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Abstract—Treatment of diabetes mellitus is a crucial problem 

in modern health care. Surveys show that the currently used 

methods to estimate the required amount of insulin are quite 

inefficient in practice as they are based on experience and 

conjecture. This paper offers a new method to predict the 

glucose level of people with diabetes. The proposed approach 

combines two efficient models found in literature. The mixture 

of the methods tracks the blood sugar level considering 

nutrition, applied insulin and initial glucose level. According to 

our tests, the model gives satisfactory results with real patients 

both in inpatient and outpatient care.  

Keywords—Glucose-level tracking; eHealth; Glucose-Insulin 

system; Glucose absorption; Diabetes mellitus 

I.  INTRODUCTION 

Diabetes mellitus is a metabolic disease that affects the 
whole society. It is a typical disease of the modern culture 
caused by obesity, the lack of physical activity and the 
changing of culinary culture. At the moment, this problem 
hits 3% of the population [1], but this number is increasing. 
The current predictions report that the number of people with 
diabetes can reach 5% within 2 decades [1]. This underlines 
the importance of diabetic lifestyle support. 

The official classification separates diabetes mellitus into 
different types, according to clinical age [2]: 

 Type 1 diabetes results from the lack of insulin 
production. The failure of insulin output is caused by 
an autoimmune destruction of beta-cells in the 
pancreas, which usually leads to absolute insulin 
deficiency. Patients diagnosed with Type 1 diabetes 
have to follow a strict diet and apply subcutaneous 
insulin by injection or insulin pump. 

 Type 2 is the major form of diabetes as it accounts 
for 90% to 95% of all diagnosed patients (in the 
USA [3]). It is an insulin resistant stage caused by 
failure in insulin secretion. The treatment of these 
patients varies from lifestyle changing through diet 
and oral medications to subcutaneous insulin 
necessity. 

 The third category contains special types, including 
gestational diabetes and other types caused by 
medications, infections, or other illnesses. 

The remainder of the paper is structured as follows: 
Section II presents some related works and summarizes the 
prospects of this field. Section III contains the description of 
the proposed glucose level prediction system. Section IV 
includes the result of several tests with the model. Section V 

contains the discussion of the results. Finally, Section VI 
concludes the paper and outlines future work. 

II. MOTIVATIONS AND LITERATURE OVERVIEW 

The basic motivation of our efforts is to provide diabetics 
with a tool that they can use in everyday life to predict their 
blood glucose level. We focus on outpatients treated with 
insulin injection no matter having type 1, type 2 or other 
types of diabetes. These patients inject themselves with 
insulin considering meal, physical activity, sports and also 
the weather change. The main index to verify the patients' 
state is HbA1c (Glycated hemoglobin). According to the 
recent surveys, these values are far from ideal in the case of 
several patients [4]. The gap does not seem big, but it can 
lead to serious complications; moreover a big variation of 
glucose levels endangers the life of a person with diabetes.  

The whole metabolism can be divided into two parts, as 
Figure 1 shows. The first one is glucose absorption from 
meals and the second one is the glucose controlling system 
including insulin evolution.  

From the aspect of glucose uptake, the absorption from 
intestine is the main factor, but the stomach has a significant 
role in the procedure as well. In connection with glucose 
control, there are many factors to take into account such as 
glucose uptake, inner insulin production, insulin input, etc. 
These factors are discussed later in this paper.  

 
 

Figure 1.  The process of metabolism 
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TABLE I.  THE PARAMETERS OF THE MODEL OF GLUCOSE 

ABSORPTION 

 

TABLE II.  THE PARAMETERS OF THE GLUCOSE CONTROL MODEL 

 

Our model uses a combination of two existing models for 
nutriment absorption and glucose control. 

There are methods for measuring glucose absorption [5] 
from meals such as the Diabetes Advisory System - DIAS 
[6]. Lots of models build upon this system though its base is 
only a simple one-compartment model.  In order to create a 
more precise algorithm, other methods use glycemic indices 
(GI) [7] allowing mixed meals input such as the two-
compartment model from Arleth et al. [8]. These methods 
provide a simulation closer to reality. 

