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Abstract—Autonomous and learning systems, such as Multi-
Agent Systems or learning agents based on Deep Reinforcment
Learning, has firmly established themselves as a foundation for
approaches to create resilient and efficient Cyber-Physical Energy
Systems. A substantial amount of research into different aspects of
these systems is backed by simulation. However, the presentation of
the simulation setup, experiment design, and experiment results
evaluation often lacks crucial information, making it hard to
reproduce or compare to other researcher’s results. In this paper,
we present the experiment design tooling of arsenAl, a part of the
palaestrAl software ecosystem. We describe the work in progress
on the experiment definition and mechanisms in place to aid in
sound and reproducible experimentation with learning agents
in co-simulated Cyber-Physical Energy Systems. We provide a
document schema, name necessary tools, and also describe the
relevant building blocks that enable reproducible experimentation
with learning agent systems in co-simulated Cyber-Physical Energy
Systems.

Keywords—agent systems; learning agents; reinforcement learn-
ing; complex co-simulation; cyber-physical systems; modelling and
simulation

I. INTRODUCTION AND RELATED WORK

Agent systems are well-known for many aspects of research
into Cyber-Physical Energy Systems (CPESs), and learning
agents—e. g., such based on Deep Reinforcment Learning
(DRL)—have established a firm foothold in the domain as
well. From the hallmark paper that introduced DRL [1] to
the development of MuZero [2] and AlphaStar [3], learning
agents research has inspired many applications in the energy
domain, including real power management [4], reactive power
management and voltage control [5], [6], black start [7],
anomaly detection [8], or analysis of potential attack vectors
[9], [10].

It is in the very nature of especially learning agent systems
that the most common way to demonstrate advances in the
domain is through experimentation. Published papers present
key performance indicators from the domain, such as a plot of
voltage over time. To show that an agent learns, a plot of the
reward function or utility function over time (or aggregated over
training episodes) is depicted, alongside tables with cumulative
values.

However, in many cases, crucial features are missing that
would allow to reproduce these experiments. Basic values
such as the initial seed for random number generators or the
software packages, together with their version numbers, are
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usually not specified. In order to be meaningful, experiments
would be constructed starting from a hypothesis, with invariants
to validate or refute it. A Design of Experiments (DoE) [11]
approach would allow to specify parameters and factors; the
latter one to be varied in order to gauge the influence of
particular input variables on the presented agent’s or algorithm’s
general performance. In the context of CPESs, there is usually a
number of such factors that can be considered, such as weather
data, time of the year, node placement, or inverter capabilities.

In general, the goal for sound experimentation would
be both, reproducibility, and a concise way to specify an
experiment. CPES simulation often happens as co-simulation,
using frameworks such as mosaik [12] or CPSWT/C2WT-TE
[13]. Of those, some allow scenario-based modelling [14],
but usually, the co-simulation itself does not consider the
experiment stage, only the simulation execution stage, which
follows a separation-of-concerns idea. As such, the concern
for sound experimentation falls to other software packages.
Surprisingly, even though there are libraries that provide the
basic facilities for DoE, there is no tool suite available that
would ensure sound experimentation with learning agents in
such a co-simulation.

In this paper, we present the work-in-progress state of the
palaestrAl software suite. This suite comprises a number
of packages whose goal is to enable researchers to conduct
reproducible and reliable experiments with (learning) agents
in complex, co-simulated Cyber-Physical Systems (CPSs).
The software suite consists of four major parts: arsenAl,
palaestrAl itself, hARL, and palaestrAI Environments. In
this stack, arsenAl is responsible to read experiment def-
initions, evaluate DoE statements, and create the concrete
experiment run definitions. These experiment run definitions
are instantiations of an experiment design, i.e., all factors
are set to concrete values. palaestrAl itself takes care of
proper execution. The hARL package offers implementation of
learning agents, e. g., DRL algorithms such as Proximal Policy
Gradient (PPO) or Soft Actor Critic (SAC), or the Adversarial
Resilience Learning (ARL) agent reference implementation.
palaestrAl Environments finally provides a unified interface
to co-simulated environments, e.g., the MIDAS power grid
reference scenario [15] through mosaik [12]. The complete
software stack, organized in terms of a typical experimentation
workflow, is depicted in Figure 1.
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Figure 1. The palaestrAl software stack [16]

The remainder of this paper is structured as follows: In
Section II, we present the experiment definition document
proper and describe its schema and design goals. Section III
describes all features that aid in the reproducibility of experi-
ments conducted with palaestrAl/arsenAl. Section IV presents
methods built into the software stack to evaluate results from
conducted experiments. We conclude in Section V with an
outlook on our current work.

