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Abstract—Forecasting day-ahead electricity prices from the
Elspot market holds essential importance for various stakehold-
ers, primarily electricity producers. These producers depend
on precise price forecasts when placing supply bids and fine-
tuning their dispatch schedules. This paper delves into this vital
area, emphasizing day-ahead Electricity Price Forecasting (EPF).
Following a comprehensive assessment of EPF techniques, we
have experimented with three methods: a heuristic approach,
Extreme Gradient Boosting (XGBoost), and the Long Short-
Term Memory (LSTM) network. We have carried out unified
comparisons among these three approaches across all six Elspot
markets of Norway. Our results indicate that the LSTM outper-
form the other models in three of the six zones, which indicates
the superior efficacy of the LSTM model. We have also noticed
the impact of data variance on model performance, and hence
improving model generalization will be our subsequent research
endeavors.

Index Terms— Electricity Price Forecasting, Elspot prices,
XGBoost, LSTM.

I. INTRODUCTION

Accurately forecasting market trends and price fluctuations
is of paramount significance for a diverse range of stake-
holders, including investors, businesses, and policymakers.
This importance is particularly pronounced in the context of
electricity markets, which serve an integral role in modern so-
ciety and have experienced substantial transformation through
deregulation and the integration of renewable energy sources
[8] [12] [14] [29]. Recent disruptions in European electricity
markets further underscore the growing imperative for precise
Electricity Price Forecasting (EPF). Such predictions are cru-
cial for electricity producers, consumers, and market operators
to effectively plan their production, consumption and trading
activities [1].

The NordPool spot (Elspot) market is a day-ahead market,
where the price of power is determined by supply and demand.
Such spot prices are actual price for electricity the next day,
which will be set at Nordpool Elspot. Our primary focus is
on day-ahead price forecasting using known spot prices. This
forecasting directly informs bidding strategies for the upcom-
ing day [17]. Due to the distinct characteristics of electricity
markets, each forecasting challenge is unique across different
markets and necessitates bespoke model developments [22].
We propose a framework for evaluating forecasting methods
for all six Elspot markets of Norway while comparing three

different numerical approaches to the problem of extrapolating
prices in both univariate and multivariate configurations, facil-
itating the identification of region-specific models and model
configurations.

In essence, this paper addresses the pressing need for
accurate EPF in an evolving energy landscape, providing a
systematic framework for evaluating and comparing forecast-
ing methods across multiple markets in Norway. In Section
2 we dive into electricity markets and existing literature on
EPF, Section 3 present the methodologies employed, Section
4 discuss the conducted experiments and in Section 5 we
conclude in an analysis of the obtained results.

II. BACKGROUND AND LITERATURE STUDIES

In this section we review the various market mechanics char-
acterizing electricity markets and existing literature concerning
EPF.

A. Background

Electricity is produced only moments before consumption,
so unlike other commodities, electricity must be balanced
between production and consumption at all times [15]. In
a deregulated market environment, determining the uncon-
strained Market Clearing Price (MCP), commonly referred to
as the spot price of an electricity pool typically involves the
following steps:

Figure 1: MCP bidding process.

• Generating companies bid prices for supplying energy,
creating a supply curve.

• The demand curve may be set at a value derived from
a forecast of the load due to short-term inelasticity for
demand of electricity, resulting in a vertical line at the
forecasted load value.

• Spot price is found where supply and demand curves
intersect, signifying the market equilibrium.
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Figure 2: Equilibrium curve to determine the MCP of a
bidding-pool.
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Figure 3: Deadline for bids in the Elspot markets.

The spot price is set at the equilibrium between supply and
demand as seen in Figure 2 for each hour of the following
day after accounting for the bids received within the deadline
as illustrated in Figure 3 [12].

A time series is defined as a series of data points indexed
in time order [32]. Commonly expressed as:

X = Xt
∞
t=1 = (X1, X2, . . .) (1)

where Xt denotes the observation at time t, and the sequence
of observations is indexed by t ranging from 1 to infinity.

