ya respectively, are separately defined for each
agent.

The execution of the simulation is round-based. The rounds
are advanced in steps according to a defined evaluation order
of agents. Agents are sequentially executed, a defined number
of steps each. The grid state is evaluated between each
consecutive pair of agent evaluation steps. After each step,
RL takes place for each agent individually according to its
configuration. Current result monitors output the grid states at
every node of the grid into a grid-state log. The results are
graphically evaluated as is discussed in Section IV-C below.

C. Results

To show the usability of our demonstrator, we pitched two
simple agents with inverse reward functions (Figure 7a and
Figure 7d) against each other, using the example grid shown
in Figure 6a as an arena. Both agents were assigned all voltage
sensors as input. The attacker was assigned control of all
tap changers, representing a scenario where a vulnerability
in one type of controller was exploited. The defender would
be granted access to all generators and loads in this scenario.
This was a deliberate choice in order to force the defender to
develop a strategy that involved all generators and loads; in
a reverse scenario, control of the tap changers would allow
the defender to act easily against a series of attacker actions
and would require a more sophisticated experiment setup
involving, e.g., a digital twin in the attacker code for decoupled
RL training for a devastating one-shot attack.

Figure 6 shows a late state of the simulation. Seemingly, the
attacker gained the upper hand and has been able to increase
voltage levels beyond 1.05 pu. The grid representation in
Figure 6a shows that especially two central sensors (numbered
4 and 3) are stuck with very high voltage levels, represented
by the length of the bars rooted at the nodes, most likely
sufficient for the connected loads to shut down or be damaged.
The mean voltage level of the system, depicted for steps 1900
to 2000 in Figure 6b, shows that even the lower voltages of
other nodes are not sufficient to lower the mean voltage to
acceptable levels. Thus, in this example, the attacker has been
able to destabilize the grid, despite the efforts of the defender.

Evaluating the two agents in Figure 7 provides no imme-
diately conclusive cause for the loss of the defender. The
cumulative number of positive rewards in Figure 7b for the
attacker and Figure 7e, show only small differences. These
asymmetries might be explained by the order of execution,
where the defender always acts in response to the attacker.
The current reward for the depicted step in the simulation,
depicted in Figure 7a and Figure 7d, shows that the defender

is evaluating a different mean voltage than the attacker. As
rewards are calculated after the actions of an agent, thus these
graphs show the results of two actions that both improved the
performance towards their own objectives.

The effect of the ARL structure of competing agents that
is beneficiary for RL algorithms becomes apparent in positive
learning curves for both agents (Figure 7b and Figure 7e).
In preliminary tests with a lone attacker, the learning process
first went through a lengthy phase where only little positive
rewards were achieved.

V. CONCLUSION AND FUTURE WORK

This work introduced Adversarial Resilience Learning
(ARL), a novel approach to analyze cyber-physical systems
(CPSs) through competitive situations in highly-complex sys-
tems using self-improving agents. This work is motivated by
the need to find better methods to evaluate the behaviour
of CPSs under threat of maliciously acting, intelligent threat
agents. The main idea is that groups of agents struggle to
enforce their objectives against agents with conflicting goals.

Pitching two—or more—Reinforcement Learning (RL)
agents with conflicting reward functions against each other
may allow to define more realistic tests for adversarial or
competitive situations. It harbours the promise of finding
novel strategies for both attack and defense, which both can
be used to strengthen the resilience of systems during the
design and testing phase of a power system or individual
components. ARL-based analysis should contribute to building
grid structures that are more resilient to attacks and train both
artificial and human operators in better handling of security
incidents.

Generally, the concept may allow to estimate threat-related
indices, for example the maximum amount of control that an
adversary may be allowed to gain over a system, which leads
to improved and more effective recommendations for security
directives and risk mitigations.

The concept of ARL and its ongoing implementation in the
ARL-Demonstrator only marks the starting point for in-depth
research on structural asymmetries of complex systems and
protection against learning threat agents. The demonstrator
provides the abilities to further research in a number of
interesting directions.

Foremost, this is the analysis of structural resilience of
complex systems, especially finding minimum control sets
of critical components that provide the most defensive capa-
bilities, or estimates of the structural strength of a system.
The integration into our co-simulation framework mosaik
opens up the possibility of extending the single system into a
whole composition into an interdependent system-of-systems.
In the energy domain, the introduction of communications
infrastructure (SCADA, CDMA450, etc.) is necessary.

Deeper extensions of the demonstrator itself will involve
capabilities of the defender to affect structural changes to the
system. This would allow to use RL to identify novel and more
resilient structures. The dual ability for threat agents would be
the extension of control, i.e., simulation of further compromise
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(a) Grid Simulation (b) Grid performance (mean voltage) over time/evaluation steps

Figure 6. Proof-of-concept ARL grid results

(a) Attacker reward function, based on mean
voltage

(b) Cumulative number of positive rewards
over training steps

(c) Attacker performance pa(m
(t)) over time

(inverse mean voltage)

(d) Defender reward function, based on mean
voltage

(e) Cumulative number of positive rewards
over training steps

(f) Defender performance pa(t) over time
(mean voltage)

Figure 7. Proof-of-concept ARL agent results

from within a system. Both activities require the introduction
of a measure of cost to the demonstrator.

Further, this demonstrator allows to analyze simulated sys-
tems from the point of view of threat agents, by pitching the
agent against novel security measures, for example simulation
of distributed coordinated attacks. Combining this view with
multi-domain scenarios would enable analysis of sophisticated,
multi-level attack techniques that involve, for example in-
formation hiding or emission of misleading information by
attacker or defender. That means finding novel ways of attack
using a combination of illegal and legal operations and inter-
dependencies between different systems. Consequentially, all

these approaches would lead to the development of improved
designs and testing methods for highly complex systems.

We can only assume that this finally leads to more resilient
designs and defensive adaptable strategies—and, in the end,
to improvements for the security of supply, but at this stage
of the work, the first results are very satisfying.
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