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Abstract—The number of California wildfires has increased in 
the past two decades. This change has increased the authors’ 
and policymakers’ attention to the factors that affect this 
phenomenon and how to manage it. Wildfires wreak havoc on 
the environment by burning large sections of land, housing, 
animals, and people alike. Wildfires degrade air quality while 
hindering transportation and communication. They also present 
a serious threat to the power grid. This study aims to examine 
the correlation between population density and acres burned 
which may help understand and manage wildfires in the state. 
This research study uses California fire-perimeter data, 
population data, and fire-severity zones extracted from the 
ArcGIS hub and ScienceBase. In particular, we analyzed five 
years of fire-perimeter data using a geographic information 
system ordinary least squares analysis, attributes, and summary 
statistics to create new layers representing selected features 
involved in the process. The results show no correlation between 
the dependent and the explanatory variables. Further analysis 
suggests that wildfires may be reduced if more awareness 
campaigns are designed and presented to the public. 
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I.  INTRODUCTION 
California’s hot climate and flammable plants give the 

state a high wildfire risk [1]. Millions of acres are burned 
yearly in California wildfires, rendering land unusable for 
agriculture while destroying habitats and property [2]. 
California’s state government has massive historical data on 
wildfires, in cooperation with other western US states [2]. For 
example, in 1910, the historical event “Big Blowup” occurred 
and affected the Northwest states. As a result, fire-suppression 
policies were established [3]. In 1889, large parts of Orange 
County, California, were burned by a great wildfire; the 
Santiago Canyon Fire [2], estimated at 300,000 acres. More 
recently, the Matilija (1932, 220,000 acres) and Laguna 
(1970, 175,000 acres) fires were recorded as the largest and 
second largest fires in California’s history until 2020 [4]. In 
2003, a complex fire occurred in Southern California that 
destroyed 3,719 homes and killed 24 [5]. The 2018 Camp Fire 
in Butte County, California, damaged 18,804 structures and 
caused 88 mortalities [6]. In 2020, a collection of large fires 
broke the state’s records [1], burning 4,304,379 acres, 
destroying 11,116 structures, and killing 33 [7]. 

Several reasons or factors play critical roles in wildfires’ 
occurrence and severity. Drought increased the chances of the 
large fires California faced in the last decade. Related to this 
cause is another critical factor, climate change [2][8][9]. 
Another natural factor is lightning [10]. Another important 
factor is humans. As reported by the U.S. Forest Service 
research data archive, 85% of wildfires in the states are caused 
by human actions: discarded cigarettes, improperly tended 
campfires, intentional arson [10], population density [11], and 
other factors. 

Wildfires are a serious threat to the power grid, as they can 
damage or destroy power lines, transformers, substations, and 
other infrastructure. Utilities also must sometimes shut off 
power to prevent sparks from igniting new fires, causing 
widespread blackouts affecting millions. 

 At least three smart-grid technologies can help enhance 
the power grid’s wildfire resilience, reliability, and safety. 
Microgrids—small, localized grids that can operate 
independently from the main grid—can provide backup power 
to critical facilities: hospitals, fire stations, and water-
treatment plants. Underground power lines, being unexposed 
to the air, are less vulnerable to damage from wind, trees, animals, 
and fire and reduce the visual impact and electromagnetic 
interference of power lines. Sensors and automation, small 
devices that monitor the condition and performance of the 
power grid, can automatically detect and isolate faults, such 
as downed power lines or broken equipment and can also 
communicate with each other and with the control center to 
optimize the operation and coordination of the grid. All of 
these technologies can help prevent or reduce the severity of 
power outages and restore power more quickly and efficiently 
after a disruption. 

It is essential to analyze all aspects of these fires. Thus, 
many valuable research studies have been conducted on many 
aspects of wildfires in California including understanding fire 
trends [12] and analyzing data to help decision makers [13]. Some 
researchers have developed simulations to predict where and 
how fast fire will travel [14]. Researchers have studied 
previous fires to develop response plans [13], and ways to 
manage fires [15]. Some of their approaches involve using 
geographic information systems (GIS) to create simulations 
with different elements that can impact a fire’s spread and 
severity [16][17]. Researchers have even investigated the 
root factors of some fires, such as the powerlines [10], to 
solve that problem and prevent future fires. 

7Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-139-8

ENERGY 2024 : The Fourteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies



However, to our knowledge, this is the first study that 
examines the correlation between population density and 
acres burned using GIS. Thus, the main aim of this research is 
to analyze that correlation. We hypothesize a strong 
correlation between population density and acres burned. 
Correlation analysis is used to test the hypothesis through GIS 
to analyze several scenarios and testing the hypothesis by 
applying ordinary least squares (OLS). This research study 
answers only one question: What is the correlation between 
population density and acres burned? 

The remainder of the paper is organized as follows. 
Section II presents the literature review focused on the recent 
studies conducted in California state. Section III describes the 
methodology, which includes a clear description of the data 
and the analytical techniques used. The remaining two 
sections illustrate the results, discussion, conclusion, 
limitations, and suggestions for future work. 

II. LITERATURE REVIEW 
Several research studies have used GIS science and tools 

to analyze, understand, manage, and develop solutions for 
many issues including natural disasters, including earthquakes 
[18] and flood risk [19]. Also, GIS has been used to analyze 
California wildfire data, as is the focus of the current research 
study, to develop useful solutions that may help decision 
makers and communities or develop a deeper understanding 
of the problem, such as knowing the associated factors 
[16][17]. 

For example, [5] answered three main questions focusing 
on evacuation orders during wildfires to enhance community 
safety: “Who is at risk?” “How long will it take to evacuate?” 
“How much time is available?” The authors used fire-spread 
modeling with GIS to answer these questions, to determine the 
trigger point, and to recommend evacuation if the fire is 
nearby a certain landmark (point) [5]. The authors’ techniques 
were based on a buffer to determine the evacuation trigger, so 
they applied three steps: 1) modeling the fire spread, 2) 
generating a fire-spread network, and 3) originating a wildfire-
evacuation-trigger buffer. They argued that there is no need to 
have any particular information about the fire’s location and 
their techniques could be used in a long-term strategic or 
short-term operational plan [5]. Reference [13] enhanced the 
wildfire-trigger modeling that used a buffer by combining 
traffic- and fire-simulation models to set a trigger. The authors 
proposed a three-step method with spatiotemporal GIS. The 
framework helps evaluate the generated trigger. The results 
from the framework showed that the dynamic representation 
of the evacuation traffic during the wildfire is improved and 
linked to a better understanding of the decision making and 
evacuation time [13]. 

Reference [12] used data from the NASA RECOVER 
Historic Fires Database (HFD) and GIS to support decision 
making related to fire trends in the western United States. 
ArcGIS Pro helped analyze wildfires’ spatiotemporal patterns, 
characterizing changes in fire size, severity, and frequency 
over time. The results showed that the mean size of a fire that 
occurred in 1950 was less than the mean size of fires 
occurring more recently in 2010 and 2019. Fire frequency 
showed a slight increase, and fire severity was stable [12]. 

Responding to the destructive Camp Fire wildfire in Butte 
County, California, [6] created pre- and postwildfire maps 
representing elementary evacuation data and mitigation plans. 
This study used GIS and machine learning techniques. To map 
the pre- and postwildfire conditions, the authors applied 
Landsat-8 and Sentinel-2 imagery. To classify the pre- and 
postwildfire map, the authors compared a hybrid model, a 
support vector machine (SVM) optimized by the imperialist 
competitive algorithm with the unoptimized SVM algorithm. 
The hybrid model produced better accuracy compared with 
the unoptimized SVM. A total of eight pre–postwildfire burn-
area maps could be used to assess the area affected by the 
Camp Fire wildfire to develop a well-established mitigation 
plan in the future [6]. 

Reference [20] examined the statistical correlation 
between weather and wildfire in 2020 while mining the 
available online California climate and historical spatial data 
from 1992 until 2011 using GIS. The authors investigated the 
correlation between drought conditions and wildfire number 
per forest unit area in California and visualized the results 
using GIS computing technology. They found such a 
correlation where no correlation between the wildfire and 
wind existed [20]. 