II. EXPERIMENT DEFINITION DOCUMENT

An experiment definition document serves as an intermediary
data format, which needs to be both human-readable/-writable
as well as machine-readable. Well-established formats at this
interface are eXtensible Markup Language (XML), JavaScript
Object Notation (JSON), and YAML Ain’t A Markup Language
(YAML). Since the barrier for humans should be as low
as possible, YAML was chosen for arsenAl. YAML can be
structurally validated using YAML Schema, which ensures the
syntactic correctness of the document.

Experiment design for co-simulation setups is the major
premiss for this document. This means that it specifies
software modules, such as particular agent implementations
or environments, which are used for the co-simulation. Co-
simulation setups are not monolithic and no assumptions can
be made with regards to the simulators that will be used. Thus,
the experiment document itself cannot specify behaviors; it
can only specify software modules and parameters to it. In
this sense, parameters are what defines their behavior and not
a runtime configuration, such as logging. This also means that
the experimenter has to trust the software to behave correctly.

Scripted “events” can be part of an experiment design
(sometimes called incursions). Those are then software modules,
too (albeit provided by the experimenter), which use the general
co-simulation Application Programming Interface (API) and are
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written with the particular data exchange of concrete simulators
in mind.

An important part of experiment design is the ability to
reason about interactions between different parts of the setup
and gauging the influence of certain factors in order to validate
a hypothesis. For example, an experiment would try to answer
the question “how does the choice of a particular agent training
algorithm influence the observed performance of a variable
over time,” and explicitly not “run a simulation with agent
A in environment E with configuration C and observe state
variable X.” As such, an experiment introduces a meta-layer.
The DoE paradigm introduces factors, whose influence should
be observed, and parameters, which represent values that are
fixed for an experiment. The variation of factors and gauging
of their influence is the core idea of DoE.

A concrete instantiation of all factors in an experiment
definition creates an experiment run definition, which can then
be picked up by a software and executed. Each experiment
consists of at least one phase: A phase designates a particular
stage of execution within an experiment, with concrete agents,
each having a concrete set of sensors and actuators assigned,
acting in co-simulated environments. Each phase has its own
termination condition, each of which is an invariant against
which the current state of agents and environments is checked
during runtime to determine whether the phase has ended.
Termination conditions can be based on the state of an
environment (e.g., a blackout can be a termination condition
for a power grid environment) or the state of an agent (e.g.,
its performance metric can hit a certain threshold). Phases
can be repeated several times (called an episode), which is
useful for learning agents. For example, an untrained agent
may trigger an environment termination condition several times
before developing a sensible strategy; thus, automatic restarts
are necessary.

Subsequent phases can switch parts of the configuration,
such as the agents that participate in it, their hyperparameters,
termination conditions, and so an. A typical use case for several
phases would be a training phase followed by a subsequent
testing phase.

Here, the DoE approach allows to experimentally investigate
hypothesis that are typical for learning agents in CPESs. For
example, in order to evaluate whether an agent would learn
a robust voltage control scheme, it would have to be tested
in different power grid layouts, in different usage scenarios,
even under adverse conditions. Also, learning agents need to
be compared in terms of the algorithms they use and their
respective hyperparameters. The search grid of combinations
can be automatically generated through the DoE services that
software packages such as arsenAl offer; even autocurriculum
setups with different agents training each other or competition-
style comparison setups can easily be realized with way.

An experiment document first independently provides a
number of definitions: environments, agents, named sets of
sensors and actuators, simulation execution strategies including
termination conditions, and phase configurations (e.g., training
or testing mode, or the number of episodes). An example for
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these definitions can be found in Figure 2. Afterwards, concrete
phases are listed in terms of a phase schedule. Each phase lists
the desired factors under investigation and, thus, designs the
search grid. Figure 3 is an example of such a schedule (and a
continuation of Figure 2).

Finally, each experiment document requires a user-defined
name. In addition, it allows to specify a random seed for
reproducibility.

A design goal for the experiment document format described
here is the ease-of-use for humans. Specifically, verbosity
should be reduced in order to increase conciseness and,
therefore, the expressiveness of an experiment document. The
schedule configuration is the target for this goal, as it usually
contains a number of repetitions. For example, the agents
participating a specific phase may change, but the configuration
of the environment might stay the same. In this case, simple
repeating the environment configuration will make it difficult
to discern actual changes from definitions copied over from
the previous phase. Here, a cascading definition—similar to
Cascading Style Sheets (CSS)—is employed: Any definition
(agents, environments, or phase configuration) that is not
explicitly given is considered to be equal to the one from
the previous phase. Continuing with the example given, an
environment has then to be defined only once (in the first phase
it is used), and omitting it afterwards implicitly means that it is
re-used as-is in any following phase that does not redefine the
environments definition part of the schedule. Figure 4 lists the
algorithm that is used to implement this cascading configuration
scheme.