Accurately extrapolating the future poses unique challenges
due to several constraints imposed by time order. Some of
these constraints include look-ahead bias, stationarity, auto-
correlation, seasonality, trend and noise. Time-series data,
characterized by sequential observations over time, requires
specialized methodologies that can capture temporal depen-
dencies and patterns. Additionally, the electricity market is
influenced by a multitude of factors, including supply and
demand dynamics, changing industrial and household con-
sumption, multiple seasonality, weather conditions, regulatory
policies, fuel prices, the integration of renewable energy
sources, and the rapid diffusion of price-anomalies [1] [8] [12]
[14] [29]. Understanding the key drivers of price movements
aids in feature selection for predictive models. For instance,
if weather patterns or economic variables significantly affect
prices, incorporating these into a model may improve accuracy.

The choice of methodology should also consider the nature
of price drivers, as incorporating these considerations guides
model selection. Furthermore, accurate price forecasts coupled
with an understanding of their drivers provide valuable market
insights.

B. Literature Studies

In the domain of EPF, selecting appropriate input variables,
historical data duration, and modelling techniques is crucial.
Most efforts that focus on forecasting day-ahead prices typi-
cally include an inference horizon of 1-4 weeks [2] [3] [10]
[11] [13] [17] [18] [22] [23] [26] [30] [33]. Historical data
spanning at least a year is commonly employed to capture
yearly seasonality [2] [13] [18] [24] [33]. Input variables
encompass a range of factors, including past prices [2] [3]
[5] [6] [9] [10] [11] [13] [16] [17] [18] [21]- [27] [30] [33],
system loads [13] [17] [21] [23]- [26] [30], weather variables
[5] [13] [18] [24] [31], fuel costs [3] [5] [19] and sector indices
[28]. Preprocessing and data transformations are essential to
handle missing values and outliers, which can affect model
performance. Techniques like normalization [5] [6] [30], de-
composition [6] [10] [18] [23] [25] [33], and differentiation
[11] are used to improve data quality and model accuracy.
Statistical models, such as econometric methods, like Linear
Regression [13] [21] [23] [31] and Auto-Regressive models
[3] [10] [11] [13] [16] [18] [30] [33], offer interpretability
and insights into correlations. Algorithmic models like Deep
Learning (DL) [6] [13] [16] [17] [19] [21]- [25] and Ensemble
models [3] capture complex and nonlinear patterns. Overall,
the process of building a forecasting model involves decisions
on input selection, preprocessing, model choice, parameter
estimation, and accuracy evaluation. However, guidelines for
navigating these complexities are limited, with much variation
in reported approaches. Given the specific nature of EPF, es-
tablishing baselines and ensuring rigorous reporting is critical
for advancing research in this field.

III. PROPOSED METHODOLOGY

In this research, the methodology centres around two key
aspects of EPF: input variables and forecasting methods. The
approach begins with selecting a baseline method that is
heuristic-based. Building upon this baseline, the study con-
ducts an empirical-driven progression to develop previously
proven forecasting models in both univariate and multivari-
ate configurations. Three distinct approaches are explored: a
heuristic method, an algorithmic ensemble approach, and a DL
approach. This methodology is designed to ensure objectivity
and standardization in the evaluation process. Given the unique
and inconsistent nature of electricity markets, EPF challenges
vary significantly across locations and time frames, rendering
cross-study evaluations potentially misleading and universal
benchmarks logically unsound for this domain. Therefore
the methodology involves systematic steps, including litera-
ture review of related work, data collection and preparation,
model development and rigorous testing against real-world
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outcomes. All the data-handling, -visualization and model-
implementation and -evaluation was done using Python soft-
ware.