In 2021, [21] conducted case-study research in Southern 
California to prioritize wildfire restoration by applying GIS-
based ordered-weight averaging (OWA). They assessed the 
efficacy of OWA and GIS-based multicriteria decision 
analysis (MCDA) techniques in determining the wildfire areas 
that need restoration priority. The combination of the GIS–
MCDA process and the OWA technique helps develop and 
compare several decision maps. These maps show the 
restoration with prioritization and different spatial 
distributions. The authors concluded their research by 
highlighting the power of the GIS-MCDA technique as a core 
tool in spatial decision making [21]. 

Another research study was conducted to investigate the 
association between California’s extreme wildfire events that 
happened in the last three decades and the socioeconomic 
characteristics focusing on the census tracts and county levels 
[15]. The authors used two secondary data types, wildfire 
geospatial data and the sociodemographic characteristics 
collected from the Bureau of Census that include, for example, 
ethnicity and educational level. They employed GIS-based 
spatial analysis to create a map representing the wildfire 
geolocations for several geographic levels with the 
socioeconomic and demographic factors that affected the 
potential wildfire risk. The results showed that more-educated 
people and people who have higher to median income prefer 
to live in a community with low crime levels and fewer natural 
hazards. Also, census tracts with more Native American 
citizens are more exposed to wildfire compared to other 
census tracts [15]. 

III. METHODS 

A. Data Selection and Acquisition 
Three datasets were used in this current research study. 

The main dataset had information about fire perimeters in 
California [22]. These data came from the ArcGIS hub and 
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were uploaded into ArcGIS Pro. The population data came 
from ScienceBase [23], representing the total number of 
people in each county. This dataset helped analyze the 
correlation using population information and perimeter size 
information for each fire. The final dataset contains California’s 
fire-severity zones with three levels of hazard in the 
responsibility areas: moderate, high, and very high. The zones 
were developed by assigning a hazard score based on such 
factors as fire history, natural vegetation, terrain, blowing 
embers, predicted flame length, and typical fire weather in the 
area [22]. We used a total of 2,418 records in this study. 

B. Analysis Phase 
We used ArcGIS Pro, a full-featured professional desktop 

GIS application from the Environmental Systems Research 
Institute, Inc. (Esri), to run the analyses in a Windows 
environment. The OLS linear regression tool was used in the 
analysis after entering all data in one layer. However, before 
that, to explore and understand the phenomenon, several 
investigations and analyses were performed using ArcGIS Pro 
software focusing on attributes and summary statistics (see 
Figure 1). 

To conduct the OLS analysis between population density 
and acres burned, we first split the population density into 
three groups, signified by color. Next, we ran a one-to-many 
spatial-join operation to combine the fire-perimeter and 
population-density layers to enable the extraction of the 
county where the fires took place. With all data in one layer, 
we conducted the analysis using OLS with the population as 
the dependent variable and the acres burned as the explanatory 
field. The attributes tool enabled the selection of some rows 
from the data that contained a certain number or a certain 

string in a column. After selecting the required data, we created 
a new map layer. This tool helped separate the causes into four 
groups: 1) unknown/other causes, 2) human causes, 3) 
natural causes, and 4) industrial causes. The attributes tool also 
split the population density into 1) high, 2) medium, and 3) 
low. This splitting facilitated the analysis to understand the 
correlation as discussed in the results and discussion section. 

After splitting the data causes and severity zones, the 
summary-statistics tool was used to illustrate the number of 
entries in the data, the sum of all the acres burned, and the 
average acres burned. The summary-statistics tool presented 
the data in a table which helps understand and make 
comparisons. 

IV. RESULTS AND DISCUSSION 
Interesting findings have been discovered after analyzing 

the data. First, the analysis of the population data and the fire-
severity zones helped find zones with higher or lower 
populations. The results from the analysis show few patterns 
emerge between population and severity zones (see Figure 2): 
High and moderate fire-severity zones appear within medium- 
and low-population areas. 

Another analysis was conducted to further investigate the 
proposed correlation: Only larger fire data were included, 
those that burned at least 5,000 acres, and compared with 
population. Figures 3 and 4 illustrate where most of the huge 
fires took place from 2016 to 2021, mostly in Northern 
California (see Figure 3). Figure 4 shows no patterns exist 
between the bigger fires and the population as the most huge 
fires occurred in medium- or even low-population zones. 