The example shown in Figure 2 defines the major compo-
nents of an autocurriculum-type training and test of agents.
Here, four agents should be trained, two power grid operator
agents and two adversary (“attacker”) agents. For easier refer-
ence, they are dubbed “Gandalf” and “Sauron” respectively. Of
the two pairs, one instance should be trained in autocurriculum
fashion (i.e., yielding one “Gandalf vs. Sauron” training), and
two without adversary. The hypothesis that should be verified
with this setup is: Autocurriculum-trained agents perform better
(at the task of voltage control) than those that train alone. The
task (i. e., voltage control through reactive power) is learned; the
agent’s utility functions are given as their objective. Agents are
comprised of a learning module (nicknamed Brain in palaestrAl
parley) and rollout workers (called Muscles). Each con receive
their own set of parameters. In Figure 2, only a configuration
for SAC is shown due to space constraints.

Figure 3 then defines the training and subsequent testing
phases.

III. REPRODUCIBILITY

Reproducibility is an important aspect of simulation: It
allows other researchers to reproduce the same experiment,
arrive at the same results data and, therefore, verify the
conclusions that were drawn from it. Especially Artificial
Intelligence (AI) researchers have been under scrutiny because
of reproducibility issues of many publications in the past
[17]. Ideally, one would only need to distribute an experiment
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uid: Classic ARL
seed: 2022
version: 3.5.0
output: palaestrai-runfiles
repetitions: 1
max_runs: 300
definitions:
environments:
midasmv_tar ms:
environment:
name: MosaikEnvironment
uid: midas_powergrid
params: {}
reward:
name:
agents:
gandalf_ sac_single:
name: Gandalf SAC
brain: &sac_brain
name: harl:SACBrain
params:
fc dims: [48, 48]
update_after: 1000
batch_size: 500
update_every: 200
muscle: &sac_muscle
name: harl:SACMuscle
params: {}
objective: &defender objective
name: ArlDefenderObjective
params: {}
gandalf_ sac_ac:
name: Gandalf SAC
brain: *sac_brain
muscle: xsac_muscle
objective: xdefender_objective
sauron_sac_single:
name: Sauron SAC
brain: *sac_brain
muscle: xsac_muscle
objective: &attacker_objective
name: ArlAttackerObjective
params: {}
sauron_sac_ac:
name: Sauron SAC
brain: xsac_brain
muscle: xsac_muscle
objective: xattacker_objective
sensors:
all_sensors:
midas_powergrid:
actuators:
attacker_actuators:
midas_powergrid:
defender_actuators:
midas_powergrid:
simulation:
vanilla_ sim:
name: TakingTurns
conditions:

- name: EnvTerminates
params: {}
phase_config:
train: {mode:
test: {mode:

ExtendedGridHealthReward

(single-agent-training)

(autocurriculum-training)

(single-agent-training)

(autocurriculum-training)

[s1l, s2]

[al, a2]

[a3, a4]

train, worker: 1, episodes:
test, worker: 1, episodes: 3}

10}

Figure 2. Example of the definitions part of an experiment document
(identifiers shortened for readability)
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schedule:
— Adversary Single Training:
environments: [[midasmv_tar_ms]]
agents: [[sauron_sac_single]]
simulation: [vanilla_sim]
phase_config: [training]
sensors: &sensors_single
sauron_sac_single: [all_sensors]
gandalf ddpg single: [all_sensors]
gandalf sac_single: [all_sensors]
actuators: &actuators_single
sauron_sac_single: [attacker_actuators]
gandalf sac_single: [defender_actuators]
- Operator Single Training:
environments: [[midasmv_tar_ms]]
agents: [[gandalf_sac_single]]
simulation: [vanilla_sim]
phase_config: [training]
sensors: *sensors_single
actuators: xactuators_single
— Autocurriculum Training:
environments: [[midasmv_tar_ms]]
agents: [[sauron_sac_ac, gandalf_sac_ac]]
simulation: [vanilla_sim]
phase_config: [training]
sensors: &sensors_ac
sauron_sac_ac: [all_sensors]
gandalf sac_ac: [all_sensors]
actuators: &actuators_ac
sauron_sac_ac: [attacker_actuators]
gandalf sac_ac: [defender_actuators]
— Adversary (S) vs. Operator (AC) Test:

environments: [[midasmv_tar_ms]]
agents: [

[sauron_sac_single, gandalf_sac_ac]]
simulation: [vanilla_sim]
phase_config: [test]
sensors:

<<: [xsensors_ac, =*sensors_single]
actuators:

<<: [%actuators_ac, =xactuators_single]

- Adversary (AC) vs. Operator (S) Test:

environments: [[midasmv_tar_ms]]
agents: [

[sauron_sac_ac, gandalf_sac_single]]
simulation: [vanilla_sim]
phase_config: [test]
sensors:

<<: [%sensors_ac, xsensors_single]
actuators:

<<: [xactuators_ac, +*actuators_single]

— Adversary (AC) vs. Operator (AC) Test:
environments: [[midasmv_tar_ms]]
agents: [[sauron_sac_ac, gandalf_sac_ac]]
simulation: [vanilla_sim]
phase_config: [test]
sensors: *sensors_ac
actuators: xactuators_ac

Figure 3. Experiment schedule with factors definition (continued
from Figure 2

document and all non-public data in order to allow others to
recreate an experiment; distributing full setups, up to fully-
configured virtual machine images, should not be necessary.
Since co-simulation setups with learning agents are even
more complex, ensuring reproducibility requires a number
of additional precautions.

The previous section already introduced the notion of a
specific seed; seeding Pseudo Random-Number Generator
(PRNG) with a known number is a common practice. Then,
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function EXPAND-SCHEDULE(experimentrun)
schedule = EMPTY-LIST
for phase € experimentrun.phases do
schedule < schedule U DEEP-COPY (
UPDATE-MAPPING(schedule, phase))
end for
return schedule
end function
function UPDATE-MAPPING(src, upd)
for key, value € upd do
if val isa Mapping then
entry < valge, V EMPTY-MAPPING()
STChey <— UPDATE-MAPPING (entry, value)
else
STChey < value
end if
end for
return src
end function

Figure 4. Phase configuration cascade algorithm

the PRNGs will still emit random numbers, but their sequence
will stay the same. This is an obviously important feature for
reproducibility. Software packages usually allow this seeding
with custom values, e. g., NumPy, a commonly used library in
scientific software, has a chapter in their documentation about
seeding; PyTorch, a popular deep learning library, allows this
equally.

Since the premiss of co-simulation DoE is that software
packages are used transparently, at least ensuring that the same
software versions are used across devices is another important
part of reproducibility. Almost all programming languages allow
to query the software packages that are currently installed. For
example, in Python, the command pip freeze outputs a
list that can later be used to re-install the same versions. Such
a requirements.txt-style software package versions list
can be embedded in the experiment (run) document. Especially
noteworthy in this regard are source code management systems
like git that allow to unambiguously identify each state of a
software repository through hashed commits. An additional
section software (not shown in the abbreviated Figures 2
and 3 due to space constraints) contains a mapping of package
management identifier to software package specfications list.
For example, one package management identifier would be
pip3 to denote Python pacakges; it maps to a list of
requirements.txt-style software package specifications
that would be passed verbatim to pip3 install.

Finally, the experiment and experiment run documents
themselves need to be checked for their identity: Changes
to such a document should be detected by the software
without requiring the user to change its name or any other
unique means of identification: A human can easily forget
to change an identifier when a factor is changed. Moreover,
when convenience features are being used (e. g., the cascading
property of arsenAlI’s experiment (run) documents, or YAML
anchors), then the document becomes semantically ambiguous.
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For example, consider two phases of one experiment, one
called “training” and the other called “testing,” in which an
agent is first trained and then evaluated in another environment
configuration. In arsenAl, there are three ways to define the
second phase: (1) Not mentioning the agent and using the
cascading configuration feature of arsenAl; (2) using a YAML
anchor, or (3) simply copying the definition of the previous
phase.

Thus, a hash value needs to be computed of an exper-
iment document in order to allow unique identification of
documents. To compute a hash value, all idiosyncrasies must
be removed and the resulting document then hashed. For this,
the experiment document must first be fully expanded, i.e.,
the cascading configuration explicitly spelled out (cf. Figure 4.
Afterwards, we convert the YAML document into JSON in
the most compact form possible, since the YAML format
allows—by design—for a number of ambiguities. Finally, we
hash the resulting character stream. The conversation is easily
possible because YAML is a superset of JSON [18]; thus,
YAML documents can always be reduced to JSON. The stricter
syntax of JSON ensures the deterministic, non-ambiguous
minimal form (i.e., with all unnecessary whitespace removed),
if only commas and colons are accepted as separators and
keys to objects are lexicographically sorted. Hashing the re-
sult of to_json (expanded_experiment_document,
separators=(',’, ':'), sort_keys=True) will
be unambiguous across different machines.