A. Heuristic Baseline

The persistence forecast is utilized as a baseline for this
study. This approach involves using the last observed value of
the time series as the forecast for the corresponding day-ahead
time step. In the context of day-ahead electricity price forecast-
ing, this would mean using the most recent price value as its
prediction for the same hour the next day. Assuming we have
a time series of electricity prices pt, pt+1, pt+2, ..., pt+n where
t is the current time step, the persistence model predicts the
current price 24 hours ahead for each time step. In the context
of day-ahead EPF, the persistence model serves as a sensible
baseline. While more complex modelling methods may exhibit
reasonable accuracy, they must be able to generalize beyond
the explicit information provided in the input data. As a
baseline the heuristic provides a reference point against which
more advanced models can be evaluated, ensuring that they
genuinely contribute to improved forecasting performance. We
can express the persistence model in mathematical notation as
follows:

P̂t = Pt−24 (2)

where P̂t denotes the predicted electricity price at time t and
Pt−24 is the observed value of the electricity price 24-time
steps earlier.

B. Algorithmic Ensemble

Extreme Gradient Boosting (XGBoost) is a popular
gradient-boosting algorithm that is commonly used in
machine-learning applications for both classification and re-
gression tasks. It is an ensemble algorithm that combines
multiple weak models (decision trees) to make a strong pre-
diction. XGBoost learns from examples by building a series of
decision trees. Each tree tries to correct the mistakes made by
the previous trees reducing the risk of overfitting, and leading
to a more accurate prediction [7]. The objective function for
XGBoost can be written as:

L(Θ) =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (3)

where Θ represents the set of model parameters, n is the
number of training examples, yi is the true value of the
i-th example, ŷi is the predicted value, l(yi, ŷi) is the loss
function, K is the number of weak models, fk represents the
k-th weak model, and Ω(fk) is the regularization term.

The weak models used in XGBoost are decision trees, which
can be expressed as:

f(x) =

T∑
t=1

wtqt(x), w ∈ RT , q : Rd → {1, 2, . . . , T}

(4)
where x is the input features, w is the vector of weights
associated with each leaf node of the tree, T is the number

of leaf nodes, and q(x) is the function that maps the input
features to the index of the corresponding leaf node.

C. Deep Learning

Long Short-Term Memory (LSTM) is a type of Recurrent
Neural Network (RNN) that is commonly used for time-series
forecasting. Unlike traditional RNNs, LSTM networks are
designed to overcome the problem of vanishing gradients,
which make it difficult for the network to learn and remember
long-term dependencies in the data. In simple terms, the LSTM
network is like a specialized memory unit that can selectively
remember important information from the past and use it to
make predictions about the future. It achieves this by using
a system of gates, which are like control switches, to control
the flow of information within the network.
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Figure 4: Long Short-Term Memory (LSTM) Network Dia-
gram.

The LSTM network has three main types of gates as visu-
alized in Figure 4: input gates, forget gates, and output gates.
These gates allow the network to decide which information is
important to keep, which information to forget, and when to
output its predictions [20].

IV. EXPERIMENTS AND DISCUSSION

This section covers the datasets used, the experimental
setup, and the ensuing presentation and discussion of results.

A. Dataset and Description

The data, including unit measures, granularity and data
sources are described in Table I. A total of six data-sets were
created, each comprising time series data from one of the
six bidding zones. The data-sets consist of 14-16 variables
each, with the amounts of variables varying depending on the
number of exchange connections to neighbouring zones.

Missing values occurred due to multiple reasons, such as
changing time zones, observations at a lower frequency than

Figure 5: Historical Elspot prices for Oslo (NO1).
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TABLE I: DESCRIPTION OF DATA (TARGET*).

Variable (units) [granularity] Source
Elspot price (NOK/MWh) [h] Nord Pool
Day-ahead Elspot price (NOK/MWh)[h]* Nord Pool
Power production (MWh) [h] Nord Pool
Power production prognosis (MWh) [h] Nord Pool
Power exchange (MWh) [h] Nord Pool
Power consumption (MWh) [h] Nord Pool
Reservoir levels (GWh) [w] Nord Pool
Reservoir capacity (GWh) [w] Nord Pool
Gas price (NOK/mmbtu) [d] Yahoo-finance
Oil price (NOK/barrel) [d] Yahoo-finance
OSEBX price (NOK/OSEBX) [d] Yahoo-finance
Air temperature (mean/degC) [d] MET
Wind speed (mean/ms) [d] MET
Percipitation (sum/mm) [d] MET

the target values and stock exchanges being closed during
weekends. Missing values due to these occurrences were
appropriately imputed using interpolation, backward-fill or
forward-fill.