Another analysis focused on the four main causes of fires 
and acres burned (see Figure 5). The most apparent causes on 
the map are the natural and unknown/other causes. To get a 
deeper understanding, we used the summary statistics tool to 
return the frequency of the fires per cause, the sum of all the 
acres burned for that cause, and the average in each fire with 
that cause (Table 1). 

As illustrated in Table 1, the unknown/other cause is 
responsible for most fires. However, the unknown/other cause 
is just a third of the mean of acres burned. Also, interesting 
was that natural causes were first for the average acres burned, 
which means that the natural causes created fewer but more 
destructive fires. 

Following the exact technique above, we broke the 
human-causes attribute into five unique associated types 
(Figure 6). As shown in Table 2, equipment use is a more 
frequent cause of fire with 298, but its mean acres is just 
481.3095. Campfire burned the most acre (180,044.4) and the 
highest mean (3,830.73). The least cause is smoking where the 
frequency is 14 and the mean of acres is 78.8814. 

 
Figure 1.  Used techniques and tools during the analysis phase. 

Exploring and 
Understanding the 

Phenomenon

• Run several 
scenarios on the 
ArcGIS Pro, focusing 
on attributes and 
summary statistics

Attributes

• Separating causes 
into four groups

• Split population into 
three groups 

Summary Statistics

• Illustrate the result 

OLS Analysis

• Dependent variable: 
Population density

• Explanatory variable: 
Acres burned

 
Figure 2.  Fire-severity zones with the population data. 
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Following the exact technique above, we broke the 

human-causes attribute into five unique associated types 
(Figure 6). As shown in Table 2, equipment use is a more 
frequent cause of fire with 298, but its mean acres is just 
481.3095. Campfire burned the most acre (180,044.4) and the 
highest mean (3,830.73). The least cause is smoking where the 
frequency is 14 and the mean of acres is 78.8814. 

Two subcauses of the natural causes were debris and 
lighting. We created a new layer for each cause based on the 
selection in ArcGIS Pro. The separate layers help visualize 
fires based on their specific causes. Lighting is the most 
common natural cause with also higher means of acres 
compared to debris (Figure 7 and Table 3). 

Using the same techniques for the industrial revealed five 
unique cause types (Figure 8 and Table 4). The most frequent 
cause is vehicle while the higher mean of acres is powerlines. 
The least frequent are both railroad and aircraft causes while 
the acres mean for the railroad is higher than aircraft. 

TABLE I.  CAUSES AND BURNING ACRES 

Cause Frequency Sum of acres Mean of acres 

Unknown/other 1,189 3,023,862.61 2,543.20 

Human 525 464,800.54 885.33 

Natural 495 2,845,918.36 5,749.33 

Industrial 355 1,609,638.03 4,534.19 

 

 

 
Figure 3.  Huge	fire	locations. 

 
Figure 4.  Huge	fire	with the population. 

 
Figure 5.  Causes and acres burned. 

10Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-139-8

ENERGY 2024 : The Fourteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies



 

 

 

TABLE II.  HUMAN CAUSES 

Cause Frequency Sum of acres Mean of acres 

Equipment Use 298 143,430.2 481.3095 

Smoking 14 1,104.34 78.8814 

Campfire 47 180,044.4 3,830.73 

Arson 125 135,449.9 1,083.6 

Playing with fire 26 2,325.25 89.4327 

Escaped prescribed burn 15 2,446.46 163.0973 

TABLE III.  NATURAL CAUSE TYPES 

Cause Frequency Sum of acres Mean of acres 

Lightning 393 4,620,219.4 11,756.28 

Debris 102 62,338 611.157 

TABLE IV.  INDUSTRIAL CAUSE TYPES 

Cause Frequency Sum of acres Mean of acres 

Railroad 3 427 142.3333 

Vehicle 198 368,135.4 1,859.27 

Powerline 144 1,240,273.5 8,613.01 

Structure 7 502.15 71.7357 

Aircraft 3 300 100 

 
Figure 6.  Human	causes. 

 
Figure 7.  Natural	causes. 

 
Figure 8.  Industrial	causes. 
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TABLE V.  FIRE-PERIMETER AND SEVERITY ZONES 

Severity Frequency Sum of acres Mean of acres 

Moderate 633 149,997.29 236.96 

High 608 207,325.72 340.99 

Very High 1,323 7,586,896.53 5,734.62 

Another investigation joined the fire-perimeter and 
severity zones (Figure 9). After the joining, the summary-
statistics tool was used to learn how frequently the fires 
occurred in the area, the sum of acres burned in the severity 
zone, and the average acres burned per zone (Table 5). 

