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Abstract—Maintaining the continuous supply of electricity
within smart microgrids is a challenging task, which becomes
increasingly difficult with the growing integration of volatile
Renewable Energy Sources (RES). Quick changes within the
production behavior of these resources can disturb the necessary
balance between demand and supply and may ultimately lead
to blackouts within the grid. To prevent balance disturbances,
electricity production and consumption needs to be coordinated
and power needs to be shared among the participants within
the microgrid. Facilitating coordinated behavior of grid entities
and ensuring reliable operation of the microgrid in the presence
of volatile RES requires sophisticated strategies for operating
individual participants. In this paper, we present a modular
framework to support dynamic energy distribution for atomic
entities (producers/consumers) in holarchically organized energy
grids. In particular, the framework provides production and
consumption forecasting to enable intelligent strategy selection to
improve the day-ahead control decisions for atomic entities. The
proposed framework enables the bottom-up formation of smart
mircogrid holons and represents a foundation for the formation
and strategic coordination of participants in smart microgrids.

Keywords—Micro Grids; Holonic Smart Grids; Optimization;
Forecasting; Strategy Selection.

I. INTRODUCTION

Electrical grids are evolving from a centrally managed criti-
cal infrastructure to distributedly managed Smart Grids (SGs).
This evolution is driven by the need for the grid to incorporate
local production capabilities of renewable Distributed Energy
Resourcess (DERs). The paradigm shift from centralized to
distributed control, however, leads to a considerable increase
in the complexity of network management tasks. Various
approaches for tight monitoring and fast control have been put
forward to support continuous operation and provide stability
of distributed energy grids [1]–[3]. These approaches generally
rely on strong support by Information and Communication
Technologies (ICT).

Hierarchical and cellular network segmentation promises
to simplify the mechanisms for controlling the SG. The
next evolutionary step for cellular network approaches are
holar structures [4]. In particular, these systems seek to
leverage formation and segmentation by enabling the reuse of
mechanisms on different hierarchical levels. Entities in such
a system (so-called Holons) are simultaneously a “whole”
and a “part” of something bigger. The emerging system-of-
systems structure is referred to as a holarchy [5]. Holons

are dynamic cells, which can merge with other holons (or
separate into individual smaller ones) when suitable. Under
optimal conditions, holons tend to form larger holons, while
their capability to separate sub-parts aids in increasing network
stability (e.g., by splitting off potential misbehaving or faulty
entities). This is ensured cause holocharies are mainly based
on the concepts of isolation and containment [6].

In this work, we consider single buildings, be they commer-
cial or residential, to be the atomic building blocks of holons.
With the integration of DERs, they may be both producers and
consumers, so called prosumers of energy. In order to facilitate
holon creation and stable operation, particularly in small-
scale grid scenarios, accurate models for the behavior of these
prosumers are necessary. This, in turn, entails the need for a
framework that is capable of forecasting, within reasonable
limits, both electrical load and production behaviors. This
need is exacerbated especially in small holons, i.e., smart
microgrids, because smoothing effects on energy production
and consumption are not as effective here as in larger grids.

Based on the considerations mentioned above, we present
a framework for stable holon operation. In particular, at an
atomic prosumer level, the framework consists of a consumer,
production unit, storage system and a power supply. The main
contributions of the proposed framework are:

• Provision of dynamic control via smart strategy selection
for holonic smart microgrids.

• Advancement of current smart microgrid capabilities by
enabling forecasting and operation optimization on the
level of atomic holons.

• Showcasing the applicability of the current deployment of
the framework by deploying it at a real-world prosumer
site.

The rest of the paper is structured as follows: Section II
describes the topology and power flow of an atomic holon,
as well as the conceptual framework model and information
transmissions. In Section IV, further details concerning the
forecast model and operation strategy optimization are pro-
vided. We finalize this work with conclusion and future works
in Section V.
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II. SYSTEM

The goal of this section is to present the system description
of an atomic building block of holons and the energy flow
between the different components. Following this, the structure
and information flow of the framework is detailed.

A. Topology

To manage the merging and splitting process of a holon, an
optimized energy flow at the atomic level, i.e., for individual
consuming and producing participants, is necessary. Therefore,
the individual components that are encompassed in an atomic
holon require a clear definition. Figure 1 shows the four
components of what we treat as an atomic holon: consumer,
producer (PV), storage (batteries) and power grid. An atomic
holon can, but does not need to, implement all components.
The arrows indicate the direction of possible energy flow.