The data is split into two sections, the first contains three
years of data with 26 000+ price-observations and is allocated
for training and validation, the second is separated from the
first and contains 4 months of recent and unseen data allocated
for testing and evaluation. The date ranges are the following,
01.01.2020 00:00 - 29.12.2022 23:00 for train and validation,
and 01.01.2023 00:00 - 30.03.2023 23:00 for the hold-out test
set. Essentially, the train-test split contains the original time
order and is not shuffled or re-ordered. Data is normalized
using min-max scaling, this is done separately for the two
sections in order to prevent introducing look-ahead-biases
encoded in the scaling.

B. Experiments
The experiments include a heuristic baseline and are com-

pared against each other as opposed to previous experiments
from related work. First, the models are validated in the task of
predicting the day-ahead hourly elspot prices on the validation
set using a rolling forecast cross-validation (RFCV) scheme
presented in Table II.

TABLE II: RFCV SCHEME (YYYY-MM-dd hh).

Fold Train Start Train End Val Start Val End
1 2020-01-01 00 2021-12-31 23 2022-01-01 00 2022-01-01 23
2 2020-01-01 00 2022-01-01 23 2022-01-02 00 2022-01-02 23
3 2020-01-01 00 2022-01-02 23 2022-01-03 00 2022-01-03 23
... ... ... ... ...

365 2020-01-01 00 2022-12-28 23 2022-12-29 00 2022-12-29 23

These experiments provide information about the models’
performance on a full year of daily-predictions with daily re-
training. During validation, the error of the models is measured
using Root Mean Squared Error (RMSE). The errors are
averaged by time of day; mornings (hours 6-12), mid-days
(hours 12-15), evenings (hours 15-21) and nights (hours 21-6).
An example of results from rolling forecasts origin validation
with visualization from a sample period of 1 week including
bar charts of aggregated time-of-day scores from the entire
year are presented in Figure 6 (baseline results of aggregated
RMSE are marked with red dashed lines for comparisons).

(a) Actual vs. prediction (18.12.2022 00:00 -
24.12.2022 23:00).

(b) Aggregated RMSE (01.01.2022 00:00 -
29.12.2022 23:00).

Figure 6: Rolling Forecast Origin Cross-validation of multi-
variate LSTM for Kristiansand (NO2).

After validating the models on the last year of the train-
set, they are then are evaluated in their ability to extrapolate
24 time-steps ahead from the known spot-price during a 4-
month out-of-sample period on a recent hold-out test-set from
all the bidding-zones, with their weights and hyperparameters
determined from training and tuning on the previous 3 years
of data. The results of these experiments are presented in
Table III, allowing for comprehensive analysis and review of
the different modelling approaches in relation to the bidding
zones and the addition of exogenous variables. The evaluation
scheme of model performance consists of four different error
terms; Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Mean Average Percentage Error (MAPE) and
Residual Sum of Squares (RSS). To gain a comprehensive
understanding of the models’ capacity for generalization and
their ability to navigate the bias-variance trade-off, we seek to
offer diverse viewpoints on the models’ performance.

C. Discussion

Predictions from validation seem to be more accurate during
mornings (6-12) and middays (12-15) as illustrated by the
RMSE scores in Figure 6. However, none of the models
consistently outperform the heuristic baseline across bidding
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TABLE III: RESULTS FROM OUT-OF-SAMPLE EVALUATION (01.01.2023 00:00 - 30.03.2023 23:00).