IV. EVALUATING RESULTS

Usually, results evaluation means reporting created by a
human for a particular experiment, such as a Jupyter notebook
with custom-made plots or other means of (statistical) analysis.
While this is the usual way for an analysis, e.g., prior to
publication, it most commonly implies manual verification
of numbers and plotted graphs. However, when learning
agent systems are an integral part of a co-simulated CPES
experiment, there are many metrics to consider, as well as their
interdepedence and the factors the influence them.

Usually, presentations begin with the graph of the reward or
utility function, plotted by time or episode. For the example
given, Figure 5 depicts an initial plot and analysis of the agent’s
utility functions that seem to indicate that the autocurriculum-
training does indeed lead to a better agent policy. However,
additional analysis is warranted, giving a box or violin plot.
Also, key metrics from the environment are presented, such
as voltage magnitudes in the case of power grid simulations.
As the reward/utility function of an agent is a user-defined
piece of code, the correlation between observed values and
the reward should be inspected. Moreover, an agent’s apparent
success could be due to an advantageous initial state, so these
calculations should be performed given several experiment
runs with different random seeds. If time series data (e.g.,
weather data) are part of the simulation, the starting date must
be varied, too. For a sound analysis of the experiment, there
are usually more metrics that can be considered, depending
on the actual subject of the investigation. For DRL agents, the
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entropy value during training is often of interest to investigate
the exploration-exploitation trade-off.

Most often, these particular values under investigation have
a close relationship to each other; whether an experiment is
supporting the formulated hypothesis or not then hinges on
thresholds either for individual values or for their correlation
factor. I.e., an experimenter can—or rather, should—usually
formulate beforehand whether a hypothesis is validated or
refuted. This can be done through invariants, or, more broadly,
user-supplied code that, in addition to the usual analysis, returns
a boolean value that indicates the state of the hypothesis.

palaestrAl stores results in a database and provides a
convenience query interface that allows to quickly retrieve
the most common values from it. This way, custom results
validation functions can be provided as part of an experiment.
The invariants key of an experiment (run) definition
document maps to a list of names that reference classes. At
the end of an experiment run, each is instantiated and their
check () method called. This method receives the reference
to the current experiment run’s data in the results database. If
all check functions return t rue, the hypothesis is validated.

The “experimentation pipeline” described allows not only
to create a hypothesis validator for a particular experiment,
but also to provide numerous building blocks for hypothesis
validation that can be used in a number of experiment. For
example, there are definite boundaries for voltage magnitudes.
One particular check, called VoltageHealth, would then
check that no bus would ever see a voltage magnitude outside
of the range 0.85 <V < 1.15p.u.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a way to conduct sound and
reliable experimentation with learning agents in co-simulated
CPES. This includes the presentation of a experiment definition
document, as well as motivating the most important design as
aspects of this approach.

The approach of the experiment definition document as well
as the tool suite offer a number of benefits. First, the format
is both easy for humans to write, yet also easy to process by
the framework. This notion not just includes the text format
(YAML), but also its structure, which allows easy instantiation
of software components on-the-fly to configure the simulation.
Together with arsenAI’s DoE features, even large studies can be
formulated in one file and the executed also at large scale, with
palaestrAl allowing to utilize multiple Graphics Processing
Units (GPUs) as well as a fleet of containers.

However, the instantiation also gives rise to a practical
challenge. Software modules are created at the start of the
simulation, their parameters are—depending in the particular
developer’s coding style—evaluated when first used. Thus,
errors in the code are caught at a later point, compared to a
monolithic setup or other approach that allows static analysis.
Therefore, finding and fixing bugs in one’s experiment setup
can be prone to longer startup cycles. Furthermore, even though
basic syntax checking through YAML schema exists, there is no
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Figure 5.

semantic help or specific syntax highlighting as fully integrated
simulation environments can provide.

In the future, we will showcase an extensive experiment that
investigates the benefits of autocurriculum learning with the
ARL methodology and demonstrate how the particular elements
of our approach tie into a validation of a scientific hypothesis in
a largely automated fashion, driven by an experiment definition
document and the palaestrAl software suite.
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