The results showed that the very-high-severity zone 
accounted for over half of the fires that had occurred with a 
mean of acres of 5,734.62. It also had a very high sum of acres 
burned compared to the moderate- and high-severity zones. 

To test the hypothesis, correlation analysis through OLS 
was conducted between population density and the number of 
acres burned. The results showed that the multiple R2, which 
reflects the model performance, is 0.000009, a significantly 
low value. The adjusted R2, which reflects the model 
significance, is −0.000405. This means that no correlation 
exists between the population density and the number of acres 
burned, rejecting the research hypothesis. 

Multiple studies have been conducted related to wildfires 
in California [4][21][24]. However, most of these studies used 
different techniques and methods and had different aims 

compared to this study. For example, in 2022, [25] performed 
a study to mainly evaluate the grazing effect on burn 
probability in California. The authors combined fire time 
series from 2001 through 2017 with environmental and 
socioeconomic covariate and grazing data. To analyze the 
data, they applied preregression matching and mixed-effects 
regression. The results show that a decrease in annual burn 
properties is linked to livestock grazing [25]. 

Since the risk associated with wildfires caused by smoke 
is a major concern across the United States including the 
Wildland–Urban Interfaces (WUI), [26] focused on the fire-
danger trends over time. The authors used ArcGIS to perform 
their study including data from 1990 to 2010 [26] and 
concluded that the fire danger has increased over time during 
the peak season in the United States. This growth affects the 
WUI area as well as the people who live there. The authors 
also examined the relationship between fire danger and 
population density, finding that fire danger is increased in all 
medium and high densities whereas a decrease in fire danger 
occurred in the lowest population density [26]. This is in 
contrast to one of our analysis results focused on the 
population data and fire-severity zones. In this current study, 
the results indicate no pattern or relation between these two 
variables. One reason could be that in [26], the authors 
included all populations from the WUI area and others, which 
may affect their results. Also, different data in their study and 
this current study may also contribute to different results. 

There is a need to develop proactive measures to prevent 
wildfires in California and elsewhere, which have increased in 
the last two decades. Reference [27] conducted a detailed 
analysis across California of the spatiotemporal distribution of 
the larger wildfires, concentrating on the human causes and 
others [27] using CAL FIRE data for the past two decades 
(2000–2019). The study showed that even though the total 
burned area increased, the mean burned area was still stable. 
Most of the wildfires were caused by humans. Natural factors 
were also common causes of wildfires in California. Far away 
from the human community, climate, and vegetation cover 
were the most important factors, especially the areas with 
heavy grass coverage, high temperature, and high vapor-
pressure deficit [27]. The results are aligned with the findings 
in this study: Human, industrial, and natural are major causes. 
Hopefully, that can be managed by increasing public 
awareness campaigns. 

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK 
The increased number of wildfires in California and the 

consequences of these fires have caused several researchers to 
study the phenomena for better understanding or to find useful 
solutions. In this research, the main aim is to examine the 
correlation between population density and the number of 
acres burned in an area. We conducted analysis in ArcGIS Pro 
and with OLS spatial Statistics tool. Fire-perimeter cause data 
were further analyzed in multilabel scenarios at different 
layers. The main findings are that there is no correlation 
between population density and acres burned (R2 = 0.000009) 
where more wildfires are caused by humans than by nature. 
However, population density does not affect fire severity. 
More awareness campaigns must be conducted at the state 

 
Figure 9.  Fire-perimeter	and	severity	zones. 
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level and might help reduce the number of acres burned. Thus, 
policy and decision makers must focus more on that activity. 

One of the research limitations is the data used for the 
analysis since some causes were classified as unknown/other. 
If the causes were known, the results may change. Thus, as a 
future direction, interviews may be conducted to classify those 
causes, or other data may be used. Another future direction is 
to change the analysis techniques by, for example, using the 
Kernel density estimation (KDE) Spatial Analyst tool within 
ArcPro and/or other techniques to create a map of statistically 
significant hot spots for wildfires. 
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