RMSE MAE MAPE RSS
Model endog w/ exog endog w/ exog endog w/ exog endog w/ exog

N
O

1

Heuristic 29469 / 19946 / 25.19% / 18.7e11 /
XGBoost 29156 27052 20268 18838 26.22% 26.92% 17.9e11 15.5e11

LSTM 29174 21109 21035 20134 29.21% 26.69% 17.9e11 17.9e11

N
O

2

Heuristic 29474 / 19943 / 25.19% / 18.7e11 /
XGBoost 29545 27259 20715 19266 26.77% 26.19% 18.4e11 15.7e11

LSTM 28354 26431 20317 18173 29.09% 24.81% 16.9e11 14.9e11

N
O

3

Heuristic 30448 / 21069 / 37.58% / 20.0e11 /
XGBoost 28469 29069 19687 19666 35.79% 31.79% 17.1e11 17.8e11

LSTM 28438 28381 20462 19228 40.91% 31.29% 17.1e11 16.6e11

N
O

4

Heuristic 21456 / 11705 / 25.28% / 99.4e10 /
XGBoost 20592 23149 11424 12507 25.43% 29.35% 89.6e10 11.3e11

LSTM 19448 21675 10519 13155 22.76% 28.05% 79.9e10 96.1e10

N
O

5

Heuristic 25240 / 16953 / 15.75% / 13.7e10 /
XGBoost 24950 24156 17137 17018 16.27% 15.94% 13.1e11 12.3e11

LSTM 25427 24584 18391 18189 17.80% 17.49% 13.6e11 12.9e11

N
O

6

Heuristic 30448 / 21069 / 37.58% / 20.0e11 /
XGBoost 28469 28326 19687 19532 35.79% 31.70% 17.1e11 16.9e11

LSTM 28438 30100 20462 22870 40.91% 48.58% 17.1e11 19.1e11

zones and time-of-day during these experiments. This could be
attributed to the highly volatile and disruptive prices witnessed
in the year 2022 as illustrated in the historical elspot prices in
Figure 5, which is the year allocated for validation, making it
difficult for the models to fit the data comprehensively.

Results from the out-of-sample evaluation exhibit more
promising improvements over the baseline. As seen in Table
III, the LSTM and XGBoost models outperform the baseline
across all evaluation criteria for most of the bidding-zones,
meaning that they are able to balance between capturing price
nuances while maintaining robustness to outliers. These results
ultimately emphasize the potential of DL and ensemble ML
techniques for capturing the complexities of EPF. Specifically,
the LSTM model in its multivariate configuration achieves
this feat during out-of-sample evaluation on the data-sets
for bidding-zone NO2 and NO3. Surprisingly, the univariate
LSTM outperforms the other models in all aspects of error for
the bidding-zone NO4. The final model to outperform all other
models for all aspects of error is the multivariate XGBoost
model for the bidding-zone NO6. For the remaining bidding-
zones NO1 and NO5 there is no clear contender for best model
performance. The variability in results across the different
data-sets highlights the presence of unique characteristics for
the distinct bidding-zones, with varying predictability, model-
performances and optimal model-configurations.

V. CONCLUSION AND FUTURE WORK

Forecasting day-ahead electricity prices plays a pivotal role
in strategizing and balancing the supply and demand for the
subsequent day, making it an essential area to delve into. In
this paper, we introduce a framework to assess forecasting
techniques across all six Elspot markets in Norway, intimi-
dating heuristic methods with advanced XGBoost and LSTM
deep learning networks. Results consistently showcase the
superiority of LSTM model over its counterparts in out-of-
sample evaluations across most bidding zones. Specifically,

the LSTM model in its multivariate configuration outperforms
all other models for all aspects of error in bidding-zone
NO2 and NO3. The univariate LSTM outperforms the other
models in all aspects of error for the bidding-zone NO4.
This is notable due to capability to capture price variance
temporally, as well as a notable merits of robustness against
outliers. Concurrently, the XGBoost model has also marked its
presence by performing admirably in the bidding-zone NO6,
also outperforming the other models for all aspects of error.
This feat could be attributed to the simplicity of the XGBoost
model as opposed to the more complex LSTM, making it less
likely to overfit on data that exhibit less intricate and complex
patterns. The variability in results across the different data-
sets highlights the presence of unique characteristics for the
distinct bidding-zones, therefore, model generalization will be
the focal point of our future research endeavors.
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