Consumer

Storage

Power Grid

Producer

ENVIRONMENT

Figure 1. Energy flow between the four different holon components.

a) Power grid: The grid-connected power supply of the
building. Ideally, the household’s load is covered by batteries
and direct consumption of self-produced energy (e.g., solar
panel). In case of an increased demand, which cannot be
compensated by the locally available resources, the remaining
difference is taken from the general power grid.

b) Consumer: The total aggregated energy consumption
of an atomic holon (This includes potential incident consump-
tion that results from the battery storage, the solar panel and
the grid connection).

c) Producer: As mentioned in Section I, every entity in
the grid, which is capable of supplying electricity to itself
or others is considered as an energy producer. As holons are
envisioned to represent prosumers in the future energy grid
the producer component represents the aggregated production
capacity of the holon. For instance, single households with
solar Photovoltaic (PV) cells or commercial buildings with
wind turbines.

d) Storage: A main enabler for the efficient use of
Renewable Energy Sourcess (RESs) is their combined used
with an energy storage system. Aside from storing excess
energy during times of high production (e.g., sunny days at
noon), energy storage solutions are used to compensate for

the volatile behavior of RESs. The resulting inconsistency of
production behavior of RESs – due to intermittency of weather
conditions – or daily consumption variations can be mitigated
using energy storage systems. In general, these storage systems
can consist of any type of batteries, including the batteries of
attached electric vehicles.

B. Framework

The proposed framework aims to optimize control strategies
in systems that are structured according to the holarchy
concept. In particular, we focus on system control of atomic
holons within a holarchy. For these holons, the following
characterizations are necessary [6]:

• Autonomy: As holons are, simultaneously a part and a
whole within a system and they may have individual goals
that may differ from the general goals of the system as a
whole. A holon’s autonomy property describes its striving
to fulfill its own objectives. For this, it is capable of
making decisions and to create and manage the execution
of its own plans and strategies.

• Self-contained: Each holon is a whole itself and can exist
or work without external input by exploiting its own
resources.

• Co-operation: Holons can cooperate on the basis of
special communication and interaction rules. Holons can
cooperate with other holons on similar levels within a
holarchy. Additionally, they can merge with other holons
to form larger holons or split into smaller holons. This
concept of cooperation enables holons to achieve more
complex goals (e.g., due to more available resources
after a merging process), and enables to interrupt the
cooperation by isolating faulty parts.

In order to facilitate holarchical operation in a better way,
the proposed framework uses a bottom-up approach. Instead of
organizing holons with a top-down approach, this framework
regulates the strategic operation within an atomic building
block, composed of the previously described system’s primary
components. In future work, we will expand the prediction and
strategy selection to non-atomic holons.

The framework architecture can be seen in Figure 2. It is
divided into three main parts: Forecasting of Resources for
Dynamic Optimization (FRODO), Optimal Load and Energy
Flow (OLAF), and Environment. As depicted in the architec-
ture layout, the framework works based on historical data
of power consumption as well as production. Dashed-line
arrows indicate the flow of information between the framework
components. FRODO receives historical data and derives two
forecasts: PV production and load consumption. Information
about these two forecasts, in addition to information about the
holar system structure, are then used by OLAF as an input
for the strategy selection process. This selected strategy is the
foundation for next days charging and discharging schedule of
a storage unit within an atomic holon. After considering the
related work in the following Section III, Section IV provides
detailed information for the individual parts of the framework.
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Figure 2. Structure and information flow within the Framework.

III. RELATED WORK

In related work, Battery Energy Storage Systems (BESSs)
for handling fluctuations in DER are a major research topic.
The requirements of a BESS for mitigating PV output fluc-
tuations are examined in [7]–[9]. In [10], a control scheme
for energy devices in the distribution network to reduce peak
demand based on day-ahead demand forecasts is presented.
Thereby, the research focuses on optimizing the storage sys-
tem’s schedule from the network operator’s perspective. [11]
proposes a solution for finding the optimal size of a BESS with
regard to economic perspective, which can be used in addition
to finding the optimal charge and discharge strategy under
certain conditions. In [12], a day-ahead energy management
framework of a microgrid is presented; the authors propose
management of the energy flow based on next days electricity
price. That is one possible strategy for controlling the energy
flow. In this work, we are defining several strategies and
looking for the best based on external constraints. Batteries
are also used in [13] to maximize a households profit. Control
strategies are applied for scheduling electric vehicles to imple-
ment peak-shaving and valley-filling in [14]. In this scenario,
the electric vehicle takes part of a storage unit in Figure 1.