Beside glucose absorption, the evolution of insulin is the 
other main factor in tracking glycemia. There are even more 
methods in this field [9] starting with the so called minimal 
model which is still used in practice since it is a relatively 
simple method based on ordinary differential equations [10]. 
Several methods are the approximations of this model, e.g., 
[11]. The minimal model has low number of parameters, 
hence a limited predictive power. This problem is solved in 
more sophisticated methods, using differential equations. 
These approaches might use integro-differential equations 
[12], partial differential equations [13] or delay differential 
equations [14]. Such solutions as the latter support 

Glucose control model 

Variables 

𝐺(𝑡) Plasma glycemia. [mM = mmol/l] 
𝐼(𝑡) Insulinemia. [pM = pmol/l] 
𝑆1(𝑡) The insulin mass in the accessible 
 subcutaneous depot. [pmol/𝑘𝑔𝐵𝑊] 
𝑆2(𝑡) The insulin mass in the non-accessible 
 subcutaneous depot. [pmol/𝑘𝑔𝐵𝑊] 
𝑓(𝐺) Pancreas Insulin Delivery Rate. 

Parameters 

𝐾𝑥𝑔𝑖  Rate of glucose uptake by insulin-dependent 

 tissues per pM. [1/(min ∗ pM)] 
𝑇𝑔  Net balance between hepatic glucose output 

and insulin-independent zero-order glucose 
uptake (by brain). [mmol/(min ∗ 𝑘𝑔𝐵𝑊)] 

𝑉𝐺  Distribution volume for glucose. [L/𝑘𝑔𝐵𝑊] 
𝐾𝑥𝑖  Apparent first-order disappearance rate for 

insulin. [1/min] 
𝑇𝑖𝐺𝑚𝑎𝑥  The maximal rate of second-phase insulin 
 release. [pmol/(min ∗ 𝑘𝑔𝐵𝑊)] 
𝑉𝑖  Distribution volume for insulin. [L/𝑘𝑔𝐵𝑊] 
𝜏𝑔  The delay with which the pancreas varies 

 secondary insulin release in response to 
 varying plasma glucose concentrations. [min] 
𝑡𝑚𝑎𝑥 ,𝐼 Time-to-maximum insulin absorption. [min] 
𝑢(𝑡) Subcutaneous insulin delivery rate. [pM/min] 
𝑘𝑔𝐵𝑊 The weight of the patient. [kg] 
𝐺∗ The glycemia at which the insulin release is 

half of its maximal rate. [mM] 
𝛾 The progressivity with which the pancreas 

reacts to circulating glucose concentrations. 
 
 
 
 

Model of glucose absorption 

Prefixes 

∆ The actual time interval (∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖). 
𝑚 The component is added by meal. 
𝑠 The component is in the stomach. 
𝑒 The component is ejected from the 
 stomach into the intestine. 
𝑖 The component is in the intestine. 
𝑓 The component leaves the intestine as 
 faeces. 
𝑎 The component is absorbed through the 
 intestinal wall. 

Variables 

𝑃𝑟𝑜𝑡(𝑡𝑖) The amount of proteins at time step 𝑡𝑖 . 
𝐿𝑖𝑝(𝑡𝑖) The amount of lipids at time step 𝑡𝑖 . 
𝐹𝑖𝑏𝑟(𝑡𝑖) The amount of fibres at time step 𝑡𝑖 . 
𝑀𝑜𝑛𝑜𝑠𝑎𝑐(𝑡𝑖) The amount of monosaccharides at time 
 step 𝑡𝑖 . 
𝑆𝑡𝑎𝑟𝑐𝐺𝐼(𝑡𝑖) The amount of starch with the given GI 
 at time step 𝑡𝑖 . 
𝑀𝑎𝑠𝑠(𝑡𝑖) The amount of nutriment at time step 𝑡𝑖 . 
𝑊𝑎𝑡𝑒𝑟(𝑡𝑖) The amount of water at time step 𝑡𝑖 . 
𝐺𝐸𝑅 Gastric emptying rate. [kJ/min] 
𝑠𝑉𝑜𝑙 Stomach volume. [ml] 
𝜏𝑤𝑎𝑙𝑙   Average time before the food obtains 

contact with the intestinal wall. [min] 
𝜏𝐺𝐼  The time of the starch breakdown 

process with glycemic index GI. [min] 

Parameters 

𝐵𝑀 The body mass in kg. 
𝐺𝐼  The glycemic index of the food. 