IV. METHODS

The promising results in BESS-oriented related work sug-
gest the potential of prediction-based strategy selection for
the dynamic creation of holar microgrids. The framework
proposed in this paper aims to leverage these results and, in
future work, also to integrate formation and control methods
for merging and splitting holar microgrids.

This section gives detailed information for the three differ-
ent parts of the framework: Historical Data (IV-A), FRODO
(IV-B) and OLAF (IV-C). Additionally, we show the first
results on day-ahead load forecasting based on real-world data.

A. Historical Data

The load consumption and PV production data used in
this paper are provided by the Technology Centre of Energy

(TZE) at the Landshut University of Applied Sciences. The
load consumption and PV production data was collected from
January 1st, 2017 to December 31st, 2018 and are available
for every minute. However, in this paper we are using 60
minutes – or hourly – discrete power values for production
[kW] as well as consumption [kW]. Weather data are recorded
at the stationary installed weather station at the TZE for
temperature [°C], humidity [%], solar irradiation [W/m2],
precipitate [mm/min], wind speed [m/s], wind direction [°]
and air pressure [hPa]. Missing weather data points are taken
from the Deutscher Wetterdienst (DWD).

To ensure valid forecasting results by FRODO, the following
data preprocessing steps are implemented:

• Data cleaning: To reduce the influence of missing data,
interpolation was executed if the gap is less than one hour.
Otherwise the average value for the specific time-slot was
scaled to fit the curve. Since we are doing day-ahead
forecasting, days without previous load consumption are
also removed.

• Time-series to supervised learning: The raw data is a
time-series sequence ordered by a time index for every
minute, which is first aggregated to hourly discrete values
and then converted to input-output-pairs (xn, tn) where
xn are the inputs and tn the output values for each day
n = 1...N .

• Input selection: Feature engineering is a crucial task in
machine learning. Figure 3 shows the daily average power
consumption per weekday and there is a significant differ-
ence between workday and weekend visible. Therefore,
the date features are one-hot-encoded, i.e. 1000000 for
Monday, 0100000 for Tuesday and so on. The same
applies to special days like holidays.

Figure 3. Daily average consumption per weekday over a 2-year period.

For illustration, Figure 3 depicts the daily discrete power
values for consumption over a day divided into 23 hourly
intervals. Beside the previous mentioned difference between
workday and weekend, there is a clear decrease after Friday
lunchtime visible. This is explained due to the fact that the
consumer in this show-case is formed by a research center with
around 15-20 employees working regularly on weekdays. The
production unit in this research is a 10.4 kWp installed PV
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module and different batteries, e.g., 100 kWh Redox-Flow,
125 kWh Lithium-Ion, 12 kWh Lithium-Ion, are used as
storage systems. These are the key components for the atomic
holon in this show-case as well as the consumption data –
and also the production data – which provides the basis for
the forecasting module, described in the following part.

B. FRODO

To ensure an efficient energy flow between the different
entities within a holon, a precise load consumption and PV
production forecast is essential. Due to page limitations, only
the development process for the load consumption component
within FRODO is described. The PV production forecasting
works similarly and will be shown in subsequent work.
Different forecast approaches can be classified according to
their forecast horizon. Hereby, we differentiate between three
main categories: Long-Term Load Forecast (1 year to 10
years ahead), Medium-Term Load Forecast (1 month to 1
year ahead), Short-Term Load Forecast (1 hour to 1 day
or 1 week ahead) [15]. A main requirement for using the
proposed framework is to be able to dynamically select the
next day’s operation strategy. For enabling this, a Short-Term
Load Forecast (STLF) is essential. Therefore, two different
Machine Learning (ML) models for STLF are developed and
tested against each other: A first model leverages Random
Forest (RF) and the second one is based on a Long-Short-
Term memory (LSTM) neural network. Both approaches have
been tested and proven to work well for the present forecasting
task in the related literature [16]–[19].

Architecture: The RF is an ensemble method that oper-
ates by constructing a multitude of decision trees whereby
each tree forecasts the load consumption by itself and the
method returns the mean value. In this case, 500 trees are
created at training time with a maximum depth of 15. The
LSTM is a recurrent neural network and unlike standard
feedforward networks, LSTM has feedback connections to
maintain information, which is used for solving learning tasks
based on prior input data and decisions [20]. We use one
hidden layer with 50 neurons, one dropout layer with 0.2 rate
to avoid over-fitting and one dense layer with 24 neurons,
since we want forecast values for every hourly interval. The
prior mentioned hyperparameters of each method are estimated
through extensive grid search. For that reason, the historical
data are first split into three distinct groups: training (80%),
validation (10%) and test (10%). The first two are used
for tuning the previously mentioned hyperparameters. After
estimating the best model architecture, each model is tested
by using a 10-Fold Cross-Validation.