Constants 

𝐶𝐻𝑂𝑎𝑣𝑎𝑖𝑙 Bioavailability. The optimized value is 
0.76. 

𝑠𝑉𝑜𝑙0  Exponential constant for stomach 
emptying. The value is 225 ml. 

𝑆𝐸𝑅  The specific emptying rate. The 
optimized value is 0.161. 

𝐼𝐴𝑅 Maximal intestinal absorption rate, the 
 estimated value is 2.0 g/min. 
𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑛𝑠𝑗  The energy density is 17kJ/g for 

 proteins, starch and monosaccharide, 
0kJ/g for fibres and 39 kJ/g for lipids. 

𝜏𝑓𝑖𝑏𝑟  Exponential time constant for excretion 

 set to 180 min. 
𝜏𝑤𝑎𝑙𝑙 0  Set to 1000 min. 
𝜏100  Time constant for starch breakdown with 
 GI 100. The optimized value is 28.0 min. 
𝛼 Parameter relating 𝜏𝐺𝐼  to the glycemic 
 index. The optimized value is 0.0125. 
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subcutaneous insulin depot, create better representation of 
the Insulin Delivery Rate (IDR), etc. 

 
Figure 2.  The process of absorption from mixed meals 

III. THE PROPOSED METHOD 

As mentioned before, our method combines two existing, 
state-of-the-art models to simulate plasma glycemia by 
influences of meals and insulin uptake. We chose these 
models because they have a realistic, comprehensive set of 
parameters capable of simulating a real-life outpatient as 
well. 

A. Glucose Absorption From Meals 

A two-compartment method [8, 15] is used to model the 
effect of nutrition on blood glucose level. The model 
proposed by Arleth T. et al. divides the digestion into two 
segments, as seen in Figure 2. The food first arrives to the 
stomach compartment followed by emptying into the small 
intestine and later into the large intestine. The absorption of 
the monosaccharide happens in the intestinal part; the 
remaining mass is ejected as faeces. 

Simpler methods, like DIAS, operate with carbohydrate 
as input and take some components (e.g., lipids, proteins, 
starch) out of consideration. In contrast, our model takes 
protein, lipid, monosaccharide, fibre and starch as input, each 
one having its own effect during the absorption. In addition, 
the method can deal with mixed meals by using GI. 
Moreover, digestion overlap is handled properly as well. 

The whole process is based on mass balance equations 
[15]. The equations for the stomach compartment are as 
follows: 

𝑠𝑃𝑟𝑜𝑡 𝑡𝑖+1 = 𝑠𝑃𝑟𝑜𝑡 𝑡𝑖 + ∆𝑚𝑃𝑟𝑜𝑡 𝑡𝑖 − ∆𝑒𝑃𝑟𝑜𝑡 𝑡𝑖  (1) 

𝑠𝐿𝑖𝑝 𝑡𝑖+1 = 𝑠𝐿𝑖𝑝 𝑡𝑖 + ∆𝑚𝐿𝑖𝑝 𝑡𝑖 − ∆𝑒𝐿𝑖𝑝 𝑡𝑖  (2) 

𝑠𝐹𝑖𝑏𝑟 𝑡𝑖+1 = 𝑠𝐹𝑖𝑏𝑟 𝑡𝑖 + ∆𝑚𝐹𝑖𝑏𝑟 𝑡𝑖 − ∆𝑒𝐹𝑖𝑏𝑟 𝑡𝑖  (3) 

𝑠𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖+1 = 𝑠𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 + ∆𝑚𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 
∗ 𝐶𝐻𝑂𝑎𝑣𝑎𝑖𝑙 − ∆𝑒𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 

+  ∆𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 

𝐺𝐼

 
(4) 

𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖+1 = 𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 + ∆𝑚𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 
∗ 𝐶𝐻𝑂𝑎𝑣𝑎𝑖𝑙 − ∆𝑒𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 
− ∆𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖  

(5) 

The rate of ejection from stomach to intestine is 
measured by the gastric emptying rate (GER) [15]:  

𝐺𝐸𝑅 = 𝑆𝐸𝑅 ∗ 𝐵𝑀 ∗  
𝐵𝑀

70
 

0,425

∗ (1 − 𝑒𝑠𝑉𝑜𝑙 /𝑠𝑉𝑜𝑙0)   (6) 

𝑠𝑉𝑜𝑙 =  𝑠𝑃𝑟𝑜𝑡 + 𝑠𝐿𝑖𝑝 + 𝑠𝐹𝑖𝑏𝑟 +  𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼
𝐺𝐼

 ∗ 3

+ 𝑠𝑀𝑜𝑛𝑜𝑠𝑎𝑐 ∗ 18 

(7) 

The ejection from stomach to intestine is calculated 
considering the energy of the food components (𝐸𝑛𝑒𝑟𝑔𝑦𝑗 ) 

using GER. The following equations [15] determine the 
actual ejections for each state variable (𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖 ): 

∆𝑒𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖 = ∆𝑡 ∗ 𝑠𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖 ∗
𝐺𝐸𝑅

𝑠𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦
   (8) 

𝑠𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦 =  𝑠𝐸𝑛𝑒𝑟𝑔𝑦𝑗
𝑗

 (9) 

𝑠𝐸𝑛𝑒𝑟𝑔𝑦𝑗 = 𝑠𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑗 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑛𝑠𝑗  (10) 

The next compartment is the intestine, where proteins 
and lipids do not play a role anymore. The absorption of 
monosaccharides (15) happens here. 

𝑖𝐹𝑖𝑏𝑟 𝑡𝑖+1 = 𝑖𝐹𝑖𝑏𝑟 𝑡𝑖 + ∆𝑒𝐹𝑖𝑏𝑟 𝑡𝑖 − ∆𝑓𝐹𝑖𝑏𝑟 𝑡𝑖  (11) 

∆𝑓𝐹𝑖𝑏𝑟 𝑡𝑖 = 𝑖𝐹𝑖𝑏𝑟 𝑡𝑖 ∗ (1 − 𝑒−∆𝑡/𝜏𝑓𝑖𝑏𝑟 ) (12) 

𝑖𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖+1 = 𝑖𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 + ∆𝑒𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 
− ∆𝑎𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 

+  ∆𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 

𝐺𝐼

 
(13) 

𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖+1 = 𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 + ∆𝑒𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 
− ∆𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖  

(14) 

∆𝑎𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 = min  𝑖𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 

∗  1 − 𝑒
−

∆𝑡
𝜏𝑤𝑎𝑙𝑙  ,  𝐼𝐴𝑅 ∗ ∆𝑡   

(15) 

𝜏𝑤𝑎𝑙𝑙 = 𝜏𝑤𝑎𝑙𝑙 0 ∗ 𝑖𝐹𝑖𝑏𝑟/𝑖𝑀𝑎𝑠𝑠 (16) 

𝑖𝑀𝑎𝑠𝑠 𝑡𝑖 = 𝑖𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 +  ∆𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 

𝐺𝐼

+ 𝑖𝑊𝑎𝑡𝑒𝑟 𝑡𝑖 + 𝑖𝐹𝑖𝑏𝑟 

(17) 

𝑖𝑊𝑎𝑡𝑒𝑟 𝑡𝑖 = 𝑖𝑀𝑜𝑛𝑜𝑠𝑎𝑐 𝑡𝑖 ∗ 37 (18) 

 

207Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine



The following equations [15] calculate the breakdown of 
starch into monosaccharides: 

∆𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 = 𝑠𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 ∗ (1 − 𝑒−∆𝑡/𝜏𝐺𝐼 ) (19) 

∆𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 = 𝑖𝑆𝑡𝑎𝑟𝑐𝐺𝐼 𝑡𝑖 ∗ (1 − 𝑒−∆𝑡/𝜏𝐺𝐼 ) (20) 

𝜏𝐺𝐼 = 𝜏100  1 + 𝛼 ∗ (100 − 𝐺𝐼)  (21) 

The definition of the parameters is given in Table I. For 
further details of the model see [15]. 