Input Features: In [21], we showed that the power
consumption for an exemplary day d can be explained by
the consumption values of the previous day d − 1 and by
last week’s consumption d − 7. In addition, we mentioned
previously the importance of calendric factor like day of week
and holidays. Therefore, the input features are composed of
the following 58 variables: (Input 1 − 24) consumption of

d − 1 [kW], (25) mean temperature Td−1 [°C], (26 − 50)
consumption of d−7 [kW], (51) mean temperature Td−7 [°C],
(52 − 57) one-hot-encoded day of week and (58) holiday [0
or 1]. Training, validation and test data are input-output pairs
(xn, tn), with n = 1...N , where xn are the explanatory input
variables and tn the outputs.

Evaluation: The test data is used to evaluate the model’s
forecast accuracy. Therefore, the third split of the historical
data was held back to measure the model’s accuracy on
“unknown” input data. Figure 4 shows next day’s consumption
forecast of both RF and LSTM for one example day, and also
the actual measured values for comparison. It shows good
accuracy in the morning as well as in the evening, but a
clear underestimation for the three intervals between 11 and
14 o’clock. This behavior is caused by the fact that those
consumption values are way above average (see Figure 3) and
can not be handled well by both RF and LSTM. To improve
this forecast behavior, further model adjustments are done in
future work described in Section V.

Figure 4. Forecast values and actual consumption for one example day.

For model comparison, three different persistence ap-
proaches are used. Let L(d, h) be the consumed load for a
specific day d at a particular hour h. A persistence model
is a method to predict the future behavior on the assump-
tion that current load consumption L(dt, h) is similar to the
value at the same hour of a different day L(dt−i, h). The
following approaches are implemented: (1) “previous day”
L(dt, h) = L(dt−1, h), (2) “last week” L(dt, h) = L(dt−7, h)
and (3) “weekday average” L(dt, h) = L(dt, h), where L
denotes the average value for a specific day and hour.

To quantify the results numerically, forecast accuracy is pre-
sented using standard measures: Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and Mean Percentage Error (MPE), defined in the
following equations Eq. (1)–(4):

MSE =
1

N

N∑
n=1

(Yn − Ŷn)
2 (1)

RMSE =
√
MSE (2)
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MAE =
1

N

N∑
n=1

∣∣∣Yn − Ŷn

∣∣∣ (3)

MPE =
100%

N

N∑
n=1

(
Yn − Ŷn

Yn

)
, (4)

where Yn represents the actual value of the electrical load and
parameter Ŷn is the corresponding forecast value, respectively.
N is the sample size. The forecast results on the test set are
given in Table I.

TABLE I. RESULTS OF MEASUREMENTS FOR DIFFERENT
CONDUCTED FORECASTS

Model MSE RMSE MAE MPE

Previous Day 15.82 3.98 2.46 -6.51

Last Week 9.27 3.04 2.16 1.45

Weekday Average 5.42 2.33 1.77 -3.39

RF 4.86 2.20 1.43 -1.57

LSTM 6.23 2.45 1.67 -4.29

The results in Table I show that the RF has an increased
forecast accuracy compared to the persistence approaches and
that the LSTM performs worse than the “weekday average”
persistence models. For every metric, the lowest value is the
best result and is indicated by emphasized cells. It is also worth
mentioning, that the forecast error for the RF remains mostly
constant regardless of the different splits of the data set. In
contrast, the LSTM results depend highly on the segmentation
of training and test sets. This might be due to the LSTM
overfitting of the data based on the distribution of workdays,
weekends and outliers (way above average days). Due to page
limitations, this section only describes the load consumption
forecast. However, the production forecast (e.g., solar, wind)
works similarly and will be the focus of further work. The
derived energy production and consumption forecasts are
further processed by OLAF, where the optimal strategy for
the energy flow between the different holon components is
selected. This selection process and also definitions of example
strategies are explained in the following section.