B. Glucose Control System 

A sophisticated glucose control system model was 
chosen using Delay Differential Equations (DDE), proposed 
by P. Palumbo et al. [14, 16]. This model has several 
parameters to support both type 1 and type 2 diabetics (see 
Table II). It is also possible to use insulin pump or 
subcutaneous insulin injections as input. The method uses 
two subcutaneous depots (accessible and not-accessible) to 
simulate subcutaneous insulin absorption. The main 
equations [16] are: 

𝑑𝐺

𝑑𝑡
= −𝐾𝑥𝑔𝑖𝐺 𝑡 𝐼 𝑡 +

𝑇𝐺𝐻
𝑉𝐺

 (22) 

𝑑𝐼

𝑑𝑡
= −𝐾𝑥𝑖 𝐼 𝑡 +

𝑇𝑖𝐺𝑚𝑎𝑥

𝑉𝐼
𝑓 𝐺 𝑡 − 𝜏𝐺  +

1

𝑉𝐼𝑡𝑚𝑎𝑥 ,𝐼

𝑆2(𝑡) (23) 

𝑑𝑆2

𝑑𝑡
=

1

𝑡𝑚𝑎𝑥 ,𝐼

𝑆1(𝑡) −
1

𝑡𝑚𝑎𝑥 ,𝐼

𝑆2(𝑡) (24) 

𝑑𝑆𝐼
𝑑𝑡

= −
1

𝑡𝑚𝑎𝑥 ,𝐼

𝑆1(𝑡) − 𝑢(𝑡) (25) 

The Insulin Delivery Rate (IDR) is modeled by the 
nonlinear 𝑓(𝐺) function [16]: 

𝑓(𝐺) = −
 
𝐺
𝐺∗ 

𝛾

1 +  
𝐺
𝐺∗ 

𝛾  (26) 

IV. RESULTS 

We implemented the combined model in a prototype and 
checked the correctness of our implementation by comparing 
its results to those published for a virtual patient in the 
original paper [16]. The parameters of the model were taken 
from the literature [17], from an intravenous glucose 
tolerance test experiment on an obese patient, slightly 
changed to simulate Type 2 diabetes mellitus (see Table III).  
The results showed good correlation to those published. 

In the next step, we validated this model on outpatient 
data. Two persons with diabetes mellitus were examined. 
The first test involved a woman with Type 2 diabetes, while 
the second patient was a Type 1 diabetic man (see Table IV). 
Both patients are treated with subcutaneous insulin injection.  

TABLE III.  THE PRAMETERS OF THE VIRTUAL PATIENT WITH TYPE 2 

DIABETES MELLITUS 

Parameter Value 

𝐾𝑥𝑔𝑖  
 

3.11*10-5 

𝑇𝑔  0.003 

𝑉𝐺  0.187 

𝐾𝑥𝑖  1.211*10-2 

𝑉𝑖  0.25 

𝑇𝑖𝐺𝑚𝑎𝑥  0.236 

𝜏𝑔  24 

𝑡𝑚𝑎𝑥 ,𝐼 55 

𝐺∗ 9 

𝛾 3.205 

TABLE IV.  THE PARAMETERS OF THE OUTPATIENTS WITH 

SUBCUTANEOUS INSULIN TREATMENT 

Patient A with Type 2 diabetes 

mellitus 

Patient B with Type 1 diabetes 

mellitus 

Birth date 1952 Birth date 1993 

Gender female Gender male 

Height 156 cm Height 196 cm 

Weight 78 kg Weight 83 kg 

Applied insulin Lispro Applied insulin Glulisine 

Peak 60 Peak 55 

Quantity/Unit 6000 pmol Quantity/Unit 6000 pmol 

The tests on both persons were executed with the same 
parameters as seen in Table III except 𝑇𝑖𝐺𝑚𝑎𝑥 , which is set to 
0.1. The patients used similar types of insulin with the same 
quantity per unit indicator. On the whole, a reliable 
comparison can be made between the outcomes. 

The first diabetic patient, outpatient A, was treated as 
inpatient to adjust her inordinate glycemia. Medication, 
glucose readings and meals were logged during 6 days 
including 15 meals and 45 glucose level measurements by 
ordinary blood sugar meter. The available meal log may 
contain inaccurate values if the patient consumed other meals 
except those offered as the controlled menu. 

In the case of outpatient B, a controlled experiment was 
conducted during 3 days with 13 meals. The blood sugar 
level was monitored by a Medtronic Guardian Real-Time 
Continuous Glucose Monitoring (CGM) System, measuring 
the actual value every 5 minutes. The food portions were 
measured properly with scale and the time of meal and 
insulin input was logged correctly with minimum possibility 
of false values, using an android-based nutrition logger 
application [18]. 

Two different kinds of tests were made with each patient. 
The first simulation used meal wise records, i.e. the meals 
were treated as separate tests. Each test was run with zero 
startup blood insulin level and no running glucose 
absorption. The second test used a whole day’s data with 
zero startup blood insulin level in the morning. During this 
test, the absorption of the insulin and the glucose from food 
could be in progress at the next meal as well.  
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Figure 3.  The fifth day of the meal wise test of patient A (solid line – model estimations, dashed line – measured values)

 

Figure 4.  The first eight hours of the whole third day of patient B (solid line – model estimations, dashed line – measured values) 

The results (see Table V and Table VI) prove that the 
whole day test gives better tracking as it takes more factors 
into account. The model copes with insulin absorption and 
digestion overlap which means around 5% improvement 
regarding the rate of deflection. The average deflection 
decreased with 0.45 mmol/l. 

Comparing the two patients (see Figure 3 and Figure 4), 
there is more than 1 mmol/l decrease in average deflection if 
the experiment is properly logged. There is also more than 
10% increase in the significant fields of rate of deflection 
(<3mmol/l). 

TABLE V.  COMPARISON BETWEEN THE TWO TESTS WITH PATIENT A 

Patient A – 15 meals Meal wise Whole day 

Average deflection  4,0 mmol/l 3,55 mmol/l 

Rate of 

deflection 

< 3 mmol/l 50 % 57 % 

< 5 mmol/l 68 % 79 % 

< 8 mmol/l 93 % 93 % 

TABLE VI.  COMPARISON BETWEEN THE TWO TESTS WITH PATIENT B 

Patient B – 13 meals Meal wise Whole day 

Average deflection  2,99 mmol/l 2,35 mmol/l 

Rate of 

deflection 

< 3 mmol/l 65 % 69 % 

< 5 mmol/l 76 % 81 % 

< 8 mmol/l 94 % 100 % 

V. DISCUSSION OF RESULTS 

The large differences between the prediction and the 
measured values that we experienced for patient A were 
most probably due to the poor quality of the dietary log. 
Also, it is harder to assess the performance of the model 
using only point-wise measurement data. For patient B, the 
error was fairly low (below 4 mmol/l) in the first hours (Fig. 
4) and since we can re-start the model after the meals, the 
error calculated for the whole day in Table VI is over-
pessimistic. However, the 4 mmol/l error is still fairly large, 
so relying solely on the model we could not exclude 
emergency situations (i.e. hypoglycemia) in a real life 
application. For better results, more efficient parameter 
training is needed. 

The meal wise test with patient A also shows (see Figure 
3) that using an ordinary blood sugar meter can lead to 
considerable errors in blood sugar level estimation. The 
patient measured a high value at 120 minutes, but the model 
shows even higher values between the two real-life 
measurements (0 min and 120 min). In this situation the gap 
is small, but there could be bigger differences as well. The 
frequent presence of these situations can lead to higher 
HbA1c values. 

Long-term model based predictions are in general less 
unreliable as the deviations accumulate. However, the 
proposed approach gives satisfactory results for short time 
prediction, which is the main demand to estimate the 
required amount of insulin in outpatient care. 
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VI. CONCLUSION AND FUTURE WORK 

The paper presented a combined model for the short time 
prediction of the blood glucose level, based on the dietary 
log of type I and type II diabetic patients. The results are 
satisfactory even without any model training. 

Further research is needed for 

 training the model to support personal variations in 
model parameters 

 extending the model to use also other physiological 
data available like physical activity and stress. 

Our aim is to decrease the average error under 1 mmol/l, 
which is a sufficient margin of error considering that the 
currently used real measurements have similar margin of 
error. The model is currently being further evaluated in a 
clinical study involving 20 rehabilitation patients, as an add-
on module to the Lavinia lifestyle mirror [18]. 
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