C. OLAF

The OLAF module of the framework is responsible for
selecting and executing the next day’s operation strategy.
Basically, this strategy is a sequence of information how and in
which direction the energy flow between the components (see
Figure 1) is realized for each next day’s hourly interval. This
includes schedules for charging and discharging the storage
unit, based on some prior defined constraint and optimization
goals, which are specified in the following paragraph. For this,
OLAF receives the two previously generated PV production
and load consumption forecasts of the FRODO module and

selects a BESS operation strategy based on this information.
The different possible BESS strategies can roughly be divided
into three categories: customer-, market- and grid-oriented
strategies [22]. A more detailed classification for operation
strategies is presented in [23]. These strategies and the primary
beneficiary are defined as follows:

• Maximized consumption of self-generated power (cus-
tomer): Produced power is primary used to cover the
household’s load. Overproduction is going to the storage
unit.

• Limited power grid feed-in (grid): Cuts off power feed-in
at a given upper boundary.

• Time-scheduled (dis-)charging (grid/customer): The stor-
age, e.g., Battery, is only used at certain time of days.

• Time and power constrained storage (grid): Minimize
feed-in at given peak-hours for grid relief through em-
pirical knowledge.

• (Dis-)charging depending on energy pricing (mar-
ket/customer): This strategy’s goal is to minimize the
electricity price for a given household.

• Incremental grid relief (grid): Instead of feed-in as much
produced power as possible, only a fixed percentage is
used, e.g., 30%.

• State-of-Charge dependent charging (customer): The
charging schedule is prepared, depending on the battery’s
State Of Charge (SOC). The lower the SOC, the more
produced power is used to charge the battery.

The Strategy Selection Unit encompassed within OLAF
chooses, based on the forecast values and the desired holarchi-
cal organization, a preferred operation strategy. Since we are
getting next day’s forecast as hourly intervals from FRODO,
the chosen strategy is executed also in hourly time steps. Sub-
sequently, the Control Unit (CU) – an independent controlling
element implemented in the environment – is responsible for
executing the a-priori defined charge and discharge schedules
for the respective storage systems (e.g., batteries) within each
time interval. If the available energy does not satisfy the
chosen strategy, e.g., discharge an empty battery or feed-in
produced power although the limit is reached, the Control Unit
attempts to adjust the next time interval – using the feedback
loop – so that the desired goal can be achieved.

Although the Log Unit (LU) as well as the CU are not
explicitly part of OLAF, they are both in communication with
each other at the end/beginning of each time interval. One
key function of the CU is to give feedback to OLAF, not
only for strategy monitoring reasons, but also to adjust the
forecast results from FRODO. If the forecast value for a time
slot exceeds some threshold – both directions: overestimation
or underestimation – the CU informs OLAF to modify the
remaining daily values. Furthermore, the LU is responsible
for logging and storing the energy data, the recorded weather
data (either through a stationary station or external sources)
and the operational data on a daily basis. This information is
then stored as historical data and can then used by the FRODO
module to improve the forecast accuracy for subsequent days,
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if the desired accuracy is not fulfilled anymore. This possible
improvement – either update the forecast values or change the
actual operation strategy – represents an ability to dynamically
handle uncertain behavior, as it is necessary for the safe and
resilient operation of energy grids base on the concept of
holarchies and for performing the characterization described
in Section II-B. Through smart strategy selection, e.g., self-
containment for one atomic holon or co-operation between
multiple atomic entities is achievable.

V. CONCLUSION

In this paper, we introduced a framework to provide dy-
namic control for the state-of-the-art holonic smart grid. Based
on a bottom-up approach, the proposed framework enables
holarchical organization at an atomic level. The presented
approach is designed to improve current Smart Grid capa-
bilities by providing a modular structure for forecasting and
optimization. Based on historical load data, our framework
makes a day-ahead forecast for load consumption and PV
production, within reasonable limits. After analyzing the his-
torical data (Section IV-A) an LSTM approach, which is an
established ML technique, is presented in Section IV-B as
the STLF model within FRODO. Due to page limitations,
the PV production forecast was not presented in this research
paper, but works similarly to the load consumption forecast
and will be described in further works. To validate the load
forecast accuracy, an RF and an ML technique are evaluated
and compared, as well as the following three persistence
models: previous day, last week and average weekday value.
The results showed that both LSTM and RF are practicable
methods with higher accuracy than the persistence approaches.
The derived forecast values are the basis for OLAF, the opti-
mization part within the framework, which selects the strategy
for next day’s energy flow within a holon. This operation
strategy is chosen under predefined constraints, e.g., customer-
oriented, market-oriented, grid-oriented, and is executed in
one-hour-intervals over the next day. The framework is capable
of handling uncertain behavior and divergent forecasts through
a feedback-loop after each interval.

In future research work, we are improving the forecast
models by adjusting the different ML techniques. Furthermore,
we are defining more strategies to optimize the holarchical
operation.
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